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Abstract. Constitutive tensors are of common use in mechanics of materials. Determining the relevant
symmetry class of an experimental tensor is still a tedious problem. For instance, it requires numerical
methods in three-dimensional elasticity. We address here the more affordable case of plane (2D) elasticity,
which has not been fully solved yet. We recall first Vianello’s orthogonal projection method, valid for both
the isotropic and the square symmetric (tetragonal) symmetry classes. We then solve in a closed-form, the
problem of the distance to plane elasticity orthotropy, thanks to the Euler–Lagrange method.

Résumé. Les tenseurs constitutifs sont d’un usage courant en mécanique des matériaux. La détermination
de la classe de symétrie pertinente d’un tenseur expérimental reste un problème difficile, qui nécessite
des méthodes numériques en élasticité tridimensionnelle. Nous abordons ici le cas plus abordable de
l’élasticité plane (bi-dimensionnelle), non encore complètement résolu. Nous rappelons d’abord la méthode
de projection orthogonale de Vianello, valable pour les classes de symétrie isotrope et de symétrie du carré
(tétragonale). Nous résolvons ensuite de manière analytique le problème de la distance à l’orthotropie de
l’élasticité plane, grâce à la méthode d’Euler–Lagrange.
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1. Introduction

Experimental techniques have been developed in order to measure all the components of an
elasticity tensor, such as the ultrasonic measurements [1–6]. Once its components C raw

i j kl are
identified (in a working basis), one may wonder what is its relevant material symmetry (i.e.
symmetry group). For single crystals or for composite materials, a material symmetry is expected
(for example cubic symmetry or orthotropy) so that the question becomes to find a tensor C,
with a given material symmetry, the closest to the measured tensor Craw (usually with no material
symmetry at all, i.e. triclinic in 3D, biclinic in 2D).

The precise identification of the symmetry class—or the symmetry group—of a constitutive
tensor is not an easy task, mainly for two reasons [4]:

• the tensor is measured in a given orientation, possibly experimenter dependent, which
may not coincide with an expected symmetry group, not allowing then for the recog-
nition by eye (on the Kelvin matrix representation) of the orthotropic, tetragonal, cu-
bic, . . . well-known expressions for Craw (the well-known normal forms of elasticity ten-
sors [7]),

• the experimental discrepancy/errors makes the material symmetries approximate.

Sufficient conditions (in [8]) and necessary and sufficient conditions (in [9]) have been formu-
lated to characterize, in an arbitrarily oriented coordinate system, the symmetry class of a three-
dimensional elasticity tensor. For plane (2D) elasticity, the symmetry classes characterization is
much simpler than in 3D [10–12]. Methods furthermore exist to bring back a rotated elasticity
in its normal form [13–15]. Unfortunately, they are a priori useless in the common case of a tri-
clinic/biclinic measured elasticity tensor. When experimental discrepancy has to be dealt with,
the literature approaches are based on the concept of distance of a tensor to a considered sym-
metry class [4, 7, 16–22], starting from a given (usually measured) elasticity tensor Craw with no
material symmetry, and sometimes from the additional quantification of the measurement er-
rors [23–25].

The 3D case has, by far, been the most studied. It remains the most challenging case, and
determining the distance to a 3D symmetry class is usually done numerically, with the risk
of reaching a local minimum instead of the global minimum [19–21, 24]. Recently, in [26],
following [27], the authors have used the basis carried by a second-order deviatoric tensor, a
linear covariant t(Casym), built from the Backus asymmetric part Casym = Craw − (Craw)s of the
raw elasticity tensor. They obtain, this way, closed-form expressions for upper bounds estimates
of the distances to the elasticity symmetry classes. In 2D, the asymmetric part Casym is always
isotropic (see Remark 2) so that, in order to apply this procedure, another (nonisotropic) second-
order covariant of Craw has to be used.

The 2D case has been shown to be more affordable than the 3D case [11]. Indeed:

• There are only four symmetry classes, easily characterized (instead of eight in three-
dimensional elasticity [28]);

• Both the isotropic and the tetragonal (square symmetry) strata1 are linear subspaces
of the vector space of plane elasticity tensors Ela(2). Closed form-expressions for the
distance to these symmetry strata are obtained using orthogonal projections on these
subspaces.

The problem of calculating the distance to plane elasticity orthotropy has also been proposed
in [11], but not solved explicitly. An upper bound estimate, expressed in terms of invariants,
of this distance has been obtained in [29]. It is the aim of the present work to derive a closed

1A symmetry stratum is the set of all tensors having the same symmetry class.
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form solution for the exact 2D distance problem. For the sake of self-completeness, we will
recall Vianello’s orthogonal projection method for the isotropic and the square symmetric cases
(Section 3). We will determine, by the Euler–Lagrange method, the closest orthotropic plane
elasticity tensor to a given raw tensor Craw ∈ Ela(2). The method is detailed in Section 4 in a
sufficiently general manner so that it also applies to other situations. For instance, the case of
the distance to a transversely isotropic second order (3D) constitutive tensor (such as a thermal
expansion or a thermal conductivity tensor) is treated in Appendix B. A discussion on different
equivalent definitions of the distance to a symmetry class is provided in Section 5. In Appendix C,
we offer evidence concerning the distance to orthotropic plane elasticity, the upper bounds
estimates proposed in [26] and in [29] are equal.

Using the Euclidean structure of space, no distinction will be made between covariant, con-
travariant or mixed tensors. All tensor components will be expressed with respect to an orthonor-
mal basis.

2. Plane elasticity tensors

In this paper, we consider the natural action of the orthogonal group O(2) on the vector space of
elasticity tensors in two dimensions (sometimes, called plane elasticity tensors [11, 12])

Ela(2) = {
C; Ci j kl =C j i kl =Ci j lk =Ckl i j

}
,

which describe constitutive equations for two-dimensional linearly elastic bodies. The orthogo-
nal group O(2) consists in two components. The subgroup, noted SO(2), of rotations rθ,

rθ :=
(
cosθ −sinθ
sinθ cosθ

)
, (1)

and the set (which is not a subgroup), noted SO(2)s, consisting of axial symmetries with respect
to the axis with angle θ/2 with Ox. These reflections are written as the composition

rθs =
(
cosθ sinθ
sinθ −cosθ

)
, where s :=

(
1 0
0 −1

)
, (2)

(s is the symmetry with respect to the x-axis) and the identity element is denoted by

e :=
(
1 0
0 1

)
.

