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Abstract. This paper presents an empirical model for predicting the uniaxial compressive strength (UCS)
of rocks using gene expression programming (GEP). A total of 44 datasets collected from the literature was
used to construct the GEP model. The GEP model developed is evaluated using four conventional regression
models and an artificial neural network (ANN) model in terms of three statistical indices. The comparison
results confirmed that the proposed GEP model has the lowest root mean square error (RMSE) and the highest
coefficient of determination (R2) and correlation coefficient (R) values compared to the four conventional
regression models and the ANN model in the literature. It is concluded that the proposed GEP model can be
applied to predict the UCS of rocks.
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1. Introduction

For rock engineering design, it is important to have a reasonable determination of uniaxial com-
pressive strength (UCS) of rocks [1–6]. The traditional experiments of UCS have some disadvan-
tages, e.g., these are time consuming, expensive, resulting in only a limited number of UCS as-
sessments being carried out [7–10]. Clearly, it is of importance to accurately predict the UCS of
rocks using less expensive and more reliable methods.

With recent developments in computational software and hardware, many artificial intelli-
gence (AI) methods have been widely applied in predicting the UCS of rocks [11–20]. Previ-
ous studies have confirmed that the prediction performance of artificial neural network (ANN)
techniques is better than that of the existing empirical models. However, the ANN model may
face some issues, e.g., slow convergence rates and convergence to local minima [21, 22]. As
a branch of genetic programming (GP), gene expression programming (GEP) was first intro-
duced by Ferreira [23, 24] and can overcome the aforementioned shortcomings of the ANN
approach. The most noticeable difference between GP and GEP is that GEP uses a linear fixed
length expression tree (ET), which is a representation of mathematical expressions arranged
in a tree, similar to a data structure. In other words, the GEP is a tree with leaves as operands
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of the mathematical expression, and the nodes contain the operators. By using an ET, the GEP
can solve relatively complex problems with high performance [25, 26].

In this study, a new empirical equation was proposed for prediction of the UCS of rocks using
GEP technique. Different from regression techniques and other empirical formulas, the GEP does
not need to specify a predefined function and it only needs to consider the parameters that can
best fit the experimental results of UCS of rocks. Besides, the forecasting performance of the
proposed GEP model was compared with some regression models and an ANN model in the
literature, and the use of GEP may provide a reference if it is found to be feasible and reliable.

2. Background

Some researchers have used different indices such as the block punch index (BPI), point load
strength (Is(50)), Schmidt rebound hardness (SRH), ultrasonic p-wave velocity (USV), etc. to
estimate the UCS of rock materials.

The BPI test has been developed during the last decade and provides a practical index in
assessing the UCS of intact rock. It mainly involves loading of a rock disc specimen by a punching
block in the middle of the specimen. The compression can induce a double shear failure in the
specimen. Although this test has been less explored than other index tests, the BPI has been
widely used in evaluating UCS of various rock materials. A summary of empirical equations
relating BPI and UCS can be found in Ref. [4].

To date, the point load strength (Is(50)) is considered to be the best proxy for UCS of rock
materials. This test mainly involves loading cylindrical, prismatic or irregular rock specimens
between conical platens and subsequently failing them [5]. The estimated point-load strength
values of specimens of varying sizes and also the values corrected to a standard thickness of
50 mm, and the resultant point-load strength values (Is(50)) have been used to estimate the UCS
of rock materials which correlates well with actual recorded UCS test results.

The SRH test is an indirect method and it provides a quick and inexpensive measure of surface
hardness that is widely used for estimating the mechanical properties of rock materials. The
Schmidt hammer consists of a spring-controlled mass that slides on a plunger within a tubular
housing. The plunger is brought into contact with the rock’s surface. This provides a spring-
controlled mass with a constant potential energy to hit the rock surface. Once it hits the surface,
it rebounds. Previous studies have investigated a number of empirical correlations between SRH
and UCS and a thorough list of such correlations can be found in Ref. [27].

