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Abstract. One of the main difficulties of the operational modal analysis is to deal with underdetermined
problems in which the number of sensors is less than the number of active modes. In the last decade, methods
based on the PARAllel FACtor (PARAFAC) decomposition have attracted a lot of attention in the field of modal
analysis because it has been proven that these methods can deal with underdetermined cases, as well as the
presence of harmonic excitations. Moreover, in combination with kurtosis value as a harmonic indicator, this
makes them more efficient in distinguishing between harmonic and structural components. However, it can
lead to distorted results as it does not take into account the variation in the length of the covariance functions
of the modal coordinates. Since the kurtosis values are estimated from these covariance functions, the length
of the latter directly affects the kurtosis. To overcome this limit, the present study proposes to introduce
the choice of the length of these functions based on their frequency and damping coefficient. This change
improves the existing method by more efficient separating between harmonics and modal components. The
proposed procedure is validated using numerical simulations, followed by ambient vibration measurements.

Keywords. Modal analysis, PARAFAC decomposition, Covariance function, Harmonic, Kurtosis.
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1. Introduction

In recent decades, operational modal analysis (OMA) has been significantly developed, and it
plays a vital role in the engineering fields. This is an identification technique that uses only
structural responses without knowing the input excitation information [1]. It is a challenging
task to measure the input excitations of mechanical systems and sometimes even impossible.
Therefore, the input excitation is frequently considered as Gaussian white noise. However, this
assumption is not always validated in reality because of the existence of periodic excitations.
Moreover, the presence of input excitations such as harmonic ones can cause errors in the modal
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identification process. Therefore, harmonic excitations should be detected and isolated from the
estimation of the structure’s modal parameters.

Emerged in the audio domain for sources demixing from the audio records [2], the blind
source separation (BSS) techniques have widely deployed in different research areas [3–8]. Cas-
tiglione et al. [9] recently proposed a solution to the BSS approach based on multi-filters designed
in the frequency domain. The method’s main idea is to divide a large underdetermined problem
in the frequency axis into several overdetermined or determined problems in sub-bands. The
modal parameters can then be estimated in the sub-bands. Thus, the method can handle the
issue of severely underdetermined scenarios. In OMA, these techniques are used for finding la-
tent sources from registered signals of systems without using any information about the mixing
process. The state of the art in BSS for OMA has been comprehensively treated in [10].

The main challenge for applying the BSS techniques in OMA is when the number of measure-
ment signals (or sensors) is less than that of latent sources—an underdetermined case. This prob-
lem can be encountered in many practical applications with limited measurements, for example,
for complex structures or in the presence of harmonic excitations, when the measurement signals
may be insufficient compared to the number of hidden sources.

There are some well-known indicators used in OMA to distinguish between the harmonic
components and the structural components. Initially pointed out in study [11], kurtosis value has
been widely used to distinguish between harmonic and modal responses [12–17]. If a component
is pure harmonic, the graph of its probability density function (PDF) will have two peaks with
the kurtosis value of 1.5. Otherwise, the PDF of a pure structural mode response will have a
normal distribution with the kurtosis value equal to 3. Another effective tool to distinguish a
structural component from a harmonic one is the modal assurance criterion (MAC) [18]. If a
linear relationship exists between the two modal vectors, the MAC value will be near 1. If they
are linearly independent, the MAC value will be near zero. In addition to the above-mentioned
techniques, there is a direct approach for distinguishing harmonic components. This method
proposes to consider them as zero-damping modes, while the damping ratio of the real pole of
the structural component varies between 0.1% and 2% [12]. However, this method would not be
effective when the structural modes have very low damping or the harmonic frequencies are very
close to the structural frequencies [16].