The action of the full orthogonal group O(2) on the vector space Ela(2) is then written as

(ρ(g )C)i j kl = gi p g j q gkr gl sCpqr s , g ∈ O(2), C ∈ Ela(2).

2.1. Plane elasticity symmetry classes

The vector space of plane elasticity tensors splits into four symmetry strata Σ[H ] [10, 11, 30, 31], a
symmetry stratum being the set of all tensors having the same symmetry class. They are indexed
by the conjugacy class [H ] of some symmetry group H (see Appendix A) and are naturally ordered
as follows

biclinic −→ orthotropic −→ square symmetric −→ isotropic (3)

In the following we will refer to a symmetry stratum by its mechanical name, settingΣortho,Σsquare

and Σiso, and generically Σ, instead of the notation Σ[H ] (which uses the definitions of subgroups
of the orthogonal group O(2)).

Raw plane elasticity tensors are in general biclinic but one may expect, for several mechani-
cal/material science reasons, a particular symmetry, the orthotropic, the square symmetry (also
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called tetragonal in [11]) or the isotropic symmetry. A natural question is then: how far is a given
raw elasticity tensor Craw ∈ Ela(2) from an orthotropic, a square symmetric or an isotropic tensor?
In the following, non biclinic plane elasticity tensors, which are either orthotropic, square sym-
metric or isotropic, will be said to be at least orthotropic and the set of all tensors which are at
least orthotropic will be called the closed orthotropic stratum and noted by Σortho. Hence

Σortho =Σiso ∪Σsquare ∪Σortho.

Similarly, at least square symmetric elasticity tensors are either square symmetric or isotropic,
and belong to the closed symmetry stratum

Σsquare =Σiso ∪Σsquare.

The arrows in (3) represent this “at least of a given symmetry” ordering.

2.2. Normal forms

It is well-known that any symmetric second-order tensor a can be rotated onto a diagonal tensor
A. This diagonal representation is called a normal form for a under the action of the rotation
group. Similarly, any plane elasticity tensor C (which is at least orthotropic) can be written as
C = ρ(g )A where A ∈ Ela(2) has the following Kelvin matrix representation

A =
A1111 A1122 0

A1122 A2222 0
0 0 2A1212

 . (4)

This normal form depends on four independent parameters if it is orthotropic, three parameters
if it has square symmetry (A2222 = A1111), and two parameters if it is isotropic (A222 = A1111 and
2A1212 = A1111 − A1122). We denote by N this number of independent parameters.

Remark 1. Observe that in (4), the tensor A is fixed by the dihedral group D2 := {e,rπ, s,rπs}.
Hence, the space of tensors A having Kelvin matrix representation (4), is noted Fix(D2). A system-
atic way to calculate such a normal form for a tensor in a given symmetry class is described in
Appendix A.

2.3. Harmonic decomposition

Following [10, 11], we denote by C = (λ,µ,h,H) the following explicit harmonic decomposition of
a plane elasticity tensor C, into two scalars λ,µ, a second-order deviatoric (harmonic) tensor h
and a fourth order harmonic tensor H:

C := 2µI+λ1⊗1+ 1
2 (1⊗h+h⊗1)+H, (5)

where I is the fourth order identity tensor with components Ii j kl = 1/2(δi kδ j l +δi lδ j k ). Explicitly,
one has

λ := 1
8 (3Ci i j j −2Ci j i j ) = 1

8 (C1111 +6C1122 −4C1212 +C2222), (6)

µ := 1
8 (2Ci j i j −Ci i j j ) = 1

8 (C1111 −2C1122 +4C1212 +C2222), (7)

h := (tr12C)′ (i.e. hi j =Ckki j − 1
2Ckkl lδi j ), (8)

H := C− 1
2 (1⊗h+h⊗1)−2µI−λ1⊗1, (9)

where (·)′ means the deviatoric part. Recall that an harmonic tensor is a totally symmetric and
traceless tensor.
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The two scalars λ and µ and

I2(C) := ‖h‖2 = 1
2 (C1111 −C2222)2 +2(C1112 +C2212)2,

J2(C) := ‖H‖2 = 1
8 (C1111 −2C1122 −4C1212 +C2222)2 +2(C1112 −C1222)2,

are invariants of the elasticity tensor.
Let (·)s be the total symmetrization and ¯ be the (totally) symmetric tensor product. For

symmetric second-order tensors a,b, we have

a¯b = (a⊗b)s , (a¯b)i j kl = 1
6 (ai j bkl +akl bi j +ai k b j l +bi k a j l +ai l b j k +bi l a j k ).

The explicit harmonic decomposition (5) can be rewritten as

C = 2
3 (µ−λ)(I−1⊗1)+ (2µ+λ)1¯1+ 1

2 (1¯h+h¯1)+H, (10)

thanks to the two following properties,

2I+1⊗1 = 31¯1, 1⊗h+h⊗1 = 1¯h+h¯1, (11)

the second being specific to the 2D case when h = h′ is harmonic [32]. The totally symmetric part
S and the asymmetric part Casym—in the sense of Backus [33]—of a plane elasticity tensor C are
then

S = Cs = (2µ+λ)1¯1+ 1
2 (1¯h+h¯1)+H,

Casym = C−S = 2
3 (µ−λ)(I−1⊗1).

Remark 2. We deduce from the last equality that, in 2D, the asymmetric part Casym of a plane
elasticity tensor is always isotropic.