The ultrasonic test is considered as a non-destructive testing technique based on the propaga-
tion of ultrasonic waves in the object or material tested. The modulation of the ultrasonic waves
by microstructural variables (e.g., mineralogy, size, density, and orientation of pores and cracks)
is reflected in the wave velocity, and consequently it is possible to characterize rock materials
by the velocity measurements. However, limited number of research studies have focused on the
correlations between USV and UCS.

In addition to the above indices, some physical properties such as porosity and density
are also widely used for characterizing the physico-mechanical parameters of rock materials,
and relations between the porosity and UCS of rock materials have been studied by many
researchers [28–30]. These studies indicated that there exists a negative linear or curvilinear
correlation between the porosity and UCS of rock materials.

3. Data collection

The UCS data from 44 samples from Ref. [8] were used to develop the proposed GEP model.
Each sample contained values of all input and output parameters required for the models.
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Table 1. Statistical analysis of datasets (data from Ref. [8])

Variable Maximum Minimum Mean Standard deviation
BPI (MPa) 35.36 2.53 16.04 10.158

Is(50) (MPa) 11.73 1.15 5.75 3.05
SRH (%) 66.51 25.89 50.23 10.477

USV (m/s) 6250 2725 5010.23 1216.119
UCS (MPa) 182.33 17.55 80.75 52.706

Table 2. Pearson’s correlation coefficients between different parameters

BPI (MPa) Is(50) (MPa) SRH (%) USV (m/s) UCS (MPa)
BPI (MPa) 1

Is(50) (MPa) 0.878∗∗ 1
SRH (%) 0.878∗∗ 0.884∗∗ 1

USV (m/s) 0.697∗∗ 0.533∗∗ 0.683∗∗ 1
UCS (MPa) 0.922∗∗ 0.937∗∗ 0.883∗∗ 0.565∗∗ 1

Note: ∗∗Correlation is significant at the 0.01 level (2-tailed).

According to Ref. [8], the 44 UCS data contain three kinds of rock types including granite,
schist and sandstone [5]. To construct the GEP model, four main parameters were used as input
variables. These parameters are the (i) BPI, (ii) Is(50), (iii) SRH, and (iv) USV. The UCS of rocks
is used as the output variable. In order to compare with the experimental and predicted results
in Ref. [8], 30 out of 44 samples were randomly selected for model training, while the remaining
14 data points were used in testing. The statistical results of data collected are summarized in
Table 1. The histogram frequencies of the input and output parameters are shown in Figure 1.
The Pearson’s correlation coefficients between different parameters are listed in Table 2.

4. Methodology

4.1. Artificial neural network (ANN)

The ANN is a computational model inspired by the biological neural structure of the human
brain. It mainly consists of three layers (i) the input layer, (ii) the hidden layer, and (iii) the
output layer. The neighboring layers are fully interconnected by weights. In Ref. [8], the multilayer
perceptron neural network was used for prediction of UCS, and the structure of the multilayer
perceptron neural network used in Ref. [8] is illustrated in Figure 2.

4.2. Gene expression programming (GEP)

As one of the evolutionary algorithms, GEP was first introduced by Ferreira [23, 24], and it
inherits many of the characteristics from genetic programming (GP) and genetic algorithms
(GAs). Generally, the GEP is mainly composed of five parts; they are the (i) function set, (ii) ter-
minal set, (iii) fitness function, (iv) control parameters, and (v) terminal condition. In GEP, the
genome or chromosomes many include one or more genes, and one gene can be divided into
two parts, that is, head and tail. The head part contains both functions and terminals (e.g., vari-
ables, functions, and mathematical operators), while the tail part is composed of terminals only
(e.g., constants and variables). The ET diagram of chromosome is illustrated in Figure 3, and it
can be written mathematically as c(a +b)(b/a)+ ((b/c)−ab).

C. R. Mécanique — 2022, 350, 159-170



162 Xinhua Xue

Figure 1. Histograms of the input and output parameters.