The PARAFAC decomposition technique [19] was recently employed in operation modal anal-
ysis as one of the BSS family methods. It has been proven to effectively treat different types of ex-
citations such as ambient vibrations, earthquakes, or human-induced vibrations [20–27]. It was
showed that the method could handle a system with many modes, in which each mode has a dif-
ferent damping level [22, 27]. A simplified description of these methods can be summarized in
three steps. At the first step, the covariance matrices of system responses are used to construct
a third-order tensor. The PARAFAC technique is then used to decompose this third-order tensor
into a sum of triple vectors’ outer products. And finally, the obtained decomposition products
like the mixing matrix and the auto-covariance matrix are used to estimate the system modal
parameters.

Among the PARAFAC decomposition technique applications, Sadhu et al. [25] proposed a new
approach based on a multiple-rank PARAFAC decomposition. In order to distinguish between
sources corresponding to harmonic components or structural modes, the average kurtosis value
is used. The authors proved that this approach is efficient for modal identification under the
presence of multiple harmonic excitations.

However, the PARAFAC decomposition results in the auto-covariance functions of modal
coordinates rather than direct modal coordinates. Because of the decaying feature of the auto-
covariance functions of modal coordinates [28], the kurtosis values depend on the lengths of
these functions. As a consequence, the insufficient length of the auto-covariance function can
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cause inaccuracy when using kurtosis value as a harmonic indicator. Hence, for OMA, the length
of the auto-covariance function needs to be considered when using kurtosis value as a harmonic
indicator in PARAFAC decomposition-based methods.

To the best of our knowledge, there have been no studies on the influence of the length of the
auto-covariance function on its kurtosis value.

This work takes advantage of previous studies. A modified procedure of the PARAFAC
decomposition-based method is presented for the OMA. The minimum length of auto-
covariance functions using natural periods and damping factors are suggested to distinguish be-
tween harmonic and modal components accurately. This modification allows to effectively dis-
tinguishing separated structural modes and harmonic ones. The efficiency in the performance of
the proposed procedure has been verified using numerical and experimental tests. The rest of the
paper is organized as follows. Section 2 describes the techniques of BSS and PARAFAC decompo-
sition, Section 3 formulates a proposed procedure. The validation of the proposed procedure is
presented in Section 4. Finally, Section 5 presents a conclusion.

2. Theoretical formulation

2.1. Instantaneous mixing model and PARAFAC decomposition

A linear instantaneous mixing model

x(t ) = As(t )+n(t ) =
ns∑
i

Ai si (t )+n(t ), (1)

where x(t ) = [x1(t ), x2(t ), . . . , xnx (t )]T is nx output measurements, s(t ) = [s1(t ), s2(t ), . . . , sns (t )]T

contains ns latent sources, n(t ) is the noisy vector, and Ai is the i th column of the unknown
mixing matrix A. BSS aims to obtain the latent sources s(t ) from the output measurement x(t )
only. Depending on the relation between the number of measurement sensors and the number
of sources, BSS problems can be classified as overdetermined case, when nx > ns , determined
case, when nx = ns , or underdetermined case, when nx < ns .

Consider a classically damped system with n degrees of freedom subjected to excitation f(t ) as
follows:

Mẍ(t )+Cẋ(t )+Kx(t ) = f(t ), (2)

where x(t ) is the vector of displacements; M, C, K are mass, damping, and stiffness matrix,
respectively.

The displacement x(t ) can be represented in the form of a modal superposition of the vibration
modes

x(t ) =Φq(t ), (3)

whereΦ is the mode shape matrix and q(t ) is a column vector of modal coordinates.
Consider the similarity between (1) and (3), the modal coordinates q(t ) and the mode shape

matrixΦ can be considered as the sources and the mixing matrix without the presence of noise,
respectively.