3. Closest tensor in a given plane elasticity symmetry class

Given an experimental raw tensor Craw, the aim is to find a plane elasticity tensor CΣ in a given
(exact) symmetry stratum Σwhich is the closest to Craw, i.e., to calculate

CΣ = argmin
C∈Σ

∥∥Craw −C
∥∥ , (12)

a problem which has already been extensively studied [4, 11, 16, 17, 19]. Here, we choose to work
with the Euclidean norm ‖C‖ = p〈C,C〉 (see [20, 34] for other norms), derived from the O(2)-
invariant scalar product

〈C1,C2〉 = C1 :: C2 =C 1
i j kl C 2

i j kl .

Once a tensor CΣ solution of (12) is found, the distance to the considered symmetry class Σ is just

d(Craw,Σ) = ∥∥Craw −CΣ
∥∥ .

In general, several methods allow to solve such a minimization problem [4, 20, 21, 24], most of
them appealing to numerical minimization schemes.

However, concerning the problem for the isotropic and the square symmetry plane elasticity
symmetry classes, observe that both of the corresponding closed strata are linear subspaces of
Ela(2), which are described respectively by the following linear equations

• h = 0 and H = 0 for Σiso =Σiso,
• h = 0 for Σsquare =Σiso ∪Σsquare,

where h and H are the second and fourth order components of the harmonic decomposition
C = (λ,µ,h,H). The distances to these symmetry strata are then obtained using orthogonal
projections on these subspaces and no further calculations are required. The fact that the
isotropic stratum is a linear subspace is very general but the fact that square symmetry stratum
is a linear subspace is exceptional (symmetry strata are not in general linear spaces [35, 36]) and
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seems to have been noticed first by Vianello [11]. For the sake of self-completeness, we recall with
full details these analytical solutions below, which are based on the harmonic decomposition of
elasticity tensors.

3.1. Closest isotropic tensor

The isotropic elasticity tensor Ciso the closest to Craw is the orthogonal projection on the isotropic
stratum

Ciso = 2µI+λ1⊗1, (13)

where the Lamé constants of Ciso are determined from Craw, as

λ := 1
8 (3C raw

i i j j −2C raw
i j i j ) = 1

8 (C raw
1111 +6C raw

1122 −4C raw
1212 +C raw

2222),

µ := 1
8 (2C raw

i j i j −C raw
i i j j ) = 1

8 (C raw
1111 −2C raw

1122 +4C raw
1212 +C raw

2222).

This has allowed Vianello to obtain a nice expression for the distance of Craw to isotropy

d(Craw,Σiso) =
√

I2(Craw)+ J2(Craw).

3.2. Closest square symmetric tensor

In the same manner, the at least square symmetric (tetragonal) elasticity tensor Csquare the closest
to Craw is the orthogonal projection of Craw on the square symmetry stratum

Csquare = Ciso +H, (14)

with both Ciso (by (13)) and H (by (6)–(9)) determined from Craw. If H 6= 0, Csquare is square
symmetric. The Kelvin matrix representation of the square symmetric elasticity tensor which is
the closest to Craw is then

Csquare =


1
2 (C raw

1111 +C raw
2222) C raw

1122

p
2

2 (C raw
1112 −C raw

2212)

C raw
1122

1
2 (C raw

1111 +C raw
2222)

p
2

2 (C raw
2212 −C raw

1112)
p

2
2 (C raw

1112 −C raw
2212)

p
2

2 (C raw
2212 −C raw

1112) 2C raw
1212


and the distance of Craw to square (tetragonal) symmetry, obtained by Vianello, is the nice
formula

d(C,Σsquare) =
√

I2(Craw).

4. Closest orthotropic tensor using Euler–Lagrange method

Starting from a raw (usually experimental) plane elasticity tensor Craw ∈ Ela(2), assumed biclinic,
it remains to determine the closest orthotropic tensor Cortho to Craw. Since the orthotropic
stratum is not a linear subspace, a different approach is required. In what follows, we will apply
the Euler–Lagrange method, using the parametrization C = ρ(g )A [5, 11], where g ∈ O(2) and A is
the normal form (4).

Remark 3. The parametrization C = ρ(g )A is not one to one, because several orthogonal trans-
formations g may correspond to the same tensor C = ρ(g )A, depending on the symmetry group
of A. In particular, redundant solutions are obtained as C = ρ(g h)A, when h is in the symmetry
group of A.
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Since the reflection s belongs to the symmetry group of A, namely the dihedral group D2, we
deduce that for each solution (g ,A) of the optimization problem, it corresponds to a redundant
solution (g s,A). Therefore, we can reduce the minimization problem to the set SO(2)×Fix(D2),
rather than O(2) × Fix(D2), where Fix(D2) denotes the subspace of normal forms for at least
orthotropic elasticity tensors. We shall thus consider the optimization problem

d(Craw,Σortho) = min
g ,A

∥∥Craw −ρ(g )A
∥∥ (15)

over g = rθ ∈ SO(2) and A ∈ Fix(D2) (with N = 4 independent components Ai j kl ).
Solving problem (15) can be done numerically with the risk to reach a local minimum instead

of the global minimum [19–21, 24]. To avoid this difficulty in 3D, François and coworkers did
propose pole figures for the given elasticity tensor Craw [4, 17] (renamed plots of the monoclinic
distance in [20, 21]). Accordingly, they got an initial value for C = ρ(g )A, not too far from Craw,
which was then optimized by a standard numerical (iterative) scheme. In the following, one will
avoid numerical schemes and a closed form solution will be sought.

4.1. Euler–Lagrange first order equations

Since the method is very general, we explain it below for a linear action ρ(g )T of the orthogonal
group SO(d) (where d is 2 or 3) on a space T of tensors T. We assume that we know a normal
form A for a given symmetry class (with N independent parameters). Moreover, we use a scalar
product on tensors T, for which the action is isometric, meaning that

〈ρ(g )T1,ρ(g )T2〉 = 〈T1,T2〉, (16)

for all g ∈ SO(d) and all tensors T1, T2. The problem is now, given a raw tensor Traw, to calculate
the critical points of the functional

f (g ,A) = ∥∥Traw −ρ(g )A
∥∥2 = 〈Traw −ρ(g )A,Traw −ρ(g )A〉. (17)

To do so, we consider a path g (t ) ∈ SO(d) with g (0) = g and ġ (0) = δg and a path A(t ) of normal
forms with A(0) = A and Ȧ(0) = δA, and we get

d f (g ,A) · (δg ,δA) = d

dt

∣∣∣∣
t=0

f (g (t ),A(t )) =−2〈Traw −ρ(g )A, (δρ(g ))A+ρ(g )δA〉. (18)

To calculate δρ(g ), we use the infinitesimal action ρ′ induced by ρ (see Appendix A) and
defined by

ρ′(u)T = d

dt

∣∣∣∣
t=0

ρ(h(t ))T, (19)

where h(t ) is a path in SO(d) with h(0) = I and ḣ(0) = u ∈ so(d) is an infinitesimal rotation.

