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Abstract. The nonlinear static bending analysis of microplates resting on imperfect Pasternak elastic foun-
dations is carried out in this paper. The finite element method based on the modified couple stress theory
is used to derive the nonlinear finite element formulations. The present theory and mathematical model
are validated by comparisons of this work’s results with those of other reputable publications, which show a
very good agreement. The influences of length-scale parameter, nonlinearity, elastic foundation parameters,
imperfect foundations, and boundary conditions on the nonlinear static bending response of microplates
are then explored. The computed data of this study is very intriguing, particularly the interaction of the mi-
croplate with the imperfect elastic foundation, and this helps us better understand the mechanical behavior
of this structure.
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1. Introduction

With the rapid advancement of science and technology, micro- and nano-sized structures
have been utilized in a variety of sectors, including medical, pharmaceutical, optical, and
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telecommunications, in recent decades [1–5]. As a result, researching and comprehending the
mechanical reactions of these structures is crucial in the process of developing, producing,
and integrating them into micromechanical systems. It is also tough to observe their reactions
because of their micro- and nano-scales. The physico-mechanical response of microstructures
started to get greater attention in the early 2000s. Fleck et al. [6] utilized dislocation theory to
propose a rate-independent plasticity theory based on strain gradients. The accumulation of
both randomly stored and geometrically required dislocations was thought to cause hardening.
Lam et al. [7] carried out experiments on strain gradient elasticity, where the findings showed
that in the elastic deformation of small-scale structures, the impact of elastic strain gradient
was substantial. Then, a number of hypotheses have been developed to add on to the scien-
tific knowledge of micro and nanoscale structures based on these significant and well-founded
discoveries and studies [8–12].

For the study of mechanical behavior related to the microphone structure in general, some
typical works can be listed as follows. For Timoshenko beams constructed of a function-
ally graded material, Asghari [13] proposed a size-dependent formulation (functionally graded
material—FGM). The modified couple stress theory was used to derive the formulations. The
modified couple stress theory is a non-classical continuous theory that can account for small-
scale size effects in structural mechanics. Mohammad-Abadi and his co-workers [14] performed
a vibration analysis of composite laminated beams on the micron scale using the modified cou-
ple stress theory. In the framework of strain gradient elasticity, the governing equation of motion
of thin bending beams was investigated by Lazopoulos et al. [15]. The surface energy was used in
conjunction with a simple linear strain gradient elastic theory. A variational approach was also
employed to obtain the controlling beam equations and their boundary conditions. It turns out
that new terms have been coined to emphasize the significance of the cross-section area in thin
beam bending. Ma and colleagues [16] presented an improved variational formulation to sim-
ulate the microstructure-dependent Timoshenko beam model. It was based on Hamilton’s con-
cept and a modified coupled stress theory. Unlike the traditional theory, the new model included
a material length-scale component and could account for the size effect. For third-order shear de-
formation functionally graded (FG) micro beams, a modified couple stress theory was developed
by Salamat-talab et al. [17]. For the free vibration analysis of microplates, Ke and his team [18]
proposed a Mindlin microplate model based on the modified couple stress theory. Based on a
modified couple stress theory, Thai and Choi [19] introduced both size-dependent FG Kirchhoff
and Mindlin plate models. Li et al. [20] used strain gradient elasticity theory to construct a size-
dependent model for a bi-layered Kirchhoff microplate. The variational concept is used to ob-
tain the governing equations and boundary conditions. Ansari and colleagues [21] introduced a
Mindlin microplate model based on modified strain gradient elasticity to predict the axisymmet-
ric bending, buckling, and free vibration properties of circular/annular microplates constructed
of functionally graded materials. Sahmani and Ansari [22] predicted free vibration behavior of
FGMs. The Mori–Tanaka homogenization approach assumes that the material characteristics of
FGM microplates vary with thickness. Based on strain gradient elasticity theory, a non-classical
higher-order shear deformable plate model with three material length-scale parameters is devel-
oped. Tho et al. [23] employed the finite element method (FEM) and an unique third-order shear
deformation beam theory (TSDT) to predict the static bending and free vibration responses of
rotating (around a fixed axis) piezoelectric nanobeams with geometrical imperfection and flexo-
electric effects. Other publications [24–27] include some excellent work on mechanical responses
of microstructures.

