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Abstract. The aim of the present work is to analyze the sensibility of an elastic coupling on the coupled
Frequency Response Functions (FRFs) of transmission mechanical systems. The FRF of a linked system,
such as a reducer stage, is determined by a receptance coupling (RC) method. The equilibrium and the
compatibility conditions are applied.

This method is investigated for different coupling models such as rigid and flexible. The proposed method
is validated by a direct computation of the full system showing exact agreement.

Afterward, the effect of a rigid and a joined system on the sub-structuring response FRFs is analyzed.
The coupling models derived from literature review are discussed to show their effects on FRF. Although the
coupling in question is considered to be a flexible interface in the aforementioned system, as revealed in the
literature review, it introduces a translational and rotational damping and stiffness. So, the formulation of the
RC is different from the standard approach. In order to achieve the aim of the present work, the effects of some
important parameters such as translational and rotational coupling, shaft and bearing stiffness on the FRF
are discussed. Some sensitivity of the proposed models are observed in relation to the coupling parameters.

Keywords. Receptance coupling method, Elastic coupling, Frequency Response Functions (FRFs), Torsional
coupling stiffness, Translational coupling stiffness, Coupled system.
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1. Introduction

Complex systems are composed of several subsystems connected by means of an interface to
construct the assembled systems.

Interfaces can have a great effect on the overall assembly compartment, such as natural
frequencies, mode shapes, and response characteristics. The mechanical properties and the
flexibility and damping at the interface level affect the coupled systems response [1]. As a
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consequence, it is cardinal to utilize coupling dynamic properties for the estimation of the overall
assembled behavior system [2].

Many studies have set up diverse methods for investigation of coupling complex systems.
The receptance coupling (RC) method is used to couple subsystems with a joint component
based on the Frequency Response Functions (FRFs) in the machine tools application [3, 4].
This approach was suggested by Renand Beards [5] and Ewins [6] to characterize the interface
properties. The influence of the joint parameters, modeled by a nonlinear spring, on coupling
method was analyzed in [7]. The novel RC technique proposed by [8] required the FRF matrices
of all subsystems comprising translational and rotational FRFs. Both methods of receptance can
yield the coupled responses by discovering the distinction among the coupled system responses
with rigid and flexible interfaces [9].

Liu et al. [6] selected the substructure method for the determination of dynamic properties of
joints between coupled subsystems using FRFs. Recently, the singularity issue was implemented
by El Mahmoudi et al. [10] while considering the flexible connection by means of substructures
inside the (LM-FBS) coupling procedure. In addition, Tsai [11] tackled the problem of frequency
assignment through coupling of subsystems using the receptance method.

Coupling plays an important role in turning machines in such a way that it couples the rotating
parts. However, the presence of such mechanism without adding elastic parts can produce
excessive vibration and noise. In order to mitigate such vibration, introducing elastic elements
can be critical in that the natural frequencies would be away from the critical speed of the
machines.

Recently, Wang et al. [12] examined the effects of different elastic support parameters on
the dynamic behaviors of the wind turbine drive train using the FRFs. In addition, Bouaziz
et al. [13] considered the flexible coupling to take the misalignment defect between rotating
shafts. Tadeo and Cavla [14] investigated a system constituted of both flexible rotating shafts
associated through a flexible coupling and assisted by hydrodynamic bearings to examine the
impact of different linkers on the system response and notably the natural frequencies through
the finite element method. The flexible coupling is investigated using distinct models. In the first
model, the coupling was treated like a rigid disc. In the second model, the latter is constructed
on Kramer’s [15] initial approach through a coupling composed of both nodes presented with
masses that regard the inertia effects. A third model is based on Kramer’s [15] second approach
that considered the rotational stiffness as well as damping. A fourth approach based on Nelson
and Crandall’s [16] first model is adopted to consider the coupling inertia including translational
and rotational stiffness. The influence of three models of flexible coupling on the system response
was studied by Chaika and Mariunas [17] for an electromechanical drive. So, it is important to
carry out the modal analysis of gearbox and to study the effect of an elastic coupling use on
the modal properties and therefore on the acoustic behavior of gearbox. The increase in bearing
stiffness affects the rotor system properties [18]. Therefore, the necessity to analyse the gearbox
model and to characterize the influence of elastic coupling on the FRF is the focus of this work.

The main goal of the suggested approach is to prove the effect of the interface by comparing
the FRFs of a rigid and a joined system of identical dimensions. The effects of the shafts, bearing
and coupling stiffness are analyzed on the system response.

The development of a RC method for the different joints are treated in Section 2. The dynamic
model of a reducer stage system are described in Section 3.

The double reducer stage is considered to analyse the model properties in both cases with rigid
and elastic coupling. Results obtained with rigid coupling are compared with those obtained by
flexible coupling, employing the second approach of Kramer [15] and Nelson [16]. The variance
among the responses of the assembled system linked with rigid and flexible joints are discussed
in Section 4.
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Figure 1. Flexible connector system of two subsystems [19].