The noise term n(t ) in (1) is an additive noise assumed to be white. Therefore, its effect in the
covariance function is zero at the time-lag τk different from zero. The covariance matrix Cx(τk )
of vibration measurements x(t ) evaluated at time-lag τk can be written as follows:

Cx(τk ) = E {x(t )xT (t +τk )} =ΦCq(τk )ΦT . (4)

The auto-covariance matrix Cq(τk ) of modal coordinates (sources) at a time-lag τk is defined
as

Cq(τk ) = E {q(t )qT (t +τk )} (5)

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 1. Geometric interpretation for PARAFAC decomposition [33].

and
C i j

q (τk ) = E {qi (t )q j
T (t +τk )} =C i j

q,k . (6)

The modal coordinates are considered to be mutually uncorrelated C i j
q,k = 0 ∀i 6= j .

In the case of a 2-DOF system, x(t ) = [x1(t ), x2(t )]T . The covariance matrix of the responses at
a time-lag τk is represented as follows:[

C 11
x,k C 12

x,k

C 21
x,k C 22

x,k

]
=

[
φ11 φ12

φ21 φ22

][
C 11

q,k 0

0 C 22
q,k

][
φ11 φ21

φ12 φ22

]
, (7)

where

C i j
x,k =φi 1φ j 1C 11

q,k +φi 2φ j 2C 22
q,k =

2∑
r=1

φi rφ j r C r r
q,k . (8)

For a general n-DOF system, the correlation between response signals at a time-lag τk can be
represented by the following equation

C i j
x,k =

n∑
r=1

φi rφ j r C r r
q,k . (9)

Equation (9) can be treated by the joint approximate diagonalization technique employed in
conventional second-order blind identification [4]. However, this method is only applicable to
determined or overdetermined cases.

In order to deal with the underdetermined problem, Lathauwer and Castaing [29] introduced
a simultaneous matrix diagonalization technique. A third-order tensor C constructed from the
covariance matrices Cx(τk ) can be treated by a PARAFAC decomposition [19]. This decomposition
gives a mixing matrix and a matrix containing auto-covariance functions of modal coordinates.

The third-order tensor C can be decomposed to n rank-one tensors as follows:

C=
n∑

r=1
Φr ◦Φr ◦Cr

q ⇔C i j
x,k =

n∑
r=1

φi rφ j r C r r
q,k , (10)

where ◦ denotes the tensor outer product, and Φr and Cr
q is the r th column of Φ and Cq,

respectively.
As a consequence that tensor decomposition can be used to estimate mixing matrix Φ and

auto-covariance functions of modal coordinates in matrix Cq. Several algorithms have been
developed to fit a PARAFAC model, which can be classified into three categories: alternating
algorithms, derivative-based algorithms, and non-iterative algorithms [30–32]. The geometric
interpretation for the above equation can be represented as shown in Figure 1 [33].

Unlike singular value decomposition used for matrix cases, PARAFAC decomposition offers
an additional advantage: it gives a unique decomposition even if its rank order is greater than
the smallest dimension of the tensor. This property of PARAFAC decomposition can be utilized
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Table 1. Number of identifiable sources with the number of measurements [34]

Number of measurements nx 2 3 4 5 6 7 8 9 10
Number of identifiable sources nmax 2 4 6 10 15 20 26 33 41

to deal with underdetermined cases in BSS. Stegeman et al. [34] derived the uniqueness for the
decomposition if the inequality equation between the number of measurements nx and the
number of latent sources ns is satisfied:

ns (ns −1)

2
≤ nx (nx −1)

4

(
nx (nx −1)

2
+1

)
− nx !

(nx −4)!4!
(nx )(nx≥4), (11)

where
(nx ){nx≥4} = 0 if nx < 4
(nx ){nx≥4} = 1 if nx ≥ 4.

(12)

The relationship between the number of measurements and the maximal number of identifi-
able sources extracted using the PARAFAC decomposition is presented in Table 1.