In actuality, both conventional and microscale structures may seem to have significant dis-
tortion. As a result, calculating the structure’s nonlinear mechanical behavior is more complex.
Moreover, nonlinear issues get more intriguing. The following are some publications dealing with
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nonlinear calculations for microstructures. Ghayesh et al. [28] quantitatively investigated the
nonlinear resonant dynamics of microbeams. The nonlinear partial differential equation con-
trolling the system’s motion was obtained using Hamilton’s principle and the modified couple
stress theory. The Galerkin approach, together with suitable eigenfunctions, was employed to
discretize the nonlinear partial differential equation of motion into a series of nonlinear ordinary
differential equations with linked components in order to make use of the available numerical
methods. Asghari [29] used a modified version of the couple stress theory to derive the driving
motion equations and boundary conditions for geometrically nonlinear microplates with vari-
able forms. For the axisymmetrically nonlinear bending analysis of circular microplates under
uniformly distributed transverse stresses, Wang et al. [30] offered a nonclassical Kirchhoff plate
model. Jung and colleagues [31] developed a model for sigmoid functionally graded material (S-
FGM) microplates based on the modified couple stress theory and first-order shear deformation.
For imperfect functionally graded porous (FGP) cylindrical shells, Foroutan and Ahmadi [32] pro-
posed semi-analytical and analytical methods for nonlinear static and dynamic buckling assess-
ments. The structure is contained in a generalized nonlinear elastic foundation with nonlinear
cubic stiffness and two Winkler–Pasternak parameters.

Furthermore, the mechanical interaction of the microstructure with elastic foundations is a
fascinating issue in mechanical engineering. Structures, in fact, are often linked with completely
solid or other soft components in the overall system. As a consequence, interactions between
microstructures and elastic foundations have produced a slew of intriguing findings. Zhang et
al. [33] proposed an efficient size-dependent plate model based on the strain gradient elasticity
theory and a revised shear deformation theory to analyze the bending, buckling, and free vibra-
tion issues of FG microplates resting on an elastic foundation. Yang and his co-workers [34] in-
vestigated the buckling and post-buckling behaviors of microplates in a complex environment,
taking into account an elastic foundation and hygro-thermal-electro-mechanical stresses. Li et
al. [35] introduced an organic solar cell (OSC), which was considered the most potential third-
generation solar energy application. The static bending and free vibration of the size-dependent
OSC were extensively studied by using the modified strain gradient theory (MSGT) and the im-
proved shear deformation plate theory. Gupta and Talha [36] studied the static and stability of
a geometrically flawed FGM plate with a microstructural imperfection (porosity) on a Pasternak
elastic base, based on higher-order shear and normal deformation theories. The effective mate-
rial qualities of a material with porosity inclusion are expressed mathematically. A generic func-
tion models numerous geometric imperfections. An study of FGM rectangular plates bending
in a thermal environment is presented by Bouderba [37]. Theoretical formulations use a refined
shear deformation theory. The present theory’s displacement field is based on nonlinear fluctu-
ations in in-plane displacements throughout the plate’s thickness. Thai and co-workers [38] uti-
lized the finite element technique to model the mechanical, electrical, and polarization proper-
ties of piezoelectric nanoplates lying on elastic foundations and subjected to static stresses, tak-
ing into account the flexoelectric effect. Some remarkable works dealing with the nonlinear anal-
ysis of microstructures can be found in these works [31, 39–41].

As the outline above indicates, little study has been conducted on the nonlinear response of
microplates resting on imperfect Pasternak’s two-parameter elastic foundations. Hence, the pur-
pose of this work is to improve our understanding of the mechanical behavior of microstructures
in the context of nonlinear problems with imperfect elastic foundations.

This paper is organized as follows. Section 2 describes the nonlinear static bending of
microplates resting on elastic foundations using finite element formulas. Section 3 discusses
examples of verification and numerical findings. Section 4 presents the novel outcomes of the
research.
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Figure 1. The model of a microplate resting on an elastic foundation. (a) General view;
(b) top view.

2. Finite element formulations for nonlinear static bending of microplates resting on
imperfect elastic foundations

Consider a homogeneous microplate with length a, width b, and thickness h, in which the plate
is resting on an imperfect elastic medium with two parameters, the Winker spring kw and the
shear spring ks , as shown in Figure 1.

