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Abstract. Some nondestructive techniques of the Structural Health Monitoring (SHM) have improved their
analysis in the past decades. Among them, the electromechanical impedance-based SHM technique (EMI-
SHM) has been tested in several fields and associated to different statistical methodologies. Considering
the nature of the spatial variation of the damage metric data along structures, herein is proposed the use
of the indicator kriging method for predicting the existence of a known damage located in the center of
an aluminum plate. Maps showing the probability of the damage metric to fall in several value ranges
were capable of outlining the areas affected by the damage and predict its location. Comparisons between
scenarios with different spacing between PZT patches showed a reduction in the reliability of the model with
the increasing of such spacing. Also, for the structure under study, it demonstrates that it is not possible to
obtain results by the methodology for distance between sensors/actuators greater than 16.67 cm. However,
the results show that this approach can be a viable alternative for using damage metrics to map regions
affected by damage and its location.
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1. Introduction

Structures and/or machineries operate under severe mechanical conditions (static and/or dy-
namic loadings), and are subjected to environmental ones, such as temperature, humidity,
and/or chemical [1]. A combination of these factors leads to occurrence of structural failures,
caused by damages, needing to be monitored and analyzed with the aim of predicting them (di-
agnosis and prognosis), which is the goal of the Structural Health Monitoring (SHM) techniques
and tools.

Electromechanical impedance-based SHM technique (EMI-SHM) is of special interest due to
its low cost in relation to the other ones, and its nondestructive character. This approach has
been applied in several situations and purposes, such as pipelines [2, 3], aircraft structures [4–8],
hardened cement pastes or concrete structures [9–15], composite materials [16, 17], and steel-
made objects or structures [18].

Among other issues, damage detection in EMI technique involves its localization and its
severity quantification, which is crucial information for the decision-making process. Several
approaches are in development for the damage’s localization.

Some approaches include decoupling measurements of piezoelectric transducers [19], which
is based on extracts of only the electrical contributions of the structure, applying an artificial
neural network [5, 8, 20]; using a direct-coupled mechanical impedance extraction methodology
associated with a probability-weighted function [21], triangulation based on the mapping of the
correlation between impedance signatures and its distance from the damage [22], interpolation
of damage metrics using inverse distance weighting [23], and interpolation based on ordinary
kriging method [24].

Results derived from the aforementioned articles, particularly those of Kravolec et al. [22],
Cherrier et al. [23], and Gonçalves et al. [24] show the existence of a correlation between the
impedance signatures issued by PZT patches and their distance from the damage. It is shown
that damage metric values vary gradually along a surface, from high damage metric values near
the damage, to low ones, far from the damage location. Considering this nature of the impedance
signatures, in this study, the indicator kriging method is applied for mapping the position of a
known damage in a square plate of 100 cm based on numerical data similar to real ones. This
goal can be achieved by evaluating the probabilities of the damage data to be higher than specific
values (thresholds), particularly, the extreme ones. In order to evaluate the influence of the
spacing between PZT patches in the indicator kriging method, five spacing scenarios in regular
meshes are tested: (1) 9.09 cm× 9.09 cm; (2) 11.11 cm× 11.11 cm; (3) 14.286 cm× 14.286 cm;
(4) 16.67 cm×16.67 cm; and (5) 20.0 cm×20.0 cm.

2. Theoretical background

2.1. SHM based on electromechanical impedance

The EMI method used for SHM is based on the interaction between the electrical impedances
of the structure being monitored and piezoelectric sensors, commonly those constituted of lead
zirconate titanate (PZT), coupled to it [25, 26].

Electromechanical models were formulated with the aim of describing the relationship be-
tween the structure and the piezoelectric transducer. Liang et al. [27] define the transducer’s elec-
tric impedance ZE (ω) associated with the structure’s mechanical impedance Zs (ω) by (1). In this
model, Zp (ω) corresponds to the transducer’s mechanical impedance;ω is the angular frequency;
τ, a geometric constant; εT

33, dielectric constant for a constant mechanical stress (T ); Y E
X X ,
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Young’s modulus for a constant electric field (E); d 2
3X , a dielectric constant; and j, an imaginary

unit.

ZE (ω) = 1

jωτ

(
εT

33 −
Zs (ω)

Zs (ω)+Zp (ω)
d 2

3X Y E
X X

)−1

. (1)

Changes in the structure’s mechanical impedance due to a failure lead to a modification of
the signal (electric impedance) issued by PZT patches coupled to the structure, whose signal is
measured within a frequency range. Changes in the structural conditions are identified through
comparison between impedance signatures before and after a failure occurrence [4, 28–32].

Quantitative analysis of the damage is obtained through damage index. Among them, the
Root Mean Square Deviation (RMSD), expressed by (2), is the most common, which measures
the similarity/correlation between values located at the same frequency point, and grounded in
the Euclidean norm [33, 34]. The occurrence of the structural failure is based on comparing the
electrical impedance before (Z 0

E (k)) and after (ZE (k)), all of them measured in several k points in
the frequency domain, whose range varies from ωI (initial frequency) to ωF (final frequency).

RMSD =
√√√√∑ωF

k=ωI
[ZE (k)−Z 0

E (k)]2∑ωF
k=ωI

[Z 0
E (k)]2

. (2)

Damage metrics measured along several locations on the structure enables the mapping of
its influence, providing information for the decision-making process relating to maintenance
programs.

2.2. Geostatistics and indicator kriging

In the articles of Georges Matheron [35–37], geostatistics had its formulation as an application of
the Theory of Regionalized Variables, with the initial aim of solving problems related to spatially
correlated data in areas of Geology and Mining Engineering, in which sample data need to be
spatially interpolated, resulting in models used for a decision-making process.