2.2. PARAFAC decomposition for modal analysis

In BSS, the conventional kurtosis value can be used to distinguish modal responses and harmonic
components. Besides, it has also been applied to a decay signal or the auto-covariance functions
of modal responses [25, 35]. The kurtosis value of a zero-mean random variable x is defined as
follows:

k = E {x4}

(E {x2})2 , (13)

where E is the expectation operator.
For sampled data with K samples, the expectation can be computed statistically as follows:

E {x} = 1

K

K∑
k=0

x(k). (14)

The existing PARAFAC decomposition can deal with underdetermined cases, and it also works
well with the presence of harmonic excitations. In the case of harmonic excitations, kurtosis
values of separated auto-covariance functions can be used to distinguish between the harmonic
components and structural modes.

The main steps for modal analysis of the PARAFAC decomposition-based method can be
presented as follows [25]:

• Step 1: Collect responses x(t ).
• Step 2: Build a third-order tensor C from Cx(τk ) using (4).
• Step 3: Perform rank R = 2 : nmax PARAFAC decomposition of the tensor C to obtain Cq

and mixing matrix A. Estimate frequencies f , damping ratios ξ, and kurtosis values κ
from Cq.

• Step 4: Build a stability diagram and calculate the average kurtosis values k at the
estimated frequencies from the results in step 3.

• Step 5: Determine the number of active modes Rr , identify structural modes correspond-
ing to the average kurtosis values k ≥ 3, and harmonic components with k < 3 from the
stability diagram.

• Step 6: Use the results of rank Rr PARAFAC decomposition and obtain modal parameters
by eliminating harmonic components.

C. R. Mécanique — 2021, 349, n 3, 435-452
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Table 2. Modal parameters of the numerical system are estimated with the proposed
procedure under different kinds of excitations

Mode 1 2 3 4
Exact f (Hz) 1.24 3.59 6.81

ξ (%) 1.31 0.50 0.34
Initial displacement f (Hz) 1.24 3.59 6.81

ξ (%) 1.29 0.51 0.38
Kurtosis 3.9 3.9 3.9
Nature Struct Struct Struct

Random noise f (Hz) 1.24 3.59 6.81
ξ (%) 1.42 0.46 0.38

Kurtosis 4.0 3.9 4.0
Nature Struct Struct Struct

Presence of harmonics f (Hz) 1.24 3.59 6.81 10.00
ξ (%) 1.42 0.46 0.39 0.00

Kurtosis 4.0 3.9 4.1 1.5
Nature Struct Struct Struct Harmonic

The kurtosis values are estimated with T i
L = (40Ti )/(ξi ).

In the method, the modal parameters can be extracted from the auto-covariance functions
using the logarithmic decrement method in the time domain or the single-mode curve fitting
method in the frequency domain.

2.3. Illustration

Consider an example of a 3-DOF mass–spring–damper system with the mass matrix M and the
stiffness matrix K:

M =
2 0 0

0 2 0
0 0 2

 ; K =
 200 −360 120
−360 2000 −1300
120 −1300 2600

 .

The damping matrix C is calculated through a proportional damping model C = 0.2M +
0.00005K. The three exact natural frequencies and the three damping ratios are presented in
Table 2.

The exact mode shape matrix is as follows:

Φ=
1.0000 1.0000 1.0000

0.2480 −3.1550 −6.8089
0.0816 −2.6650 8.4359

 .

The system is subjected to an initial displacement x3(0) = 1 with zero velocity. Responses are
simulated for a duration of 50 s with a sampling rate of 200 Hz. The responses of 3 DOFs of the
system are presented in Figure 2a. For the illustration, the covariance matrix is calculated with
the total of 3000 time-lag points (15 s).

Following the steps of the existing PARAFAC decomposition-based method, a stability diagram
is built with different rank R PARAFAC decomposition values ranging from 2 to 4 (corresponding
to three signals).