Example 4. For an elasticity tensor T = C ∈ Ela(d), we get

(ρ′(u)C)i j kl = ui pCp j kl +u j pCi pkl +ukpCi j pl +ul pCi j kp . (20)

Remark 5. Due to the fact that ρ is isometric (16), we have

〈T1,ρ′(u)T2〉 =−〈ρ′(u)T1,T2〉, (21)

for every infinitesimal rotation u ∈ so(d) and every tensors T1, T2.

Now, introducing the infinitesimal rotations v = g−1δg and u = δg g−1, and, thanks to the fact
that ρ is a linear representation, we have (see Appendix A)

δρ(g ) = ρ(g )ρ′(v) = ρ′(u)ρ(g ), where v = g−1ug .

Therefore, the Euler–Lagrange first-order equations (deduced from (18))

d f (g ,A).(δg ,δA) = 0, ∀δg ,δA,
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recast as
〈Traw −ρ(g )A,ρ(g )δA〉 = 0, ∀δA,

and
〈Traw −ρ(g )A,ρ′(u)ρ(g )A〉 = 0 ∀u.

Moreover, by (16), the first equation is rewritten as

〈ρ(g t )Traw −A,δA〉 = 0, ∀δA, (22)

and by (21), we have
〈ρ(g )A,ρ′(u)ρ(g )A〉 =−〈ρ′(u)ρ(g )A,ρ(g )A〉 = 0

so that the second equation simplifies as

〈Traw,ρ′(u)ρ(g )A〉 = 0, ∀u. (23)

Consider now a basis (uα) of the space of skew symmetric matrices (of dimension d(d −1)/2)
and an orthonormal basis (EI ) of the space of tensors, such that the first N vectors E1, . . . ,EN span
the subspace of normal forms A and set

A =
N∑

I=1
ΛI EI . (24)

Then, the first order equations (22)–(23) can be written directly in terms of the unknown vari-
ables, the rotation g = (gi j ) and the componentsΛI of A, as the two sets of equations

ΛI = 〈ρ(g t )Traw,EI 〉 1 ≤ I ≤ N , (25)〈
ρ(g t )Traw,ρ′(uα)

N∑
I=1
ΛI EI

〉
= 0 1 ≤α≤ d(d −1)/2. (26)

These equations are polynomial in the variables gi j andΛI . Using the genericity of Traw and some
arguments of algebraic geometry, one can prove that they have only a finite number of solutions
(gk ,Ak ) when the symmetry group corresponding to the symmetry stratum under consideration
is finite. These solutions are the critical points of the function f introduced in (17). Therefore,
only a finite number of critical points (gk ,Ak ) needs to be compared. The global minimum of
‖Traw −T‖ with T of a given symmetry class Σ, will simply be

d(Traw,Σ) = min
k

∥∥∥Traw −Tk
∥∥∥ , Tk = ρ(gk )Ak ,

and the closest tensor(s) to the considered symmetry class will be

TΣ = argmin
k

∥∥∥Traw −Tk
∥∥∥ .

4.2. Distance to plane elasticity orthotropy

We now apply the preceding method to calculate the distance to the orthotropic stratum of a
given plane elasticity tensor Craw. Three upper bounds estimates of this distance [16, 26, 26] are
compared in Appendix C.

The Lie algebra so(2) (the space of infinitesimal 2D rotations) of the rotation group SO(2) is
the one-dimensional vector space spanned by

u1 = 1p
2

(
0 −1
1 0

)
.

It was shown in [11] that C and Craw have the same isotropic part Ciso defined by (13).
Therefore, according to (4), the parametrization of Cortho can be written as

Cortho = Ciso +T, T = ρ(g )(Λ1E1 +Λ2E2), g =
(
cosθ −sinθ
sinθ cosθ

)
, (27)
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where the orthonormal basis of tensors (E1,E2) have Kelvin matrix representations

E1 =


1

2
p

2
− 1

2
p

2
0

− 1
2
p

2
1

2
p

2
0

0 0 − 1p
2

 , E2 =


1p
2

0 0

0 − 1p
2

0

0 0 0

 ,

with 〈Ciso,E1〉 = 〈Ciso,E2〉 = 0. The later equalities can be checked using the Kelvin matrix
representation of Ciso,

Ciso =
2µ+λ λ 0

λ 2µ+λ 0
0 0 2µ

 .

We are then looking for the critical points of the functional (17) with Traw = Craw −Ciso given
and where A =Λ1E1+Λ2E2 is bi-dimensional. Equation (25) is used to determine the components
Λ1 andΛ2 as functions of the angle of the rotation (1), giving

Λ1(θ) = X1 cos4θ+Y1 sin4θ, Λ2(θ) = X2 cos2θ+Y2 sin2θ, (28)

with

X1 = 1

2
p

2
(C raw

1111 −2C raw
1122 −4C raw

1212 +C raw
2222),

Y1 = p
2(C raw

1112 −C raw
2212),

X2 = 1p
2

(C raw
1111 −C raw

2222),

Y2 = p
2(C raw

1112 +C raw
2212).

Then, these results are injected in (26), using (20), in order to determine θ. This gives

A cos8θ+B sin8θ+C cos4θ+D sin4θ = 0, (29)

with the following closed form expressions for the constants

A = 4X1Y1, B = 2(Y 2
1 −X 2

1 ), C = 2X2Y2, D = Y 2
2 −X 2

2 .