The displacement field of each point in the microplate is expressed as follows using Mindlin’s
first-order shear deformation theory [42–44]:

u = uo + z ·ϕx

v = vo + z ·ϕy

w = wo

(1)

in which:

• The displacements in the x-, y-, and z-directions, respectively, are u, v , and w ;
• The displacements of the point on the neutral surface in the x-, y-, and z-directions,

respectively, are uo , vo , and wo ;
• The rotations of the cross-area around the y- and x-axes, respectively, are ϕx and ϕy .

The strain energy of the plate element is computed using the modified couple stress theory as
follows [19]:

Ue =
∫

Ve

(σijεij +mij ·χij)dVe , (2)

where summation on repeated indices is implied; σij are the components of the stress tensor;
εij are the components of the strain tensor; mij are the components of the deviatoric part of the
symmetric couple stress tensor; and χij are the components of the symmetric curvature tentors,
which are defined as:

χij = 1

2

(
∂θi

∂x j
+ ∂θ j

∂xi

)
, i , j = x, y, z (3)

and θi are the rotation vector’s components:

θx = 1

2

(
∂w0

∂y
−ϕy

)
θy = 1

2

(
−∂w0

∂x
+ϕx

)
θz = 1

2

(
∂v

∂x
− ∂u

∂y
+ z · ∂ϕy

∂x
− z · ∂ϕx

∂y

)
.

(4)
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The nonlinear dependence of the bending strain on the displacement field is as follows [19]:

εx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

= ∂uo

∂x
+ 1

2

(
∂w

∂x

)2

+ z · ∂ϕx

∂x

εy = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

= ∂vo

∂y
+ 1

2

(
∂w

∂y

)2

+ z · ∂ϕy

∂y

γx y = ∂u

∂y
+ ∂v

∂x
+ ∂w

∂x
· ∂w

∂y
=

(
∂uo

∂y
+ ∂vo

∂x

)
+ ∂w

∂x
· ∂w

∂y
+ z ·

(
∂ϕx

∂y
+ ∂ϕy

∂x

)
.

(5)

Equation (5) is broken down into the following parts:

{εL} =
{
∂uo

∂x
,
∂vo

∂y
,
∂uo

∂y
+ ∂vo

∂x

}T

; {εN L} =
{

1

2

(
∂w

∂x

)2 1

2

(
∂w

∂y

)2 ∂w

∂x
· ∂w

∂y

}T

{κ} =
{
∂ϕx

∂x
,
∂ϕy

∂y
,
∂ϕx

∂y
+ ∂ϕy

∂x

}T

.

As a result, the bending strain may be expressed as:

{εb} = {εx ,εy ,γx y }T = {εL}+ {εN L}+ z · {κ}. (6)

The following equation defines the shear strain vector:

{εs } =
{
γxz

γy z

}
=


∂u

∂z
+ ∂w

∂x
∂v

∂z
+ ∂w

∂y

=
{
ϕx + ∂w

∂x
ϕy + ∂w

∂y

}T

. (7)

The symmetric curvature tentors’ components are written as follows [19]:

{χb} = {
χx χy χz χx y

}T

{χs } = {
χy z χzx

}T (8)

in which

χx = 1

2

(
∂2w0

∂y∂x
− ∂ϕy

∂x

)
; χy =−1

2

(
∂2w0

∂x∂y
− ∂ϕx

∂y

)
;

χz =−1

2

(
−∂ϕy

∂x
+ ∂ϕx

∂y

)
; χx y = 1

4

(
∂2w0

∂y2 − ∂ϕy

∂y

)
− 1

4

(
∂2w0

∂x2 − ∂ϕx

∂x

)
χy z =−1

4
z

(
− ∂

2ϕy

∂x∂y
+ ∂2ϕx

∂y∂y

)
+ 1

4

(
∂2v0

∂x∂y
− ∂2u0

∂y∂y

)

χzx =−1

4
z

(
−∂

2ϕy

∂x∂x
+ ∂2ϕx

∂x∂y

)
+ 1

4

(
∂2v0

∂x∂x
− ∂2u0

∂x∂y

)
.

(9)

The following is a straightforward expression of (8).