4.3. Empirical models

In the conventional methods, multiple regressions are often used to determine the relationships
between different variables. According to Ref. [5], some predictive models established by simple
and nonlinear multiple regression analysis is listed as follows:
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Figure 2. Structure of the multilayer perceptron neural network used in Ref. [8].

Figure 3. Example of expression tree.

(1) Simple regression analysis between BPI and UCS

UCS = 5BPI. (1)

(2) Simple regression analysis between Is(50) and UCS

UCS = 14.63Is(50). (2)

(3) Simple regression analysis between SRH and UCS

UCS = 2.38e0.065SRH. (3)

(4) Nonlinear multiple regression (NLMR) model

UCS = Exp[0.011×BPI+0.065× Is(50) +0.029×SRH+0.000012×USV+2.157]. (4)

C. R. Mécanique — 2022, 350, 159-170
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4.4. Performance evaluation

To assess the performance of prediction models, three statistical benchmark indices including
the root mean square error (RMSE), coefficient of determination (R2) and correlation coefficient
(R) were used to assess the forecasting performance of the prediction models [31, 32]:

RMSE =
√∑n

i=1(yi − ŷi )2

n
(5)

R2 = 1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − y i )2 (6)

R =
∑n

i=1(yi − y i )(ŷi − ŷ i )√∑n
i=1(yi − y i )2 ∑n

i=1(ŷi − ŷ i )2
(7)

where yi and ŷi are the actual and predicted results, respectively. y i and ŷ i are the average of the
actual and predicted results, respectively. n is the whole number of data samples.

5. Results and discussion

The best performance of the GEP is guaranteed by using the optimal setting parameters. These
parameters include the number of chromosomes and genes, head size, linking function and rate
of genetic operators. The main steps used in parameter identification and establishment of the
GEP model are summarized as follows.

(1) First, an appropriate fitness function must be chosen. In this study, the RMSE is chosen
as the fitness function and the RMSEi of a chromosome i can be written as

RMSEi =
√∑n

j=1(Pi j −O j )2

n
, (8)

where Pi j is the value predicted by the individual chromosome i for fitness case j , and
O j is the measured value for fitness case j .

It should be noted that (8) cannot be used directly because the fitness must increase
with efficiency [24]. Therefore, the following expression is used for the fitness fi of an
individual chromosome i [24]:

fi = 1000× 1

1+RMSEi
, (9)

where fi ranges between 0 and 1000 (1000 corresponds to the ideal).
(2) A set of functions must be chosen. In this study, for the sake of simplicity, a group

of straightforward mathematical functions, i.e., {+,−,∗,/,exp, ln, log,min,max,avg} was
selected as the function set.

(3) The structural organization of the chromosomes, i.e., the head size and the number of
genes, must be chosen. In this study, the optimal values of the numbers of genes and head
size in each chromosome are determined by the trial and error strategy and set to 3 and 8,
respectively. In addition, it is found that the best individuals have 30 chromosomes.

(4) The genetic operators must be selected. According to the results of the study conducted
by Ferreira [24], values of 0.3, 0.3, 0.1, 0.1 and 0.044 were fixed for one-point recom-
bination, two-point recombination, gene recombination, transposition (e.g., insertion
sequence (IS) transposition, root insertion sequence (RIS) transposition, gene transpo-
sition) and mutation operators, respectively.

C. R. Mécanique — 2022, 350, 159-170



Xinhua Xue 165

Table 3. The optimal parameters of GEP model

Genes 3
Chromosomes 30
Head size 8
Linking function +
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.1
Mutation rate 0.044

(5) The linking function must be chosen. Different types of linking functions, including
addition (+), subtraction (−), multiplication (×) and division (/), can be used in the GEP
model. In this study, the linking function of addition (+) is selected because it can provide
better results than other linking functions (e.g., −, ×, /).

After determining the optimal parameters in steps 1–5 (as listed in Table 3), GEP model
can be established for predicting the UCS of rocks. The resulting ET of the best GEP model
is illustrated in Figure 4.