Three average kurtosis values corresponding to three active modes in the diagram are shown
in Figure 2b. The first two kurtosis values are less than 3. This means that these two first
frequencies belong to harmonic excitation, according to step 5. This is an incorrect result since

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 2. Responses (left) and stability diagram obtained from the PARAFAC
decomposition-based method (right).

these active modes are the structural modes in this example. This is due to the lengths of auto-
covariance functions used for calculating kurtosis values are not sufficient. The existing PARAFAC
decomposition-based method does not give a rule for choosing the length of the auto-covariance
of the modal coordinates. To overcome this limitation and improve the existing method, the
presented study proposes to select the length of the auto-covariance function while using the
kurtosis value as a harmonic indicator.

3. Enhanced procedure for the PARAFAC decomposition-based method

The previous illustration shows that it is necessary to have an adequate length of auto-covariance
function for accurate modal identification and an efficient distinction of structural modes and
harmonic components. Since the decaying feature of the auto-covariance function [28] this
decaying feature causes a variation of the auto-covariance function’s statistical characteristic
when the length of the auto-covariance function changes. Therefore, using kurtosis value as
a harmonic indicator to distinguish between harmonic components and modal ones needs to
consider the length of auto-covariance functions in PARAFAC decomposition-based methods in
the OMA.

Kurtosis is well-known as a measure of the “tailedness” of the probability distribution that
differs from the tails of a normal distribution. The modal coordinate has a normal distribution,
and its kurtosis value equals 3. However, the decaying nature of the auto-covariance function
makes the graph of its distribution being more narrow near the peak when the length of the
auto-covariance functions is longer. It means that an auto-covariance function’s kurtosis value
becomes more than 3 if its length is longer than a certain value. The auto-covariance function of a
harmonic component has a different feature than that of the modal coordinate’s auto-covariance
function. The kurtosis value of the auto-covariance function of a harmonic component is about
1.5 regardless of the length of its auto-covariance function.

3.1. The effect of signal length on kurtosis value

Under free vibration, the modal coordinate is the response of a single degree of freedom system
that has a form as follow:

qi (t ) = Ai e−2ξπ fni t sin(2π fdi t +θi ), (15)

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 3. Three decaying signals.

Figure 4. Kurtosis with length variation of the decaying signals.

where fni , ξi , θi , and Ai are the natural frequency, the damping ratio, the phase, and the
amplitude of the i th mode, respectively.

It was proven that the auto-covariance functions of responses have a decaying form [36] that
is similar to those in (15). Thus, the auto-covariance functions can be treated as free vibration
signals [37].

Decaying vibration signals with different natural frequencies and damping ratios are used to
illustrate the influence of their length on kurtosis value. These signals last for 100 s, as seen in
Figure 3.

It takes about 60 s for the kurtosis value to become equal to 3 for the first signal in Figure 4a.
Less than this duration, its kurtosis values will be smaller than 3. However, less time is needed for
the second and the third ones to their kurtosis values higher than 3.

Because of the decaying feature of these signals, not only the kurtosis value depends on the
natural period, but it also depends on the signal’s damping ratio. The kurtosis value of the auto-
covariance function increases in the function of the period Ti and increases inversely in the
damping ratio ξi function.

C. R. Mécanique — 2021, 349, n 3, 435-452
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Therefore, this study considers the simultaneous influence of frequency and the damping
coefficient on the kurtosis values. Figure 4b draws kurtosis values in a function of ti with ti

defined in (16)

ti = Ti

ξi
, (16)

where ξ is in percentage value, Ti is in second.
According to the numerical simulations that were carried out, one can conclude that the

kurtosis reaches a value of 3 after approximately 30ti . Figure 4b shows that the kurtosis value
reaches 3 in about 30ti for the given example. Consequently, the auto-covariance functions’
length should be at least 30ti , as presented in (17)

T i
L > 30ti = 30Ti

ξi
. (17)

In the case of an auto-covariance function with a damping ratio identified smaller than 0.1%,
the length of auto-covariance functions is selected by (18)

T i
L > 30ti = 30Ti

0.1
. (18)

In this study, kurtosis values estimated with a time length T i
L = 40ti is used for distinguishing

between harmonic components and structural modes.