{χb} = 1

4



2

(
∂2w0

∂y∂x
− ∂ϕy

∂x

)
−2

(
∂2w0

∂x∂y
− ∂ϕx

∂y

)
−2

(
−∂ϕy

∂x
+ ∂ϕx

∂y

)
(
∂2w0

∂y2 − ∂ϕy

∂y

)
−

(
∂2w0

∂x2 − ∂ϕx

∂x

)


; {χ}s = {χsm}+ z · {χss } (10)
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where

{χsm} = 1

4


(
∂2v0

∂x∂y
− ∂2u0

∂y∂y

)
(
∂2v0

∂x∂x
− ∂2u0

∂x∂y

)
 ; {χss } = 1

4


∂2ϕy

∂x∂y
− ∂2ϕx

∂y∂y

∂2ϕy

∂x∂x
− ∂2ϕx

∂y∂x

 .

The following is how the stress fields are computed:
• The normal stress field:

{σb} =

σx

σy

τx y

= [Db] ·

εx

εy

γx y

= [Db]{εL}+ [Db]{εN L}+ z · [Db]·{κ} (11)

in which

[Db] = E

1−µ2


1 µ 0
µ 1 0

0 0
1−µ

2


is the material matrix; E and µ are the Young’s modulus and Poisson’s ratio, respectively.

• The shear stress field:

{τ} = [Ds ]{εs } (12)

in which

[Ds ] =
[

G 0
0 G

]
; G = E

2(1+µ)
.

• The components of the deviatoric part of the symmetric couple stress tensor [19]:

{m} = [Do]{χb}; {n} = [Dos ]{χs }, (13)

where

[D0] = E · l 2
o

1+µ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and [Dos] = E · l 2
o

2(1+µ)

[
1 0
0 1

]

are the material matrices; lo is the length-scale parameter, which depends on materials.
The strain energy is now expressed as follows:

Ue = 1

2

∫
Se




{εL}+ {εN L}

{κ}
{εs }


T  [A] [B ] [0]3x2

[B ] [D] [0]3x2

[0]2x3 [0]2x3 [A]


{εL}+ {εN L}

{κ}
{εs }


+


{χb}
{χsb}
{χss }


T  [C ] [0]4x2 [0]4x2

[0]2x4 [Y ] [0]2x4

[0]2x4 [0]2x4 [X ]


{χb}
{χsb}
{χss }




dx dy, (14)

where

([A], [B ], [D]) =
∫ h/2

−h/2
[Db](1, z, z2)dz; [A] = kcr

∫ h/2

−h/2
[Ds ]dz;

[C ] =
∫ h/2

−h/2
[Do]dz; ([Y ], [X ]) =

∫ h/2

−h/2
[Dos ](1, z)dz,

(15)

in which kcr = 5/6 is the shear correction factor.
In this study, a four-node quadrilateral element is used, with each node having five degrees of

freedom, as shown in Figure 2.

{qe } = {{q1} {q2} {q3} {q4}}T ; {qi } = {u0i v0i w0i ϕxi ϕyi }T .
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The Lagrange shape functions and the element displacement vector are then used to extend
the components of the strain tensor and the components of the symmetric curvature tensors as
follows:

{εN } = [B L
1 ]{qe }; {εN L} = [B N L

1 ]{qe }; {κ} = [B2]{qe }; {εs } = [B3]{qe };

{χb} = [B4]{qe }; {χsm} = [B5]{qe }; {χss } = [B6]{qe },
(16)

in which

B L
1 =

4∑
i=1



∂Ni

∂x
0 0 0 0

0
∂Ni

∂y
0 0 0

∂Ni

∂y

∂Ni

∂x
0 0 0

 ; [B N L
1 ] = 1

2



∂w

∂x
0

0
∂w

∂y
∂w

∂y

∂w

∂x


4∑

i=1

0 0
∂Ni

∂x
0 0

0 0
∂Ni

∂y
0 0



[B2] =
4∑

i=1


0 0 0

∂Ni

∂x
0

0 0 0 0
∂Ni

∂y

0 0 0
∂Ni

∂y

∂Ni

∂x

 ; [B3] =
4∑

i=1

0 0
∂Ni

∂x
1 0

0 0
∂Ni

∂y
0 1



[B4] = 1

4

4∑
i=1



0 0 2
∂2Ni

∂y∂x
0 −2

∂Ni

∂x

0 0 −2
∂2Ni

∂x∂y
2
∂Ni

∂y
0

0 0 0 −2
∂Ni

∂y
2
∂Ni

∂x

0 0
∂2Ni

∂y2 − ∂2Ni

∂x2

∂Ni

∂x
−∂Ni

∂y



[B5] =
4∑

i=1

1

4


− ∂

2Ni

∂y∂y

∂2Ni

∂x∂y
0 0 0

− ∂
2Ni

∂x∂y

∂2Ni

∂x∂x
0 0 0

 ; [B6] =
4∑

i=1

1

4


0 0 0 − ∂

2Ni

∂y∂y

∂2Ni

∂x∂y

0 0 0 − ∂
2Ni

∂y∂x

∂2Ni

∂x∂x

 ,

where Ni (i = 1–4) denotes the Lagrange shape functions, which are written as:

N1 = 1
4 (1−ξ)(1−η); N2 = 1

4 (1+ξ)(1−η)

N3 = 1
4 (1+ξ)(1+η); N4 = 1

4 (1−ξ)(1+η).