2. Theoretical formulation

The RC technique determined the dynamic behavior of a coupled system based on the uncoupled
subsystems’ FRFs.

In this section, the two RC techniques are described. The FRFs of each subsystem and their
coupling are determined.

2.1. Frequency Response Functions coupling with rigid and flexible joint

A major mechanical system generally includes many subsystems. For simplicity, the assembled
system is divided into two subsystems, as displayed in Figure 1. The interface can be modeled
like linear spring ks, as presented in Figure 1.

Free subsystems can be represented by receptance matrices. Their expressions are presented
in [20].

The available degrees of freedom (DoFs) for each uncoupled subsystem are divided into
internal DoFs i for subsystem A and j for subsystem B and coupling DoFs denoted c. The
subsystem A is connected to subsystem B by a flexible coupling at DoFs c. The coupling method
imposes compatibility and equilibrium conditions at the interface as presented by Jetmundsen et
al. [21]. This idea is applied to the frequency-based substructuring (FBS) equation for both rigid
and flexible coupling. The FRFs of the coupling DoFs between two subsystems A and B were
expressed as in [22]:

AB[H] =
[H]aa [H]ac [H]ab

[H]ca [H]cc [H]cb

[H]ba [H]bc [H]bb



=
A[H]i i A[H]i c 0

A[H]ci A[H]cc 0
0 0 B[H] j j

−
A[H]i c

A[H]cc

B[H] j c

 (A[H]cc +B[H]cc + [K ]−1
s )−1

A[H]i c

A[H]cc

B[H] j c

T

, (1)

where AB[H] denotes the assembled system matrix. [K s ] represents the coupling stiffness matrix
between the coupling DoFs of both subsystems. A[H]cc , B[H]cc and [K ]−1

s are the diagonal
elements. The global system coupling FRF is calculated using (1). For a rigid joint, the Kernel
matrix (A[H]cc+B[H]cc+[K ]−1

s ) in (1) is substituted by (A[H]cc+B[H]cc )−1 [23]. In this formulation,
the cross-coupled properties of the interface between the translational (TDoF) and the rotational
(RDOF) are neglected.
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2.2. Receptance coupling method

In the RC method, the analytical or experimental subsystems FRFs are mathematically linked to
access the assembled system response. The connection between subsystems A and B through
the interface is shown in Figure 1. The indices c1 and c2 illustrate the DOFs of the joint inter-
face. Including interface dynamics, the formulated receptance matrices of each subsystems are
presented as [8]: 

A[x]i

A[θ]i

A[x]c

A[θ]c

=


A[S]i i A[L]i i A[S]i c A[L]i c

A[N]i i A[P]i i A[N]i c A[P]i c

A[S]ci A[L]ci A[S]cc A[L]cc

A[N]ci A[P]ci A[N]cc A[P]cc




A[f ]i

A[M]i

A[f ]c + A[f ]c1

A[M]c + A[M]c1

 ,


B[x] j

B [θ] j

B[x]c

B [θ]c

=


B[S] j j B[L] j j B[S] j c B[L] j c

B[N] j j B[P] j j B[N] j c B[P] j c

B[S]c j B[L]c j B[S]cc B[L]cc

B[N]c j B[P]c j B[N]cc B[P]cc




B[f ] j

B[M] j

B[f ]c +B[f ]c2

B[M]c +B[M]c2

 , (2)

where A[x]i and A[θ]i (resp B[x] j and B [θ] j ) indicate the translational and rotational displacement
vectors. The receptance components too are determined as S = x/f , L = x/M, N = θ/f and P =
θ/M. The stiffness and damping were considered in the interface parameters. The equilibrium
and compatibility conditions at the interface are: A[f ]c1

A[f ]c1

A[M]c1

+
 B[f ]c2

B[f ]c2

B[M]c2

= {
0
}

. (3)

Using the equilibrium conditions, the equations of motion at the joint part can be written as

cx (Bẋc − Aẋc )+kx (Bxc − Axc ) = Af c1 (4)

cy (B ẏc − Aẏc )+ky (Byc − Ayc ) = Af c1 (5)

cθ(Bθ̇c − Aθ̇c )+kθ(Bθc − Aθc ) = AMc1, (6)

where kx , kθ( resp. cx , cθ) are the translational and rotational stiffness (resp. damping) of the
joint. Applying the Laplace transformation to (4)–(6) and replacing s by i w , Equations (4)–(6) can
be rewritten in the frequency domain as:Bxc − Axc

Byc − Ayc

Bθc − Aθc

= [H j ]

 Af c1

Af c1

AMc1

 , (7)

where [H j ] denotes the receptance matrix of the joint expressed as:

[H j ] =
ht t 0 0

0 ht t 0
0 0 hr r

 , (8)

where subscripts t and r represent the two translational and rotational directions, respectively.
Substituting (2) and (3) leads to the assembled system FRFs as{

A[f ]c1

A[M]c1

}
=−

{
B[f ]c2

B[M]c2

}
= −B−1Hc1i

{
B[f ]i

B[M]i

}
−B−1Hc1c1

{
B[f ]c1

B[M]c1

}
+B−1Hc2c2

{
B[f ]c2

B[M]c2

}
+B−1Hc2 j

{
B[f ] j

B[M] j

}
, (9)
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where B = AHcc + BHcc + [Hi j ] and [Hi j ] = [Si j Li j ; Ni j Pi j ]. Substituting (2) and (9) leads to the
assembled system FRFs as:

s[X ]i

s[X ] j

s[X ]c1

s[X ]c2

=


s[G]i i s[G]i c1 s[G]i c2 s[G]i j

s[G]c1i s[G]c1c1 s[G]c1c2 s[G]c1 j

A[G]c2i A[G]c2c2 s[G]c2c1 s [G]c2 j

s[G] j i s[G] j c1 s[G] j c2 s[G] j j




A[F]i

A[F]i

A[F]c1

A[F]c2

 , (10)

where [Gi j ] = [Gi j ,t t Gi j ,tr ;Gi j ,r t Gi j ,r r ] represents the assembled system and Xi = xiθi is the
displacement vector of the linked system. The coupled response at positions 1 and 2 can be
expanded as [8]:[

Gi i ,t t Gi i ,tr

Gi i ,r t Gi i ,r r

]
=

[
Si i Li i

N i i Pi i

]
−

[
Si c1 Li c1

N i c1 Pi c1

][
bt t btr

br t br r

]−1 [
Sc1i Lc1i

N c1i Pc1i

]
, (11)

where [
bt t btr

br t br r

]
=

[
Sc1c1 Lc1c1

N c1c1 Pc1c1

]
+

[
Sc2c2 Lc2c2

N c2c2 Pc2c2

]
+

[
H t t 0

0 Hr r

]
. (12)

These two FRFs are expanded as

Gi i ,t t = xi i / f i i = Si i − (1/(bt t br r −br t btr ))[(Si c1br r −Li c1br t )Sc1i + (−Sc1i btr +Li c1bt t )N c1i ] (13)

Gi i ,r r = xi i /Mi i = Pi i − (1/(bt t br r −br t btr ))[(Pi c1bt t −N c1i btr )Pc1i + (−Pc1i br t +N c1i br r )Pc1i ] (14)

G12,t t = xi i / f c1 = Si c1 − (1/(bt t br r −br t btr ))[(Si c1br r −Li c1br t )Sc2c2 + (−Sc1i btr +Li c1bt t )N c2c2] (15)

Gc2c2,t t = xc2/Mc2 = Sc2c2 − (1/(bt t br r −br t btr ))[(Si c1br r −Li c1br t )Sc2c2 + (−Sc1i btr +Li c1bt t )N c2c2]. (16)

2.3. Determination of the FRF

The format of the motion equation in the frequency domain depends on the physical parameter
used in the investigation. Typically the equation of motion is scripted in displacement, which
takes it to:

{X (ω)} = [H(ω)]{F(ω)}, [H(ω)]−1 = [K ]−ω2[M]+ jω[C]. (17)

The FRF synthesis attributed to mode shapes and natural frequencies is used to determined
the FRF of a mechanical system. The relationship between the FRF matrix H j k (ω) and mode
shapes is made explicit by:

H j k (ω) =
n∑

r=1

rΦ j rΦk

ω2
r −ω2 +2 jξrωrω

, (18)

where H j k (ω) is the steady-state response. n denotes the DoFs. rΦ j is the mass-normalized eigen-
vector.

3. Numerical models

Figure 2 depicts the system of interest, composed of two reducer stage spur gear mechanisms
connected through flexible coupling.

The coupling response on assembled system is studied by three dynamic models. In the first
study, the joint is characterized by a rigid coupling. The first model considered here is the first
model suggested by Krämer [15]. The coupling is modeled as a rigid disc, with equal parts at
the coordinates connecting the coupling to the adjoining shafts corresponding to the coupling
inertia. The second and the third study selects the identical reducer stages, coupled with flexible
coupling. First, the elastic coupling is approximated via Krämer model [15] with torsional stiffness
(kθc ) and torsional damping (cθc )(shown in Figure 3(a)). Second, it is according to the model of
Nelson and Crandall [16] with radial stiffness (kxc , kyc ), torsional stiffness (kθc ), radial damping
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Figure 2. Kinematic scheme of reducer stage connected with flexible interface.

Figure 3. Lumped parameter of reducer stage connected with flexible interface.