The sought tensors Ck are finally given by (27) with θk solution of (29).

Remark 6. Equation (29) has several solutions θ (some corresponding to maxima, others to
saddle points, and other to minima, possibly local). By Remark 3, if (θ,A) is a solution, then
(θ+π,A) is also a solution. Therefore, to obtain all the solutions of the Euler–Lagrange equations,
it is sufficient to seek for θ in an interval of length π. Furthermore, if θ is a solution of (29), then
θ− (π/2) is also a solution of (29) (with identical Λ1 but with opposite Λ2). This allows us to seek
for θ in an interval of length π/2, but to take account, for each solution θk ∈ ]−(π/4),π/4[, of a
twin solution θ−k = θk − (π/2) ∈ ]−(3π/4),−(π/4)[.

Check first if θ1 =π/4 and θ−1 =−π/4 are solutions (an improbable event in case of an exper-
imental, therefore noisy, elasticity tensor Craw). Seek for the other solutions as θ = (1/2)arctan t ,
where t is a real root of the degree 4 polynomial (generically, A−C 6= 0)

(A−C )t 4 + (2D −4B)t 3 −6At 2 + (2D +4B)t + A+C = 0,

deduced from (29) when θ 6= (π/4)+n(π/2).
Finally, choosing among the solutions Ck , corresponding to solutions θk and their twins

θ−k = θk − (π/2), the plane elasticity tensor

Cortho = C` = Ciso +ρ(g (θ`))(Λ1(θ`)E1 +Λ2(θ`)E2),

which realizes the global minimum

d(Craw,Σortho) = min
k

∥∥∥Craw −Ck
∥∥∥=

∥∥∥Craw −Cortho
∥∥∥ ,

completes the solving.
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5. Different equivalent definitions of the distance to a symmetry class

We have considered (and solved in a closed form for plane elasticity) the distance to a symmetry
class problem formulated thanks to the normal form A/rotation g parameterization (15), as [5,11,
37]

d(Craw,Σ[H ]) := min
g∈SO(d),A∈FixH

∥∥Craw −ρ(g )A
∥∥ , Craw,A ∈ Ela(d), (30)

with Σ[H ] =Σ[D2] =Σortho the orthotropic stratum.

Remark 7. Here, the notation [H ] stands for the conjugacy class of H , that is the set of all
subgroups g H g−1, where g ∈ SO(d) (see Appendix A). Indeed, a symmetry class is described by
all the symmetry groups g H g−1 rather than the subgroup H itself. For instance, the orthotropy is
described by the conjugacy class [D2], where the dihedral group H =D2 defined in Remark 1 is just
a representative in this class. The set Σ[H ] correspond to all tensors having the same symmetry
class [H ] and for this reason Σ[g H g−1] =Σ[H ].

Alternative definitions of d(Craw,Σ[H ]) introduce the Reynolds operator RH : Ela(d) → Fix(H)
associated here with the finite group2 H [39, Chapter 2],

RH (C) := 1

|H |
∑

h∈H
ρ(h)C, (31)

where |H | is the order of the group H . The Reynolds operator is an orthogonal projector, meaning
that, for all tensors C,

RH (RH (C)) = RH (C), and 〈C−RH (C),RH (C)〉 = 0. (32)

For the conjugate subgroup g H g−1 of H , we get

Rg H g−1 (C) = 1

|H |
∑

h∈H
ρ(g hg−1)C = (ρ(g )RHρ(g−1))(C). (33)

In particular, for plane elasticity and H =D2 (of order |D2| = 4), we have

RD2 (C) = 1
4 (C+ρ(rπ)C+ρ(s)C+ρ(rπs)C) = 1

2 (C+ρ(s)C),

RgD2g−1 (C) = 1
2 (C+ρ(g sg−1)C),

where the elements e, rπ, s and rπs of the dihedral group D2 have been defined in Section 2.
Another definition of the distance to a symmetry class is due to François and coworkers [17,

19],

d(Craw,Σ[H ]) := min
g∈SO(d)

∥∥∥Craw −Rg H g−1

(
Craw)∥∥∥ (34)

and a slightly modified definition of it has recently been used by Weber et al. [40],

d(Craw,Σ[H ]) = min
g∈SO(d)

∥∥ρ(g )Craw −RH
(
ρ(g )Craw)∥∥ . (35)

Remark 8. The three distances to a symmetry class defined by (30), (34) and (35) are equal when
the norm ‖·‖ is SO(d)-invariant (meaning that

∥∥ρ(g )C
∥∥ = ‖C‖ for all rotations g and tensors C),

which is the case for the Euclidean norm.

We provide now a proof of this fact. Consider first the definition (30),

d(Craw,Σ[H ]) = min
g∈SO(d)

min
A∈FixH

∥∥Craw −ρ(g )A
∥∥ ,

2For infinite compact groups H such as O(2) or SO(2), the finite sum is replaced by an integral and the Haar measure,
a (bi-invariant) probability measure on H [38], is used.
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because the variables g and A are independent. We have then

min
A∈FixH

∥∥Craw −ρ(g )A
∥∥= min

A∈FixH

∥∥ρ(g )−1Craw −A
∥∥ ,

and hence, by (32), the minimizer A ∈ FixH is the orthogonal projection

A = RH
(
ρ(g )−1Craw)

of ρ(g )−1Craw on FixH . Thus, using (33), we get

min
A∈FixH

∥∥Craw −ρ(g )A
∥∥= ∥∥ρ(g )−1Craw −RH

(
ρ(g )−1Craw)∥∥=

∥∥∥Craw −Rg H g−1

(
Craw)∥∥∥ ,

which proves the equivalence of definitions (30) and (34). Now, since ρ(g ) preserves the norm of
elasticity tensors, we have moreover

d(Craw,Σ[H ]) = min
g∈SO(d)

∥∥ρ(g−1)Craw −RH
(
ρ(g−1)Craw)∥∥= min

g∈SO(d)

∥∥ρ(g )Craw −RH
(
ρ(g )Craw)∥∥ ,

which shows the equivalence with definition (35).