• ξ and η are the natural coordinates (see Figure 2).
Equation (14), when substituted, yields:

Ue = 1

2
· {qe }T ·


∫

Se



[B L
1 ]+ [B N L

1 ]
[B2]
[B3]

T  [A] [B ] [0]3x2

[B ] [D] [0]3x2

[0]2x3 [0]2x3 [A]

[B L
1 ]+ [B N L

1 ]
[B2]
[B3]


+

[B4]
[B5]
[B6]

T  [C ] [0]4x2 [0]4x2

[0]2x4 [Y ] [0]2x4

[0]2x4 [0]2x4 [X ]

[B4]
[B5]
[B6]




dx dy


· {qe }. (17)

As a consequence, the element stiffness matrix for the microplate element without accounting
for elastic foundations is as follows:

[K 1
e ] = [K L

e ]+ [K N L
e ] (18)
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Figure 2. A four-node quadrilateral element [45, 46].

where matrices of linear and nonlinear element stiffness are written as follows:

[K L
e ] =

∫
Se



[B L
1 ]

[B2]
[B3]

T  [A] [B ] [0]3x2

[B ] [D] [0]3x2

[0]2x3 [0]2x3 [A]

[B L
1 ]

[B2]
[B3]


+

[B4]
[B5]
[B6]

T  [C ] [0]4x2 [0]4x2

[0]2x4 [Y ] [0]2x4

[0]2x4 [0]2x4 [X ]

[B4]
[B5]
[B6]




dx dy

[K N L
e ] =

∫
Se

[B L
1 ]T · [B ] · [B N L

1 ]+ [B N L
1 ]T · [B ] · [B L

1 ]

+ [B N L
1 ]T · [A] · [B N L

1 ]+ [B N L
1 ]T · [B ] · [B2]

+ [B2]T · [B ] · [B N L
1 ]

 dx dy.

(19)

The elastic foundation’s strain energy in a plate element is computed as follows:

U f
e = 1

2

∫
Se

(
kw w2 +ks

((
∂w

∂x

)T (
∂w

∂x

)
+

(
∂w

∂y

)T (
∂w

∂y

)))
dx dy (20)

in which kw and ks are the Winker spring and shear spring, respectively.
The extra stiffness of the elastic foundation is produced as follows by expanding similar to the

preceding expressions:

[K f
e ] =

∫
Se

(
kw [Nw ]T [Nw ]+ks

(
[Nw,x ]T [Nw,x ]+ [Nw,y ]T [Nw,y ]

))
dx dy, (21)

where

[Nw ] =
4∑
1

[0,0, Ni ,0,0]; [Nw,x ] =
4∑
1

[
0,0,

∂Ni

∂x
,0,0

]
; [Nw,y ] =

4∑
1

[
0,0,

∂Ni

∂y
,0,0

]
. (22)

As a result, the plate element’s stiffness matrix, which includes the elastic foundation, is defined
as follows:

[Ke ] = [K 1
e ]+ [K f

e ]. (23)

Then, in order to compute the element’s nodal force vector, the following equation of work done
by external forces is used.

Ae =
∫

Se

{u}T { f }dSe , (24)

where {u}T = {u0 v0 w0 ϕx ϕy } = {qe }T · [N ]T ; { f } = {0 0 q(x, y) 0 0}T .
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Equation (24) now becomes:

Ae = {qe }T
∫

Se

[N ]T { f }dx dy. (25)

Thus, one gets:

{Fe } =
∫

Se

([N ]T { f })dx dy. (26)

The static equilibrium equation for the entire microplate is derived after assembling the compo-
nents of element matrices and vectors:[K f ]+ [K L]︸ ︷︷ ︸

linear part

+ [K N L]︸ ︷︷ ︸
nonlinear part

 · {Q} = {F }. (27)