(cxc , cyc ) and torsional damping (cθc ) (shown Figure 3(b)). The two models contained the inertial
effects as two inflexible disks (I22) and (I23).

The pinions and the gears are taken into consideration as rigid bodies for each stage and their
inertia are respectively I (1,2),I (2,1),I (2,3) and I (3,1). The shafts are supposed to be massless
with torsional stiffness kθi and torsional damping cθi (i = 1,2,3,4). The shafts are supported by
radial stiffness of bearings modeled by parallel springs (kx j and ky j ) and dampers (cx j and cy j ).
The two stages are modeled by constant meshing stiffness, respectively (1,2) with (2,1) and (2,3)
with (3,1). The wheels (1,1) and (3,2) denote the motor and the receiver sides, respectively. The
inertia of motor and receiver are presented by Im and Ir , respectively. The shaft (2) is linked to
the shaft (3) by the elastic interface. An interface model includes translational and torsional FRFs
and considers the joint properties.

3.1. Coupling method

The aforementioned method involves dividing the full system into two subsystems as depicted
in Figure 2. The coupling is divided into two equal parts as in [24]. The two subsystems can be
analyzed separately, then the FRF is integrated on the full system. A modeling of the two-stage
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spur gear transmission is proposed in [25]. The motion equation of a damped linear system is
expressed by:

[M]{Ẍ (t )}+ [C]{Ẋ (t )}+ [K ]{X (t )t } = {F(t )}. (19)

To determine the mass [M], damping [C] and stiffness [K ] of each subsystem, we use (19). The
stiffness matrix [K ] is expressed as:

[K ] = [K s ]+ [K (t )], (20)

where K s presents the stationary stiffness matrix of bearing and shaft, K (t ) the time-varying
mesh stiffness matrix. [K (t )] can be divided into an average stiffness matrix [km] and a time-
variable stiffness matrix [k(t )]. We supposed a constant gear stiffness and neglected the variable
stiffness.

The generalized coordinate vector of the linear dynamic model X includes eight DoFs and can
be defined by:

X = [X 1 X c ]T , X 1 =
[
x1 y1 x2 y2 θ(1,1) θ(1,2) θ(2,1)

]T
, X c = [θ(2,2)]T . (21)

These DoFs can be distributed into internal and coupling DoFs X 1 and Xc , respectively. The
generalized coordinate vector of the linear dynamic model X for the second RC method includes
eight DoFs which can be defined by:

X = [X 1 X c ]T , X 1 =
[
x1 y1 θ(1,1) θ(1,2) θ(2,1)

]T
, X c =

[
x2 y2 θ(2,2)

]
. (22)

The two mass matrices [M] and [M ′] are expressed by:

[M] = diag[m(1,1),m(1,1),m(2,1),m(2,1), I (1,1), I (1,2), I (2,1), I (2,2)/2], (23)

[M ′] = diag[m(1,1),m(1,1), I (1,1), I (1,2), I (2,1),m(2,1),m(2,1), I (2,2)/2], (24)

where m(i ,1) are the mass of wheels and pinions (i = 1,2). I (1,1), I (1,2), I (2,1) and I (2,2) are the
motor inertia, the wheels inertia, the pinions inertia and the coupling inertia, respectively.

The stiffness and the damping matrices [K ] and [C] are composed of the bearing stiffness and
damping kxi , kyi and cxi , cyi , where (i = 1,2). The torsional stiffness and damping are kθi and cθi ,
where (i = 1,2). The gear mesh stiffness and damping, denoted by [km] and [cm], are expressed
as [26]:

[K ] =



s3km +kx1 s5km −s3km −s5km 0 s7km s9km 0
s5km s4km +ky1 −s5km −s4km 0 s6km s8km 0
−s3km −s5km s3km +kx2 s5km 0 −s7km −s9km 0
s5km −s4km s5km s4km +ky2 0 −s6km s8km 0

0 0 0 0 kθ1 −kθ1 0 0
s7km s6km −s7km −s6km −kθ1 s10km +kθ1 s12km 0
s9km s8km −s9km s9km 0 s12km s11km +kθ2 −kθ2

0 0 0 0 0 0 −kθ2 kθ2


, (25)

[C] =



s3cm + cx1 s5cm −s3cm −s5cm 0 s7cm s9cm 0
s5cm s4cm + cy1 −s5cm −s4cm 0 s6cm s8cm 0
−s3cm −s5cm s3cm + cx2 s5cm 0 −s7cm −s9cm 0
s5cm −s4cm s5cm s4cm + cy2 0 −s6cm s8cm 0

0 0 0 0 cθ1 −cθ1 0 0
s7cm s6cm −s7cm −s6cm −cθ1 s10cm + cθ1 s12cm 0
s9cm s8cm −s9cm s9cm 0 s12cm s11cm + cθ2 −cθ2