6. Conclusion

The problem of calculating the distance of a raw tensor to a symmetry class has been proposed.
It has been fully solved for plane (bidimensional) elasticity tensors. First, Vianello’s orthogonal
projection method, valid for both the isotropic and the square symmetric (tetragonal) symmetry
classes, has been recalled. Then, the remaining case of the distance to plane elasticity orthotropy
has been solved, thanks to Euler–Lagrange method. The solution proposed is analytical, it re-
quires only to find the roots of a degree four polynomial and to compare the at most eight closed-
form solutions of the first-order Euler–Lagrange equations. The method is general and relies on
the use of the infinitesimal action of Lie algebra of the rotation group SO(d) to solve the first-
order equations. This use seems to be novel in the present context. Another important feature of
this method is that, dealing with polynomial functions, there are generally only a finite number
of critical points, provided that the symmetry group associated to the symmetry class under con-
sideration is finite. In that case, finding the global minimum is immediate. To illustrate further
this method, an application to constitutive (3D) symmetric second-order tensors is provided in
Appendix B.
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Appendix A. Basic concepts in representation theory

A linear action of a group G on a vector space V (also usually called a linear representation of G
on V ) is a mapping

ρ : G → GL(V ), g 7→ ρ(g ),

where ρ(g ) is an invertible linear transformation of V and GL(V ) is the group of invertible, linear
mappings of V into itself, and such that

ρ(e) = Id, and ρ(g1g2) = ρ(g1)ρ(g2),
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where g1, g2 ∈G and e is the unit element of G . The orbit of a vector v ∈V is the set

Orb(v) := {
ρ(g )v ; g ∈G

}
.

The symmetry group of a vector v ∈V is the subgroup of G defined by

Gv := {
g ∈G ; ρ(g )v = v

}
,

and its symmetry class, noted [Gv ], is defined as the conjugacy class of Gv in G , i.e.,

[Gv ] := {
gGv g−1; g ∈G

}
.

Observe that all vectors in a same orbit Orb(v) have the same symmetry class, since

Gρ(g )v = gGv g−1.

Finally, to each symmetry class [H ], corresponds a symmetry stratum Σ[H ] (which, in general,
is not a linear subspace of V ) which is the set of all vectors v which have exactly the symmetry [H ]

Σ[H ] := {v ∈V ; Gv ∈ [H ]} .

Remark 9. To each symmetry stratum Σ[H ] corresponds a closed symmetry stratum Σ[H ], which
is the set of vectors v ∈V which have at least the symmetry [H ].

Given a symmetry class [H ] and choosing a representative H in this conjugacy class, we can
build the fix point set

Fix(H) := {
v ∈V ; ρ(h)v = v ; ∀h ∈ H

}
.

This set is a linear subspace of V and intersects each orbit Orb(v) when H ⊂ Gv . The subspace
Fix(H) defines a normal form for Σ[H ], if the representative H in [H ] has been well chosen.

We will suppose now that G is a Lie group (which means that G is not only a group but also
a differentiable manifold and that the group operations are smooth). In practice, all groups G
considered are closed subgroup of the general linear group (and hence G can be considered as a
matrix group). Then, we can assume that the representation ρ of G on V is smooth. In that case,
it induces a linear mapping, called the infinitesimal action

ρ′ : g→ gl(V ), u 7→ Teρ ·u,

where g = TeG , the tangent space at the identity element is called the Lie algebra of G . This
infinitesimal action is sufficient to describe the linear tangent mapping at every point g since
the relation ρ(g1g2) = ρ(g1)ρ(g2) leads to

Tgρ ·δg = ρ(g )ρ′(g−1δg ) = ρ′(δg g−1)ρ(g ).

Appendix B. 3D symmetric second-order tensors

In this section, Euler–Lagrange method, described in Section 4, is illustrated on the space T =
S2(R3) of three-dimensional symmetric second-order tensors. We consider a given (for exam-
ple experimental) constitutive symmetric second-order tensor Traw = araw in 3D (for example an
anisotropic thermal expansion tensor or an anisotropic conductivity tensor), which is further-
more assumed to have three distinct eigenvalues (i.e. to be orthotropic).

The action of the rotation group SO(3) on

T=S2(R3) = {
a; a j i = ai j

}
,

is written ρ(g )a = g a g t (g ∈ SO(3)), or in components

(ρ(g )a)i j = gi p g j q apq .

Note that, on even order tensors, the action of the full orthogonal group O(3) cannot be distin-
guished from the action of the 3D rotation group SO(3).
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The space of three-dimensional symmetric second-order tensors splits into three symmetry
classes: orthotropy (three distinct eigenvalues), transverse isotropy (two distinct eigenvalues)
and isotropy (one single eigenvalue). Since a generic symmetric second-order tensor Traw = araw

is orthotropic, a natural question then arise of how far it is from a transversely isotropic or an
isotropic tensor?

The distance to isotropy is obtained straightforwardly using the orthogonal projection of araw

onto the space of spherical tensors

aiso = 1
3 (traraw)1

and the distance of araw to isotropy is

d(araw, isotropy) = ∥∥araw −aiso∥∥=
p

araw ′ : araw ′.

We will thus focus on the distance of araw to transverse isotropy, and seek by the Euler–
Lagrange method for the closest transversely isotropic symmetric second-order tensor a to araw

(assumed orthotropic). The parametrization of (at least) transversely isotropic tensors is given by

a = ρ(g )A = g Ag t ,

where g ∈ SO(3) and A =Λ1E1 +Λ2E2, with

E1 = 1p
6

1 0 0
0 1 0
0 0 −2

 , E2 = 1p
3

1 0 0
0 1 0
0 0 1

 .

This choice corresponds to an axis n = e3 of transverse isotropy for A.

Remark 10. Note that, contrary to the case of the distance to orthotropy for plane elasticity
tensors, the symmetry group involved here for transverse isotropy is not finite. We expect thus
to find an infinity of solutions (g ,A) but they will lead, anyway, to a finite number of tensors
a = g Ag t , candidate to be a global minimum for the distance to the transversely isotropic stratum.