To solve (27), the Newton–Raphson method is conducted [47,48]. For the convenience of explain-
ing the solution, Equation (27) is abbreviated as follows:

K (Q) ·Q = F. (28)

Supposing the value of the displacement is determined in step i indicated by Q i , the following
Taylor expansion to first order is employed to determine displacements in the subsequent step
(Q i+1):

K (Q i+1) ≈ K (Q i )+K i
T (Q i )∆Q i = F, (29)

where K i
T (Q i ) = (∂K /∂Q)i contains a Jacobian matrix, often referred to as the tangent stiffness

matrix, and ∆Q i displacement increment. The displacement increment ∆Q i may be calculated
using (29).

K i
T (Q i )∆Q i = F −K (Q i ). (30)

Now that Equation (30) has been used to get the displacement increment ∆Q i , the displacement
in the next step Q i+1 is determined as follows:

Q i+1 =Q i +∆Q i . (31)

Equation (31)’s solution does not fulfill the precise roots of nonlinear (28). At this point, an
unbalanced force will exist:

R i+1 = F −K (Q i+1). (32)

This procedure is continued until the unbalanced force equals the specified value; at that point,
Q i+1 is acknowledged as a solution to the nonlinear (28). To calculate this stationary time,
δconv ≤ δ0 performs a comparison of the convergence parameter, where δconv is calculated as:

δconv =
∑n

j=1(R i+1
j )2

1+∑n
j=1(F j )2 (33)

and δ0 = 10−4 is an acceptable value.

3. Numerical results and discussions

This paper makes use of a variety of boundary conditions. The definition includes the following
boundary conditions for simplicity of follow-up: C for clamped support, S for simple support,
and F for a free edge.

3.1. Verification examples

At first, two examples are introduced to verify the present theory and the MATLAB-based calcu-
lation program that will be used to examine the effect of geometrical and material parameters on
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Figure 3. Comparative non-dimensional maximum deflections.

the mechanical responses of microplates resting on two-parameter elastic foundations. The first
is an issue with the nonlinear static bending response of microplates without elastic foundations,
while the second one is a problem with the linear static bending response of microplates resting
on Pasternak elastic foundations.

Example 1. Consider a fully simply supported square homogeneous microplate with the fol-
lowing dimensions and material properties [19]: h = 17.6 × 10−6 m, a = b = 20h, l0 = 0.2h,
Young’s modulus E = 1.44 GPa, Poisson’s ratio µ = 0.38, and two elastic foundation parameters,
kw = ks = 0. The load is applied in a sinusoidally dispersed manner as follows [19]:

q(x, y) = qo sin
(π

2
x
)

sin
(π

2
y
)

(34)

in which qo can be found in the equation of normalized force as follows:

q∗ = qo a4

Eh4 . (35)

The non-dimensional maximum deflection for verification examples is defined as:

w∗
max =

100Eh3

qo a4 w

(
a

2
,

b

2

)
. (36)

Figure 3 presents the comparative non-dimensional maximum deflections between this work
and Thai and Choi [19].

Example 2. To validate the calculation program for the microplate with an elastic foundation,
the maximum deflection of the microplate with an elastic medium in the case of a linear problem
is examined. Consider a SSSS square homogeneous microplate [33], where h = 17.6× 10−6 m,
a = b = kxh (k is open), l0 = 0.2h, Young’s modulus E = 380 GPa, Poisson’s ratio µ = 0.3.
The sinusoidally distributed load is expressed in (34) and (35). Two non-dimensional elastic
foundation parameters are normalized as follows:

k∗
w = kw a2b2

D
; k∗

s = ks ab

D
(37)

in which D = Eh3/12(1−µ2).
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Figure 4. The non-dimensional maximum deflection depends on the length-scale param-
eter; SSSS; a/h = 20; k∗

w = k∗
s = 5.

It can be observed that the computed results are in very excellent agreement, as shown in
Figure 3 and Table 1. As a result, the proposed theory and mathematical model have been proven
correct.