3.2. The improvement procedure

The above choice of the time length of the auto-covariance functions is integrated into the
proposed procedure.

Here are the proposed steps for the PARAFAC decomposition-based method in OMA.

• Step 1: Collect responses x(t ).
• Step 2: Build a third-order tensor C from Cx(τk ).
• Step 3: Perform rank R = 2 : nmax PARAFAC decomposition of the tensor C to obtain Cq

and mixing matrix A. Estimate frequencies f from Cq.
• Step 4: Build a stability diagram and determine the number of active modes Rr .
• Step 5: Use the result of rank Rr PARAFAC decomposition. Recognize harmonic compo-

nents with kurtosis value k ≈ 1.5, or structural modes with k ≥ 3.0 based on a choice of
the time length of auto-covariance functions as follows: T i

L > 30Ti

ξi
if ξi ≥ 0.1(%)

T i
L > 30Ti

0.1
if ξi < 0.1(%).

(19)

• Step 6: Obtain modal parameters by eliminating harmonic components.

4. Application

To validate the effectiveness of the proposed procedure, numerical and experimental tests were
carried out for various excitation cases.

4.1. Numerical simulations

The numerical model used in Section 2.3 will be reutilized in this part. Modal identifications are
performed for different cases like initial displacement, white noise excitation, and white noise
accompanied by a harmonic excitation.

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 5. Auto-covariance functions and kurtosis in the case of an initial displacement.

Figure 6. Auto-covariance functions and kurtosis values in the case of random noise.

4.1.1. The numerical system subjected to an initial displacement

The proposed procedure was applied to the simulated responses used in Section 2.3. Three
auto-covariance functions corresponding to rank R = 3 PARAFAC decomposition are shown in
Figure 5a.

To illustrate the proposed procedure’s effectiveness, the curves of kurtosis values correspond-
ing to different lengths of the auto-covariance functions are presented in Figure 5b. One can real-
ize that auto-covariance functions’ lengths should be longer than 30× (Ti )/(ξi ) to make kurtosis
values higher than 3, as seen in Figure 5b. The identified modal parameters are the same as the
exact ones, as seen in Table 2.

4.1.2. The numerical system subjected to random noise excitation

In this numerical test, random excitations were applied at all three DOFs of the system. The
responses in the displacements of three DOFs were obtained by integrating the motion equation
with the Runge–Kutta algorithm. The sampling rate was 200 Hz for a duration of 600 s.

The proposed procedure was then applied to this case. Three auto-covariance functions
corresponding to rank R = 3 PARAFAC decomposition are shown in Figure 6a. The curves of

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 7. Stability diagram in the case of random noise accompanied by harmonic excita-
tion.

kurtosis values corresponding to their different lengths are presented in Figure 6b. One can realize
that auto-covariance functions’ lengths should be longer than 30 × (Ti )/(ξi ) to make kurtosis
higher than 3, as seen in Figure 6b. The identified modal parameters are close to the exact ones,
as shown in Table 2.

4.1.3. The numerical system subjected to random noise accompanied by a harmonic excitation

In this numerical test, random excitations accompanied by a harmonic excitation were ap-
plied at all three DOFs of the system. The displacement of three DOFs was obtained by integrat-
ing the motion equation with the Runge–Kutta algorithm. The sampling rate was 200 Hz for a
duration of 600 s.

The proposed procedure is now implemented to identify the modal parameters of the system.
A stability diagram is built from different values of rank R PARAFAC decompositions, as seen in
Figure 7. One can see that there are four active modes in this case.

The auto-covariance functions corresponding to rank R = 4 PARAFAC decomposition are
shown in Figure 8a. The curves of kurtosis values corresponding to their different lengths are
presented in Figure 8b. The figure shows that the first three components’ kurtosis values (corre-
sponding to source 1, source 2, and source 3) are higher than 3.0 when lengths of auto-covariance
functions are longer than 30× (Ti )/(ξi ). It means that these components belong to the structural
modes. The last component (corresponding to source 4) with a kurtosis value of 1.5 corresponds
to harmonic excitation. The MAC diagram shows a good correlation, as presented in Figure 9. The
modal parameters are presented in Table 2, and they are close to the exact ones.