0 0 0 0 0 0 −cθ2 cθ2


. (26)
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The stiffness and the damping matrices [K ′] and [C ′] are expressed in the second receptance
method by:

[K ′] =



s3km +kx1 s5km 0 s7km s9km −s3km −s5km 0
s5km s4km +ky1 0 s6km s8km −s5km −s4km 0

0 0 kθ1 −kθ1 0 0 0 0
s7km s6km −kθ1 s10km +kθ1 s12km −s7km −s6km 0
s9km s8km 0 s12km s11km +kθ2 −s9km s9km −kθ2

−s3km −s5km 0 −s7km −s9km s3km +kx2 s5km 0
s5km −s4km 0 −s6km s8km s5km s4km +ky2 0

0 0 0 0 −kθ2 0 0 kθ2


, (27)

[C ′] =



s3cm + cx1 s5cm 0 s7cm s9cm −s3cm −s5cm 0
s5cm s4cm + cy1 0 s6cm s8cm −s5cm −s4cm 0

0 0 cθ1 −cθ1 0 0 0 0
s7cm s6cm −cθ1 s10cm + cθ1 s12cm −s7cm −s6cm 0
s9cm s8cm 0 s12cm s11cm + cθ2 −s9cm s9cm −cθ2

−s3cm −s5cm 0 −s7cm −s9cm s3cm + cx2 s5cm 0
s5cm −s4cm 0 −s6cm s8cm s5cm s4cm + cy2 0

0 0 0 0 −cθ2 0 0 cθ2


, (28)

where the variables si , i = 1,2, . . . ,12 are given by:

s1 = sinα, s2 = cosα, s3 = sinα, s4 = cosα, s5 = sinαcosα, s6 = rb12 cosα
s7 = rb12 sinα, s8 = rb21 cosα, s9 = rb21 sinα, s10 = r 2

b12, s11 = r 2
b21, s12 = rb12rb21,

(29)

where rb12, rb21 are the base radius of the pinion and the gear, respectively.

4. Numerical simulations and discussions

The RC technique is applied using a flexible coupling between the two subsystems A and B . The
first study discussed the effect of a flexible coupling on the coupled system FRF. Subsequently, a
parametric study is applied to discuss the influence of the interface and the subsystem parame-
ters’ variation on system response.

4.1. Validation of substructuring in flexible coupling

The model of reducer stage with an elastic coupling using the approach of substructuring method
is investigated. In the validation case, the elastic coupling is localized between the motor and the
spur gearbox. Thus, the global system is divided on two subsystems A and B with two equal
halves of the coupling inertia. The aforementioned model is investigated by comparing with
the work suggested by Hmida et al. [27] and Chaarii [26] as a reference. For instance, Figure 4
depicts the FRF of a subsystem B with flexible coupling in the radial direction of the third bearing
(y3 direction). The displayed peaks conform to the natural frequencies of subsystem A, B and
coupling. These peaks presented the rotation and the bending modes. The coupled frequency
corresponds to 26 Hz as presented in the zoomed inset in the figure.

The natural frequencies of the gearbox obtained with the proposed dynamic substructuring
method were compared to direct FRF results of Hmida et al. [27] which is presented in Table 1.
An excellent agreement is observed, with error reaching 0.6%.

In fact, the numerical results show a good correlation of the noted natural frequencies through
the same conditions and paramters of gearbox mentioned by Hmida et al. [27]. Also the same
FRFs curves of the third bearing (y3 direction) for two methods is shown in Figure 4. Therefore,
the proposed method of FRF applied to gearbox is validated. Furthermore, the effectiveness of
this method in reducing the computation time is proved in [20].
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Figure 4. FRF in the linear direction of the third bearing with flexible coupling.

Table 1. Natural frequencies of present work and Hmida et al. [27] (2017)

Frequency system Present work (Hz) Hmida (2017) (Hz)
F1 18 (0.3%) 26
F2 875 878
F3 1583 1583.8
F4 1679 1679.6
F5 1902 1902.3
F6 1972 1972
F7 1974 1974.2
F8 1974 1974.2
F9 2329 (0.6%) 2344.4

F10 2583 (0.3%) 2591.1
F11 3462 (0.23%) 3470.3

4.2. Results of flexible receptance coupling

This work permits to discuss and collate the FRF of the connections models proposed via
Krämer [15] and also the FRF of the coupling model as a rigid disk. The substructuring method
is first applied to rigid coupling subsystems which is validated with the work done in [28].
The considered case describes two subsystems including the identical parameters through both
stages of reducer. The values of the transmission and coupling parameters are given in Table 2.

The resolution of the eigenvalue problem is carried out for the determination of the frequen-
cies subsystems and the overall system. To analyze the dynamic behavior of the coupled system,
the eigenfrequencies of the two subsystems A and B and the global system (AB) are presented in
Table 3.