3.2. Parameter investigations

Now, the influence of geometrical and material parameters of microplates resting on elastic
foundations are being explored. Consider a square microplate with the following parameters [19]:
h = 17.6×10−6 m, a = b = kxh (k can be changed), length-scale parameter l0, Young’s modulus
E = 14.4 GPa, Poisson’s ratio µ = 0.38. The sinusoidally distributed load is expressed in (34) and
(35). Two non-dimensional elastic foundation parameters are normalized as presented in (37).
Non-dimensional deflection of microplates is defined as:

w∗= w(x, y)

h
. (38)

3.2.1. Effect of length-scale parameter

The length-scale parameter plays a significant role in the mechanical responses of the mi-
crostructures. Therefore, this subsection first explores the influence of this coefficient on the non-
linear static bending of microplates. Herein, the SSSS microplate is considered. The effect of the
length-scale parameter is shown in Figure 4. Note that all the detailed geometrical and material
coefficients are also presented in these figures.

As demonstrated in Figure 4, the length-scale parameter has a small impact on the mi-
croplate’s nonlinear deflection response. The variation in maximum deflection for each external
load amount is insignificant. For microstructures, the deflection decreases as the length-scale
parameter lo is increased.

3.2.2. Effect of the nonlinearity

Nonlinearity is examined in this section. The normalized force has a range of values from 0 to
200. The following is a definition of the distinction between nonlinear and linear dimensionless
deflections:

wdiff = |w∗
max (linear)−w∗

max (nonlinear)|. (39)

Figure 5 shows the deflection responses for both linear and nonlinear situations.
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Figure 5. The distinction between nonlinear and linear non-dimensional maximum de-
flections; SSSS; a/h = 20, lo/h = 0.2; kw = kp = 5.

Figure 6. The dependence of the nonlinear deflection w∗ of microplates on elastic foun-
dation parameters; SSSS; a/h = 20; lo/h = 0.2; q∗ = 100; (a) k∗

w = k∗
s = 5; (b) k∗

w = k∗
s = 10.

It can be seen from Figure 5 that there is a significant difference between nonlinear and linear
problems. The difference is minimal when the load is modest. This discrepancy gets increasingly
obvious as the load intensity rises, and it rises quickly as the load intensity rises. This is another
fascinating aspect of the nonlinear issue. The numerical results in this nonlinear case more
accurately describe the response of microplates when the load is increased. Closely monitoring
the mechanical reaction of conventional structures, as well as nano- and micro-sized structures,
which is extremely challenging to measure, is also an intriguing aspect of the nonlinear analysis
problem.

3.2.3. Effect of elastic foundation parameters

To continue, the effect of elastic foundation parameters is examined. Let k∗
w = 5 and k∗

s obtains
the values of 0 to 10. In contrast, k∗

s = 5 and k∗
w = 0÷10 are also considered. The non-dimensional

maximum deflection is shown in Figure 6. Note that in this subsection, a full elastic foundation is
considered.
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Figure 7. The dependence of the non-dimensional maximum deflection w∗ of microplate
elastic foundation distribution; SSSS; a/h = 20; lo/h = 0.2; q∗ = 100.

Table 2. The dependence of the non-dimensional maximum deflection w∗
max on elastic

foundation parameters; SSSS; a/h = 20; q∗ = 100

Non-dimensional maximum deflection w∗
max

k∗
w = 5

lo/h k∗
s = 0 k∗

s = 3 k∗
s = 5 k∗

s = 7 k∗
s = 10

0 1.0510 1.0230 1.0045 0.9861 0.9589
0.2 1.0510 1.0230 1.0045 0.9861 0.9589
0.4 1.0510 1.0230 1.0045 0.9861 0.9588
0.6 1.0510 1.0229 1.0044 0.9860 0.9586
0.8 1.0508 1.0227 1.0042 0.9857 0.9584
1.0 1.0505 1.0224 1.0038 0.9854 0.9580

k∗
s = 5

lo/h k∗
w = 0 k∗

w = 3 k∗
w = 5 k∗

w = 7 k∗
w = 10

0 1.0069 1.0055 1.0045 1.0036 1.0022
0.2 1.0068 1.0054 1.0045 1.0036 1.0022
0.4 1.0068 1.0054 1.0045 1.0035 1.0021
0.6 1.0067 1.0053 1.0044 1.0034 1.0020
0.8 1.0065 1.0051 1.0042 1.0032 1.0018
1.0 1.0062 1.0048 1.0038 1.0029 1.0015

The stiffness of the elastic foundation has a considerable impact on the static nonlinear
response of the microplate, as shown in Table 2 and Figure 6. The overall stiffness of the structure
increases as the foundation stiffness increases. As a consequence, the deflection of the microplate
is minimized.