In Figure 4, d0, d1, d2 and d3 denote BPI, Is(50), SRH and USV, respectively. The constant of the
first gene c6 is −10.62. The constant of the second gene c6 is −9.559. The constants of the third
gene c6 and c9 are −9.559 and 8.849, respectively. The linking function or linker is an addition and
the proposed GEP model can be written as follows:

UCS = tan

(
SRH

Is(50)

)
− sin(USV)+max(SRH,BPI)+BPI[0.25Is(50) +0.25+cos(SRH)]

+2.5Is(50) +max(8.849,BPI)−29.738. (10)

Figure 5 plots the fitting relationship between the measured and predicted UCS results using
the proposed GEP model for the training, testing and total data samples, respectively.

The forecasting performance comparisons of these six models are listed in Table 4 and
Figure 6. As shown, regardless of the training, testing or total data sets, the R and R2 values of the
proposed GEP model are the highest while the values of RMSE of the proposed GEP model are the
lowest among these six models. For example, for the training data samples, the values of RMSE, R
and R2 of the proposed GEP model are 10.22, 0.9806 and 0.9651, respectively. However, the values
of RMSE, R and R2 of the ANN, Equations (1)–(4) are 13.88, 20.74, 17.17, 21.64 and 15.16; 0.9666,
0.9251, 0.9559, 0.9238 and 0.9606; 0.9343, 0.8559, 0.9137, 0.8534 and 0.9227, respectively. Obvi-
ously, the forecasting performance of the proposed GEP model surpasses the other five models.
In addition, it can be confirmed that the predictive ability of ANN model is much better than that
of the regression models. Among the four regression models, the predictive ability of the NLMR
model (4) is better than that of the simple regression models (e.g., Equations (1)–(3)).

6. Conclusions

In this study, an empirical model for predicting the UCS of rocks is developed by using the GEP
technique. A total of 44 datasets collected from the literature was used to construct the GEP
model. The developed GEP model is assessed using four conventional regression models and
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Figure 4. ET of the predictive GEP model.
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Figure 5. Relationships between the actual and predicted for the training, testing, and total
data samples.

Table 4. Performance comparison among different models

Models R R2 RMSE
Training Test Total Training Test Total Training Test Total

GEP 0.9806 0.9691 0.9751 0.9615 0.9392 0.9509 10.22 13.98 11.55
ANN 0.9666 0.9036 0.9611 0.9343 0.8165 0.9238 13.88 15.35 14.40

Equation (1) 0.9251 0.8651 0.9223 0.8559 0.7484 0.8506 20.74 19.22 20.26
Equation (2) 0.9559 0.8681 0.9373 0.9137 0.7536 0.8786 17.17 22.59 19.06
Equation (3) 0.9238 0.9239 0.9379 0.8534 0.8535 0.8796 21.64 12.44 19.2
Equation (4) 0.9606 0.9518 0.9554 0.9227 0.906 0.9128 15.16 15.98 15.61

an ANN model in terms of three statistical indices. The following conclusions can be drawn from
this study:

(1) The proposed GEP model provides an accurate prediction of the UCS of rocks that is most
fitting to the measured results compared to the available five models in the literature.

C. R. Mécanique — 2022, 350, 159-170
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Figure 6. Performance comparison among different models.

(2) The proposed GEP model has the lowest RMSE and the highest R2 and R values com-
pared to the four conventional regression models and an ANN model in the literature.
For the training data samples, the values of RMSE, R and R2 of the proposed GEP model
are 10.22, 0.9806 and 0.9651, respectively.

(3) The predictive ability of ANN model is much better than that of the regression models.
Among the four regression models, the predictive ability of the NLMR model is better
than that of the simple regression models.

Nomenclature

UCS Uniaxial compressive strength
AI Artificial intelligence
ANN Artificial neural network
GP Genetic programming
GEP Gene expression programming
ET Expression tree
BPI Block punch index
Is(50) Point load strength
SRH Schmidt rebound hardness
USV Ultrasonic p-wave velocity
GA Genetic algorithm
RMSE Root mean square error
R2 Coefficient of determination
R Correlation coefficient
NLMR Nonlinear multiple regression
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