The natural frequencies of the coupled system correspond to the eigenfrequencies of the
individual subsystem and modified frequencies, classified as global (coupled) frequencies, which
are 260, 630, 870 and 1910 Hz. The effect of a flexible coupling on the natural frequency values
was investigated. Figures 5(a) and (b) depict the FRF of a subsystem A with rigid and flexible
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Table 2. Parameters of the studied two-stage gear system

Mass of wheel and pinion (kg) m(1) = 2.66,m(2) = 6.04
Inertia moment of wheel and pinion (kg·m2) I (1) = 0.0048, I (2) = 0.0243

Bearing stiffness (N/m) kxi = kyi = 108

Bearing damping (N·s/m) cxi = cyi = 0.5
Torsional damping (N·m·s/rad) cθi = 5.5×10−2

Torsional shaft flexibilities (N·m/rad) kθi = 105

Pressure angle α1 =α2 = 20°
Teeth module (m) m = 4×10−3

Teeth number Z1 = 30; Z2 = 45; Z3 = 30; Z4 = 45
Average mesh stiffness (N/m) k1moy = k2moy = 8.4×107

Teeth width (m) b = 3×10−2

Inertia coupling (kg·m2) I (A) = 4.48×10−8; I (A) = 4×10−4

Torsional stiffness of coupling (N·m/rad) kθi = 2×104

Translational stiffness (N/m) kxa = ky a = 462×102

Table 3. Natural frequencies of two subsystems A, B and global system (AB) (Hz)

Subsystem A Subsystem B Global system (AB)
0 0 0

530 550 260
650 650 530
790 650 630
970 840 650

1110 970 650
1950 1880 650

33,628 33,628 790
– – 870
– – 970
– – 970
– – 1110
– – 1910
– – 1950
– – 33,628

coupling in the radial direction of the second bearing (y2 direction) and the torsional direction of
the second shaft. Different stiffness values of coupling were taken in this study. The FRF curves
obtained by a substructuring method are calculated via (1). The difference appearing in the
frequency is due to the coupling torsional stiffness. Besides the torsional direction is sensible to
the variation of the coupling torsional stiffness. So, the results show that the interface parameters
decreased the coupling natural frequencies and the magnitude. The torsional frequency of the
connection shaft appears at 5000 Hz. On the other hand, this frequency shift towards a high
frequency in the case of a rigid coupling is because of the low inertia of the coupling. Hence
this frequency does not appear on the FRF of the rigid case. The second case study is designed to
indicate how the properties of typical interface parameters, mainly stiffness, affect the response
coupling results.
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Figure 5. FRF (a) in the radial direction of the second bearing with flexible connector and
(b) in the torsional direction.

4.3. Effect of coupling stiffness

The interest of interface between two subsystems is investigated for the coupling systems, it is of
interest to understand their effects on system response (FRF). The term D = (A[H]cc + B[H]cc +
[K ]−1

s ) present the relationships between the dynamic stiffness of coupling terms and the inter-
face of the system behavior. The global system response indicates the significant contributions of
these terms A[H]cc , B[H]cc , and [K ]−1

s . Let [H1(ω)] = A[H]cc + B[H]cc , and [C (ω)] = [K ]−1
s . There-

fore, [D] = ([H1]+ [C ])−1. [H1(ω)] illustrates the receptance properties of the two subsystems,
whereas [C (ω)] corresponds to the receptance characteristics of the coupling. Hence, the impact
of the subsystems and the connection parameters on system response is examined in this expres-
sion D . So, the following three cases were considered.

Case 1: [H1] ≺≺ |[C ]|. The dynamic stiffness at the points of subsystems coupling are higher
than the connector stiffness.

The diminution in the assembled system response is due to the reduction in the coupling
stiffness, as expected.

Case 2: |[H1]| ≈ |[C ]|. The coupling stiffness has the same order of magnitude as that of the
connector stiffness, reduced [Ks ] still decreased the coupling system response. However, the
effect of flexible coupling in case 1 is more significant than this case.

Case 3: |[H1]| ÂÂ |[C ]|. For important stiffness connectors, the assembled system response
approaches to rigid connection system response [19].

In this case, it should be noted that the response of the system is close to the rigid system.
The same effect appears in the response of subsystem B . There is a difference in frequency and

magnitude. As a result, the coupling dynamics cannot be neglected when examining dynamic re-
sponses. The results moreover displayed that the existence of the connection declined the natural
frequencies and the magnitude as proved in [19, 27]. In addition, the coupling natural frequency
is found to be quite sensitive to coupling stiffness. Nevertheless, the curves are superposed no-
tably on the frequencies of the subsystem A with slight variation.