3.2.4. Effect of imperfect elastic foundation

Now, this subsection performs an exploration of the effect of an imperfect elastic foundation.
An SSSS square microplate resting on a corner square area of elastic foundation is presented in
Figure 7. The dependence of non-dimensional maximum deflection of microplates on the square
area of elastic foundation is presented in Figure 8.

Figure 8 shows various kinds of imperfect elastic foundations and the associated deflection
shapes of microplates to better understand how the area of the foundation affects the nonlinear
deflection response of microplates.
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Figure 8. Continued on next page.

The uneven elastic foundation distribution has a relatively substantial influence on the non-
linear static response of the microplates, as shown in Figures 7 and 8. The apparent deflection
diminishes as the width Li m of the elastic foundation distribution region increases in Figure 7.
The reason for this is that when the distribution area of the foundation increases, the structure’s
stiffness is reinforced by the foundation’s stiffness. When the structure and the elastic foundation
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Figure 8 (cont.). The deformation of microplates depends on imperfect two-parameter
elastic foundation SSSS; a/h = 20; lo/h = 0.2; q∗ = 100; k∗

w = k∗
s = 30.

are symmetrically centered, the point with the highest deflection coincides with the center of
symmetry, as shown in Figure 8. The deformation shape of the microplate tends to be symmetri-
cal along an axis when the plate and foundation are spread symmetrically about that axis. When
there is no central symmetry, the center of deflection tends to migrate to the region with no elastic
foundation, i.e. the region with lower stiffness.
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Figure 9. Continued on next page.

3.2.5. Effect of boundary conditions

Finally, the impact of boundary conditions on microplate nonlinear static bending is investi-
gated. Boundary conditions are calculated in three different ways (CCCC, CSCS, and SSSS).

The accompanying Figure 9 depicts the mechanical behavior of microplates as a function
of boundary conditions. It should be noted that in this subsection, a full elastic foundation
is considered. The reader may observe from Figure 9 that boundary circumstances have a
significant impact on the nonlinear static bending of microplates. Because the structure stiffens
as the plate gets more self-enforced, the maximum deflection is lowered. The plate with the
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Figure 9. The deformation of microplates depends on boundary conditions; a/h = 20;
lo/h = 0.2; k∗

w = k∗
s = 5.

boundary condition CCCC is the stiffest, followed by the CCCS plate, and finally the CCFF
plate. Furthermore, the structure and elastic foundation in all three boundary conditions have
a symmetrical distribution, thus the point of greatest deflection is at the center of the plate.

4. Conclusions

The nonlinear static bending responses of microplates resting on imperfect Pasternak’s elastic
foundations are investigated in this paper. The modified couple stress theory is used to derive
the finite element formulations. Comparisons of the findings of these studies to those of other
trustworthy research reveal a high degree of agreement. The following are some novel points.

• The length-scale parameter lo has a trivial effect on the static nonlinear response of
microplates, as shown in the numerical findings and comments part of this parameter
survey section. In contrast to the linear problem, where this parameter has a significant
influence on the nonlinear static response of microplates, this is not the case here.

• The distinction between nonlinear and linear issues is crucial. When the load is light,
the difference is negligible. As the load intensity increases, the difference becomes more
noticeable, and it increases fast. This is another intriguing element of the nonlinear
problem.

• The nonlinear response of the microplate is greatly influenced by the stiffness as well as
the dispersion of the imperfect elastic foundation. The foundation stiffness rises, leading
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to increase in the structure’s total stiffness. As a consequence, the deflection is mini-
mized. The distribution of an unsatisfactory elastic foundation is also seen in the dis-
torted forms of the plate under external loads. The distorted shape of the plate is likewise
symmetrical since the structure tends to be aligned and the dimensions are symmetrical.
For asymmetrically organized imperfect foundations, the greatest deflection point tends
to migrate to the position of low stiffness.

• The maximum deflection is reduced when the structure stiffens as the plate becomes
more self-enforced. The stiffest plate is the one with the boundary condition CCCC,
followed by the CSCS plate, and lastly, the SSSS plate.

Moreover, the numerical findings presented in this study are noteworthy since they add to
our understanding of the nonlinear behavior of microplates. It is very important to note that the
mechanical models, finite element formulas, and programming in the MATLAB environment that
have been developed as a result of this study will serve as the foundation for further research and
development of more complex problems related to microstructures, such as eigenvibration and
dynamics problems involving large deformations.
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