4.2. Experimental tests

To validate the proposed procedure’s efficiency, a series of experimental tests were carried out, as
shown in Figure 10. The tests were conducted for a steel cantilever beam with Young’s modulus
E = 200,000 MPa, and density ρ = 7850 kg/m3. The cantilever beam of 0.8 m in length, 0.04 m in
width, and 0.006 m in height were used for experimental tests under different excitation patterns.
The responses of the cantilever beam were recorded at a sampling rate of 2048 Hz.

Initially, an analytical computation of the first five natural frequencies of the considered
beam was performed. Its analytical frequencies are given in Table 3. To obtain a reference

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 8. Auto-covariance functions and kurtosis values in the case of random noise ac-
companied by harmonic excitation.

Figure 9. Mode shape comparison in the case of random noise accompanied by harmonic
excitation.

Table 3. Modal parameters of the cantilever beam are estimated by the proposed pro-
cedure under different kinds of excitations, and kurtosis values are estimated with T i

L =
(40Ti )/(ξi )

Mode 1 2 3 4 5 6
Analytical f (Hz) 7.64 47.90 134.14 262.85 433.52

B&K software f (Hz) 7.28 46.82 131.43 260.86 427.86
ξ (%) 1.23 0.28 0.45 0.66 0.17

Gaussian noise f (Hz) 7.32 46.73 131.23 260.44 428.00
ξ (%) 1.38 0.35 0.52 0.63 0.12

Kurtosis 3.8 3.9 3.8 3.9 4.0
Nature Struct Struct Struct Struct Struct

Presence of harmonics f (Hz) 7.28 19.99 46.54 130.60 259.88 427.81
ξ (%) 1.11 0.00 0.32 0.52 0.63 0.13

Kurtosis 3.8 1.5 3.9 3.8 3.8 3.8
Nature Struct Harmonic Struct Struct Struct Struct

C. R. Mécanique — 2021, 349, n 3, 435-452
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Figure 10. The cantilever beam and test point locations.

model, a classical experimental modal analysis was performed using a shaker at a location
on the cantilever beam. The time responses were recorded using five B&K Type 4533-B-001
accelerometers mounted along the length of the cantilever beam. A B&K Type 8230-001 force
transducer is also used to collect the input excitation, as shown in Figure 10. The commercial
B&K Connect™ software acquires signals from the force sensor and the accelerators for input–
output modal identification. The results of modal parameter identification are given in Table 3.

Two following experimental examples are considered to demonstrate the efficiency of the pro-
posed procedure on actual measurements. The first example represents a determined case when
the measurements equal the number of the structural modes. The second example illustrates an
underdetermined problem where five sensors are used to separate six components: five struc-
tural modes and a harmonic component.

4.2.1. The structure subjected to Gaussian noise excitation

In this experiment, an actuator was used to create a band-limited Gaussian noise excitation
with a 0–500 Hz pass-band.

The proposed procedure was then applied to the measurement data. A stability diagram is
built with different rank R PARAFAC decomposition values ranging from 2 to 10 (corresponding
to five measurement signals). The diagram shows that there are five active modes, as seen in
Figure 11.

Five auto-covariance functions corresponding to rank R = 5 PARAFAC decomposition are
shown in Figure 12a. The curves of kurtosis values estimated with different lengths of the auto-
covariance functions are presented in Figure 12b. All kurtosis values of the auto-covariance
functions are higher than 3.0 when their lengths are longer than 30× (Ti )/(ξi ). Hence, it means
that these active modes belong to the cantilever beam.