The problem is to determine the minimum of the functional

f (g ,A) = ∥∥araw − g Ag t ∥∥2
, A =Λ1E1 +Λ2E2, g ∈ SO(3).

Without loss of generality, we can assume (after a diagonalization of araw) that the proper basis of
araw is the canonical basis of R3, (ei ), which will be done in the sequel.

The Lie algebra so(3) of the rotation group SO(3) is the vector space of 3×3 skew symmetric
matrices (infinitesimal rotations), with as basis

u1 = 1p
2

0 −1 0
1 0 0
0 0 0

 , u2 = 1p
2

0 0 −1
0 0 0
1 0 0

 , u3 = 1p
2

0 0 0
0 0 −1
0 1 0

 .

To solve the problem, we calculate first the infinitesimal action ρ′ on S2(R3), which is written
as

(ρ′(u)a)i j = ui p ap j +u j p ai p ,

or, in a more intrinsic form, as

ρ′(u)a = ua−au = [u,a]. (36)

Then, we recast (23) using this expression, which leads to

0 = 〈araw,ρ′(u)ρ(g )A〉 = tr
(
araw(

u(ρ(g )A)− (ρ(g )A)u
))

= tr
(
u
(
ρ(g )A araw −arawρ(g )A

))
= u :

[
ρ(g )A,araw]

= u :
[
a,araw]

.
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Since this last equality is true for every skew symmetric matrix u, it implies that the commutator[
a,araw

]
vanishes and thus that the symmetric second-order tensors a and araw commute. The

given tensor araw being orthotropic, it has three distinct eigenvalues and
[
a,araw

]= 0 means that
a is diagonal in the basis (ei ). Since a = g Ag t , either both a and A are isotropic, in which case, all
rotations g ∈ SO(3) are solutions or both a and A are transversely isotropic, in which case, each
solution g of a = g Ag t must send the transverse isotropy axis of A onto the one of a and writes
thus g = gk h, where

g1 = R(e2,π/2), g2 = R(e1,−π/2), g3 = 1,

R(n,θ) denotes the 3D rotation of angle θ around the vector n and h belongs to the subgroup of
SO(3) of rotations which do not change the Oz axis. This subgroup of 3D rotations is isomorphic
to the orthogonal group O(2). We have moreover

A =Λ1E1 +Λ2E2,

where, by (25), for each rotation g solution of a = g Ag t ,

Λ1 = (g t arawg ) : E1, Λ2 = 1p
3

traraw.

This achieves the determination of the critical points of f .

Remark 11. One recognizesΛ2E2 = aiso as the isotropic part of araw.

Isotropic solutions have already been calculated and correspond to the unique solution

aiso = 1
3 (traraw)1,

but which may not be a global minimum in the present situation (and, indeed, will not be
one generically). Transversely isotropic solutions (g ,A) correspond finally to the three following
candidates for the global minimum atrans-iso

λ1 0 0

0
λ2 +λ3

2
0

0 0
λ2 +λ3

2

 or


λ1 +λ3

2
0 0

0 λ2 0

0 0
λ1 +λ3

2

 or


λ1 +λ2

2
0 0

0
λ1 +λ2

2
0

0 0 λ3

 ,

where λ1 < λ2 < λ3 are the distinct eigenvalues of araw. The global minimum is obtained by
comparing the three candidate distances ‖araw −a‖ associated with these critical points. We will
summarize these results with the following conclusion.

Let araw = diag(λ1,λ2,λ3) ∈S2(R3) be a given orthotropic symmetric second-order tensor, with
λ1 < λ2 < λ3. Then, the transversely isotropic second-order tensor atrans-iso ∈ S2(R3) closest to
araw (for the Frobenius norm) commutes with araw and writes

atrans-iso =


λ1 +λ2

2
0 0

0
λ1 +λ2

2
0

0 0 λ3

 if λ2 < 1

2
(λ1 +λ3),

atrans-iso =


λ1 0 0

0
λ2 +λ3

2
0

0 0
λ2 +λ3

2

 if λ2 > 1

2
(λ1 +λ3),

in the proper basis of araw. The distance of araw to the transversely isotropic class is then

d(araw, transverse isotropy) = 1p
2

min
i 6= j

∣∣λi −λ j
∣∣ .
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Appendix C. Upper bounds estimates of the distance to a symmetry class

Upper bounds estimates of the distance d(Craw,Σ[H ]) to a symmetry class have been proposed in
the literature, for instance in [16] and [26] for 3D elasticity symmetry classes, and in [29] for 2D
orthotropic symmetry class. They are easier to calculate than the distance itself.

First, Gazis and coworkers did simply suggest the estimate

Mg0 (Craw,Σ[H ]) := ∥∥ρ(g0)Craw −RH
(
ρ(g0)Craw)∥∥ , (37)

with g0 a “well-chosen” rotation,3 for example related to the manufacturing process or to the
observed microstructure. Obviously,

Mg0 (Craw,Σ[H ]) ≥ d(Craw,Σ[H ]), (38)

since the minimization in (35) is not performed when calculating Mg0 (Craw,Σ[H ]).
Studying the 3D elasticity problem, Stahn and coworkers astutely defined in [26] a smaller

upper bound M(Craw,Σ[H ]) of the distance to a 3D elasticity symmetry class, in a few steps,

(1) by computing

t = Casym : 1− 1
4 (1 : Casym : 1)1,

which is a second-order covariant of the asymmetric part Casym = Craw − (Craw)s of the
given elasticity tensor Craw,

(2) following [27], by computing an eigenbasis of t and a rotation g0 that brings it into its
diagonal form (i.e., such that ρ(g0)t = g0 t g t

0 is diagonal),
(3) by computing ρ(g0)Craw (and assuming in fact that ρ(g0)C is close to the normal form of

the sought tensor with higher symmetry),
(4) finally, by setting

M(Craw,Σ[H ]) := min
g∈O

∥∥ρ(g )ρ(g0)Craw −RH
(
ρ(g )ρ(g0)Craw)∥∥ (39)

with RH the Reynolds operator (31).