It can be noted that the rotational direction of the shaft is sensitive to shaft stiffness coupling.
The results indicate that the presence of a flexible coupling shifts the frequencies lower. These
frequencies in the rigid coupling case are identified at 257 Hz, 625 Hz and 872 Hz, whereas
those in the elastic coupling case are located respectively at 157 Hz, 568 Hz and 851 Hz. For
the second case, the latter are located at 224 Hz, 599 Hz and 860 Hz. While the frequencies
of the third case are close to the rigid case. These frequencies are located at 253 Hz, 621 Hz
and 868 Hz. Furthermore, the results prove that the appearance of the coupling participated
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Figure 6. Effect of shaft stiffness on the FRF (a) radial direction (b) coupling direction.

in the lowering of frequencies which hinders the reduction of vibration due to coupling. These
results were proved by Hmida, Han and Tadeo in [14, 27, 29]. In order to highlight the influence
of subsystem parameters on coupled FRFs, numerical simulations are performed considering
different dimensionless stiffness of bearings and shafts.

4.4. Effect of shaft stiffness on flexible coupling method response

A parametric study is conducted for the purpose of analyzing the effect of shaft stiffness vari-
ations of two subsystems A and B on the flexible coupling method response. In this research,
[K ]s is conserved but the free FRFs are modified to explore their influence on the joined system
response.

The contributions of the shaft stiffness was indicated considerably on the global system re-
sponse. Two distinct dimensionless shaft stiffness kt = 1×105 and 2×105 of two subsystems were
used to investigate their effect on global response. Figures 6(a) and (b) depict an FRF compari-
son employing two shaft stiffness in radial and coupling directions of subystem A, respectively.
Torsional and bending frequencies can be influenced by modification of intermediate shafts [30].
The coupling and subsystem A frequencies are influenced by the subsystem A shaft stiffness in
the radial direction (shown in Figure 6(a)). In contrast, the variation of shaft stiffness of subsys-
tem B affects only the coupling frequency. The assembled system response approaches the rigid
connection system response due to increase in shaft stiffness of subsystem B . Additionally, shaft
stiffness affects the coupling frequency in the case of torsional coupling. The frequency response
around mode 4 is involved by reason of increasing the shaft stiffness of each subsystems, which is
shown in the zoomed inset in Figure 6. Figure 6(b) shows the difference in magnitude in the case
of flexible coupling especially when increasing the stiffness rigidity of subsystem A. Nevertheless,
when the subsystem stiffness B is enhanced, no important modification in the system response
spectrum is noticed.

The curves show that the vibratory level of the coupling frequencies appears significant in the
coupling direction, while this level is lower in the radial direction.

4.5. Effect of bearings stiffness on the coupled system FRF

A parametric study is conducted to analyze the effect of bearing stiffness variations on the
dynamic response. Figures 7(a,b) and 8 depict an FRF comparison using two different bearing
stiffness values in radial, rotational, and coupling directions of subsystem A. It can be noted that
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Figure 7. Effect of shaft bearing stiffness on the FRF (a) radial direction and (b) rotational
direction.

Figure 8. Effect of shaft bearing stiffness on the FRF coupling direction.

the dynamic response in the radial direction is more sensitive to bearing stiffness variation of
subsystem A. This result is consistent with the research work of Wang [12] which showed that
the variations in the main bearing stiffness exerts a weak influence on the dynamic response of
the planet carrier but a stronger influence on the main shaft bearing stiffness. Therefore, it shows
a difference in frequency and magnitude. In addition, an important difference in magnitude is
observed. The stiffness bearing variation of subsystems A and B affected the coupled system
frequency. Nonetheless, the bearing stiffness variation of subsystem B affects especially the
coupling frequency on the FRFs coupled subsystem A (Figure 7(b)).

While the results in Figure 7 show that the coupled frequencies and the frequencies of the
subsystem A are sensitive to the bearings’ rigidity variation of subsystem B .

The coupling frequency is insensitive to the bearing stiffness variation of subsystem B in the
case of torsional coupling direction (show Figure 8). It is clear that the bearing stiffness does not
affect the coupling frequency in the torsional direction.

4.6. Effect of translational and torsional coupling stiffness on the coupled system FRF

It is of interest to investigate the effect of translational and torsional coupling on system response.
Equation (13) was used, where the term B = AHcc+BHcc+[H j ] presents the relationships between
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Figure 9. FRF in torsional direction of the second shaft with the second Nelson’s model.

the dynamic stiffness of coupling terms and the interface of the system behavior. The elastic
coupling is approached via a Nelson second model where translational parameters are (kxc ,
kyc ),(cxc , cyc ) and torsional parameters are (kθc ), (cθc ). The classical receptance method is not
valid, so the formulation of the RC is different from the standard approach. In this case, the
second RC method was used.

Figure 9 depicts the FRF of a subsystem A with a rigid and a flexible coupling in the torsional
direction of the second shaft. The results show a decrease in the coupling natural frequencies due
to the existence of the connector. For the different directions, it shows the difference among the
natural frequencies expected by the rigid and the flexible coupling of the Nelson and Crandall
second model. In other directions, the models of joints have the same effect between two flexible
coupling models. The models of joints affect the coupling direction FRF.