These results are compared to those identified by the software, as shown in Table 3. These
estimated modal parameters match well with those identified by the software. The MAC shows
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Figure 11. Stability diagram in the case of Gaussian noise excitation.

Figure 12. Auto-covariance functions and kurtosis values in the case of Gaussian noise
excitation.

a good correlation between the structural mode shapes obtained by two different methods with
the auto-correlation coefficients approximate 1, as seen in Figure 13.

4.2.2. The structure subjected to Gaussian noise accompanied by a harmonic excitation

In this experiment, in addition to a band-limited Gaussian noise excitation with a pass-band
of 0 to 500 Hz, the cantilever beam was also subjected to a harmonic excitation at 20 Hz.

The proposed procedure was then applied to the measurement data. A stability diagram is
built with different values of rank R PARAFAC decomposition ranging from 2 to 10. There are six
active modes, as found in Figure 14. These six auto-covariance functions corresponding to rank
R = 6 PARAFAC decomposition are shown in Figure 15a.

The curves of kurtosis values estimated with different lengths of the auto-covariance func-
tions are presented in Figure 15b. The second separated component belongs to the harmonic
excitation because this component’s kurtosis values remain the same with the different lengths
of its auto-covariance function. Its kurtosis value is approximately 1.5 at the time length of
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Figure 13. Mode shape comparison in the case of Gaussian noise excitation.

Figure 14. Stability diagram in the case of Gaussian noise accompanied by harmonic
excitation.

T i
L = 40× (T2)/(ξ2). Other kurtosis values of the remaining auto-covariance functions are about

3.0 when their lengths are longer than a duration T i
L = 30× (Ti )/(ξi ). The kurtosis values of these

components with T i
L = 40×(Ti )/(ξi ) are about 3.8, as given in Table 3. It means that these remain-

ing active modes belong to the cantilever beam. The identified results are presented in Table 3.
The MAC comparison is presented in Figure 16. It shows a good correlation.

5. Conclusions

The discussed method based on the PARAFAC decomposition has proven to be an effective
tool for modal analysis in underdetermined cases. This method can also distinguish harmonic
components and structural modes using kurtosis values estimated from the auto-covariance
functions of modal coordinates. However, there was no explicit proposition for the choice of the
length of the auto-covariance function, which led to an erroneous result when this length was
insufficient.
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Figure 15. Auto-covariance functions and kurtosis values in the case of Gaussian noise
accompanied by harmonic excitation.

Figure 16. Mode shape comparison in the case of Gaussian noise accompanied by har-
monic excitation.

This study illustrates the dependence of the kurtosis values on the lengths of the auto-
covariance functions. The presented work allows one to make a conclusion about this length
based on the modal period Ti and the damping ratio ξi . It turned out that for the correct
separation of structural modes and harmonic components, the length of these auto-covariance
functions must be greater than 30Ti /ξi .

The proposed procedure was applied to numerical examples and then confirmed by experi-
mental tests. To estimate the kurtosis values, the length of the auto-covariance function was fixed
at 40Ti /ξi (> (30Ti )/(ξi )).

For the numerical simulation part, the responses from the 3-DOF system under (i) random
excitation and (ii) random excitation accompanied by harmonic excitation were processed in
accordance with the proposed procedure. The revealed modal parameters are very close to the
exact ones when the calculated values of kurtosis for the structural modes is (k = 3.9–4.1) and for
the harmonic component is k ≈ 1.5).
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In the experimental test section, the proposed procedure is applied to the responses of the
cantilever beam under (i) random excitation and (ii) random excitation mixed with harmonic
excitation. The identified modal parameters by the proposed method are in good agreement
with the reference ones obtained using the B&K software. In the presence of harmonic excitation,
the calculated kurtosis values for the structural modes are close to 4.0, and for the harmonic
component is approximate 1.5.

These validation tests confirm the effectiveness of the proposed method for use in OMA
for underdetermined cases in general and cases with the presence of harmonic excitations, in
particular.
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