The procedure introduces the proper cubic (octahedral) groupO which is defined by

O= {
g ∈ SO(3); g ei =±e j

}
,

where (ei ) is the canonical orthonormal basis of R3. This group is of order |O| = 24. Generically,
the second-order tensor t is orthotropic, and, in 3D, there are exactly 24 rotations which bring t
into a diagonal form. Given such a rotation, say g0, the other ones are written as

g g0 with g ∈O,

so that definition (39) does not depend on a particular choice for g0.

Remark 12. As the min in (39) is over the finite groupO (and not over the rotation group SO(3)),
one has

M(Craw,Σ[H ]) = min
g∈O

∥∥ρ(g g0)Craw −RH
(
ρ(g g0)Craw)∥∥

≥ min
g∈SO(3)

∥∥ρ(g )Craw −RH
(
ρ(g )Craw)∥∥= d(Craw,Σ[H ]),

as g = g g0 is a rotation, and where the min over the subgroupO⊂ SO(3) in the first line is generally
strictly larger than the min over SO(3) in the last line. Hence, M(Craw,Σ[H ]) is an upper bound of
the distance d(Craw,Σ[H ]).

3In fact these authors did take g0 = e the identity in their example.
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Remark 13. In 2D, the asymmetric part Casym of an elasticity tensor is isotropic (see Remark 2),
so that the Stahn and coworkers’ procedure applies only if the definition of the second-order
tensor t is changed, for example into the second-order harmonic component h of Craw defined in
Section 2.3,

t = h = (tr12Craw)′ = (1 : Craw)′.

M(Craw,Σ[H ]) built from t = h is then, by Remark 12, an upper bound estimate of the distance
d(Craw,Σ[H ]).

Finally, an invariant formula has been obtained in 2D for an upper bound estimate of the
distance to orthotropic elasticity [29, Corollary 3.2]. Indeed, setting

h := (tr12Craw)′, I2 := ‖h‖2 = h : h, J2 := ‖H‖2 = H :: H, K3 := h : H : h,

where H is furthermore the fourth-order harmonic part of Craw = (λ,µ,h,H) (determined by (9)),
and

Cupper := 2µI+λ1⊗1+ 1

2
(1⊗h+h⊗1)+ 2K3

I 2
2

(
h¯h− 1

4
‖h‖2 1¯1

)
,

then the positive invariant

∆(Craw,Σortho) := ∥∥Craw −Cupper∥∥=
√

J2I 2
2 −2K 2

3

I2
, (40)

is an upper bound of the distance d(Craw,Σortho) of the plane elasticity tensor Craw to orthotropy.

Remark 14. In the particular case of orthotropic plane elasticity, using definition (13) for t, we
have the equality of the upper bounds estimates proposed in [29] and in [26],

∆(Craw,Σortho) = ∥∥Craw −Cupper∥∥=
√

J2I 2
2 −2K 2

3

I2
= M(Craw,Σ[H ]).

A proof of this result is as follows. The harmonic decomposition of the raw plane elasticity
tensor is Craw = (λ,µ,h,H) (by formulas (6)–(9)). Let g0 be a rotation such that h0 := ρ(g0)h =
g0 h g t

0 is diagonal. In 2D, there are only two such rotations, g0 and g1 = rπ/2g0, the second one
giving ρ(g1)h =−h0 (as h is deviatoric). Since the harmonic decomposition is equivariant, we get

ρ(g0)Craw = (λ,µ,h0,H0).

where H0 := ρ(g0)H. The Stahn and coworkers upper bound is then (by definition (39))

M(Craw,Σortho) = min
(∥∥ρ(g0)Craw −RD2

(
ρ(g0)Craw)∥∥ ,

∥∥ρ(rπ/2)ρ(g0)Craw −RD2

(
ρ(rπ/2)ρ(g0)Craw)∥∥)

= min
(∥∥ρ(g0)Craw −RD2

(
ρ(g0)Craw)∥∥ ,∥∥ρ(g0)Craw − (

ρ(rπ/2)−1RD2ρ(rπ/2)
)(
ρ(g0)Craw)∥∥)

= ∥∥ρ(g0)Craw −RD2

(
ρ(g0)Craw)∥∥

= ∥∥H0 −RD2 (H0)
∥∥ ,

since rπ/2D2r−1
π/2 =D2 in 2D and thus ρ(rπ/2)−1RD2ρ(rπ/2) = Rrπ/2D2r−1

π/2
= RD2 .

Using the harmonic decomposition of ρ(g0)Craw, the upper bound (40) is

∆(Craw,Σortho) =∆(ρ(g0)Craw,Σortho) =
∥∥∥∥H0 −2

h0 : H0 : h0

‖h0‖4

(
h0 ¯h0 − 1

4
‖h0‖2 1¯1

)∥∥∥∥
and we are left to show that

2
h0 : H0 : h0

‖h0‖4

(
h0 ¯h0 − 1

4
‖h0‖2 1¯1

)
= RD2 (H0) ,
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for all h0 6= 0 deviatoric and diagonal, and all fourth-order harmonic tensor H0, which can be
checked by comparing these expressions in components. Indeed, a general harmonic tensor K,
has for matrix components

K =
 K1111 −K1111

p
2K1112

−K1111 K1111 −p2K1112p
2K1112 −p2K1112 −2K1111

 .

Now set

T = 2
h0 : K : h0

‖h0‖4

(
h0 ¯h0 − 1

4
‖h0‖2 1¯1

)
,

where

h0 =
(
λ 0
0 −λ

)
,

with λ 6= 0 (otherwise, the elasticity tensor Craw has already the square symmetry). We get then

T =
 K1111 −K1111 0
−K1111 K1111 0

0 0 −2K1111

 ,

which is indeed the Kelvin matrix form of RD2 (K).
We have therefore shown that for a biclinic elasticity tensor Craw ∈ Ela(2)

∆(Craw,Σortho) = M(Craw,Σortho) =
√

J2I 2
2 −2K 2

3

I2
≥ d(Craw,Σortho).
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