4.6.1. Investigation of the effect of torsional coupling stiffness

To discover the influence of torsional coupling stiffness on system response, gear systems with
variable coupling stiffness are implemented. So, the effect of torsional FRF of joint on system
response is outlined in Figure 9. The reduction in the assembled system response is due to the
coupling stiffness. Additionally torsional coupling stiffness is sensitive to the natural frequency of
coupling. For important values of stiffness interface, the assembled system response approaches
the rigid connection system response for all directions.

4.6.2. Investigation of the effect of translational coupling stiffness

The characteristics of the mechanical joint affect a system’s responses. Figures 10(a) and (b)
indicate the effect of translational coupling stiffness on system response. Three different dimen-
sionless translational coupling stiffness were taken: kxa = k y a = 462×102 N/m, 462×105 N/m
and 462 × 107 N/m. Figure 10(a) shows the effect of the parametric study of the translational
stiffness in the linear direction. By comparing the two cases of coupling, the results show that
the translational stiffness coupling does not affect these FRFs due to the higher value of bear-
ing stiffness. The translational coupling stiffness affects slightly the eigen-frequencies of subsys-
tem A. Increased translational coupling stiffness leads to an increase in the frequencies of sub-
system A. Nevertheless, the response in torsional direction is not influenced by the variation of
translational coupling stiffness (show Figure 10(b)). System response is sensitive to translational
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Figure 10. FRF with the second model of Nelson (a) in the linear direction of the second
bearing and (b) in the torsional direction of the second shaft.

Figure 11. FRF in the translational coupling direction.

coupling stiffness in coupling DoF (show Figure 11). For a high value of translational stiffness cou-
pling, it shows in Figure 11 that the response approaches the rigid connection system response.

It can be concluded that the torsional coupling stiffness variation is more sensitive than the
translational coupling stiffness.

5. Conclusions

This manuscript discussed the impact of different models and characteristics of elastic coupling
on the dynamic behavior of the system. In this paper, one of the important techniques of
the substructuring method—the receptance method—is used for the transmission system. The
studied system is a reducer stage connected by two models of coupling a rigid and a flexible
coupling. The aforementioned technique is proposed to predict their behavior dynamics by using
FRFs of subsystems. The effects of the main shaft bearing stiffness and elastic interface stiffness
on the FRF were investigated. In addition, the parameters of coupling models for which we adopt
the second model of Kramer and the second model of Nelson and Crandall were developed to
investigate the dynamic response of the studied system.
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The conclusions obtained are listed as follows:

(1) The results achieved are compared with those of Hmida [27] and a great correspondence
of natural frequencies is noted. By calculating the FRF obtained by the rigid coupling
and those coupled by flexible coupling, different results have been obtained in the
frequencies. In fact, it is noticed that the coupling natural frequencies were reduced
through the use of an elastic coupling and moreover the FRF amplitude. It can be noted
that the rotational direction of the shaft is sensitive to shaft stiffness coupling.

(2) Variation of shaft stiffness of subsystem A has considerable influence on the coupling fre-
quency in the radial direction. Nevertheless, when the subsystem stiffness B is enhanced,
no important modification in the system response spectrum is noticed. Thus, the change
of shaft stiffness of subsystem B exerts a weaker influence on the coupling frequency.

(3) The dynamic response of subsystem A is more sensitive to variation bearing stiffness of
subsystem A but a weaker sensibility to variation of subsystem B especially in the radial
direction.

(4) The impact of translational stiffness coupling on the RC method is investigated. It was
reported that the torsional coupling stiffness is more sensitive than the translational
coupling stiffness. Thus, the translational coupling stiffness has not affected the response
of subsystem in the rotational direction.

Nomenclature

K s Stationary stiffness matrix of bearing and shaft
[C (ω)] Receptance characteristics of the coupling
[H1(ω)] Receptance characteristics of the two subsystems
ht t Receptance matrix of the joint according to translation direction
hr r Receptance matrix of the joint according to rotation direction
n[x]i and n[θ]i Translational and rotational displacement vectors
[H j ] Receptance matrix of the joint
K (t ) Time-varying mesh stiffness matrix
[km], [cm] The gear mesh stiffness and damping
kθc Torsional stiffness

A[x]i , A[θ]i Translational and rotational displacement vectors
H j k(ω) The steady-state displacement at coordinate j due to a harmonic

force excitation at coordinate k
cθc Torsional damping
rΦ j Mass-normalized eigen-vector
FRF Frequency response function
TDOF Translational degree of freedom
RDOF Rotational degree of freedom
RC Receptance coupling
C coupling DoFs
FBS Frequency-based substructuring
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