The variables handled by geostatistical techniques are characterized by having a spatial (or
spatio-temporal) continuity along the domain being analyzed [38], in such a way that spatial
data close to each other have similar values, which become more different with the increase
in the distance separating the spatial data. This implies that not only the value of the variable
is considered in the analysis, but also its relative position in the space [39], leading to the
quantification of the spatial correlation of the sampled values, done by the semivariogram
function (3).

γ(h) = 1

2N (h)

N (h)∑
i=1

[z(xi )− z(xi +h)]2. (3)

The semivariogram (γ(h)) quantifies the half of the mean squared differences between two
spatial data (z(xi ) and z(xi +h)) separated from each other by a distance (vector) h [40]. Compu-
tation of the semivariogram for several classes of distances in a specific spatial direction provides
an inventory of the continuity in this one in the form of a plot (experimental semivariogram)
comparing the semivariance values (γ(h)) and their respective distance class (Figure 1). Its char-
acteristic of being a growing function reflects the progressive loss of spatial continuity in such
direction [38, 41, 42].

Experimental semivariograms need to be fitted by mathematical functions for their use in
the estimation process (kriging equations). The reasons for this involve several aspects, whose
discussions can be found in [39, 40, 43]. A semivariogram model can consist of one or more
simple mathematical functions, depending on the shape of the experimental semivariogram [44].
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Figure 1. Example of an experimental semivariogram with the sample variance.

Mathematical functions for semivariogram fitting include, but are not limited to, spherical,
exponential, and Gaussian ones, which are characterized by the existence of a sill (semivariance
value) limiting the increase of the function.

Semivariogram models have three parameters defining their format (Figure 2): Nugget Effect,
Sill, and Range. The first one is a chaotic or unstructured variance, and represents a variability
much lower than the data spacing. The second means the variance of the data in the vector h,
generally equal to the variance of these ones; and the latter is the distance from which there is
no spatial correlation between the values [40, 43, 45]. All of these are necessary for the estimation
based on kriging methods.

The indicator kriging is a nonlinear geostatistic method, where the prior appeal is to be
nonparametric, not requiring the knowledge about the distribution being estimating [39,43]. The
method requires variables transformed in 0s and 1s, according to specific criteria (4). From the
original distribution, K threshold values zk are selected, and for each of them indicator variables
are created, coding the values Z (x) according to (4).

I (x, zk ) =
{

1, if Z (x) ≤ zk

0, otherwise.
(4)

The estimation of the values related to each indicator variable at the unsampled locations
(without input data) is performed by several estimators, including the ordinary kriging one, which
was the interpolation method used herein. In this case, the estimated values I (x0) are calculated
as a linear combination (5) of the n input data I (xi ) in the search neighborhood (elliptical shape),
whose respective weights λi represent the spatial correlation between the estimated point (or
block) and the input values inside the search ellipse, and used for the estimation [46].

I (x0) =
n∑

i=1
λi I (xi ). (5)

The calculation of the weights λi are based on the ordinary kriging system (6) that relates the
semivariogram values between input data (γ(xi − x j )) and between input data and estimation
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Figure 2. Spherical semivariogram model with its parameters. Horizontal red dashed line
refers to the sample’s variance.

point/block (γ(xi − x0)), and the Lagrange multiplier µ. The system can be expressed in a matrix
form (7), from which the optimal weights are calculated [46].

n∑
j=1

λ jγ(xi −x j )−µ= γ(xi −x0) for i = 1, . . . ,n

n∑
j=1

λ j = 1

(6)


λ1

λ2
...
λn

−µ

=


γ(x1 −x1) γ(x1 −x2) · · · γ(x1 −xn) 1
γ(x2 −x1) γ(x2 −x2) · · · γ(x2 −xn) 1

...
... · · · ...

...
γ(xn −x1) γ(xn −x2) · · · γ(xn −xn) 1

1 1 · · · 1 0



−1 
γ(x0 −x1)
γ(x0 −x2)

...
γ(x0 −xn)

1

 . (7)

The ordinary kriging results in an estimation characterized to be theoretically unbiased, in
the sense that the average estimation error is zero, and optimal, since the error variance is
minimized [47] in such a way that the estimated values are optimal.

3. Materials and methods

For the study, in the 9.09 cm× 9.09 cm regular mesh (first scenario considered), 100 numerical
damage metric data simulating real ones and based on the RMSD index were used, covering an
aluminum plate of 100 cm×100 cm (Figure 3). The damage metric values were defined in such a
way that they represent real values when the plate has a failure in the center of it. It can be seen
by the spatial variation of the numerical data in Figure 3, in which the highest values are located
at the plates’ center, while the lowest ones at the plate’s borders.

The damage metric data was submitted to a statistical analysis, with the aim of identifying
the principal characteristics of the distribution. In the sequence, four thresholds (zi ) of dam-
age metric data (1, 2, 3, and 4) were defined to be used in the indicator kriging approach.

C. R. Mécanique — 2021, 349, n 2, 225-240



230 Daniel Resende Gonçalves et al.

Figure 3. Localization of the numerical points at the plate (A), and damage metric values
higher than 1 (B), 2 (C), 3 (D), and 4 (E). Red circle represents the damage’s location.

The threshold equal to 4 is of particular interest, since the values higher than this one, are lo-
cated near the damage. Based on these, four indicator variables (Ii ) (binary values) were gener-
ated: one for each threshold, whose value attribution was based on (4).

Indicator variograms were calculated in several directions for each indicator variable, with the
purpose of identifying the principal directions of continuity, which were the 0° and 90° azimuths.
The experimental variograms of these directions were modeled, and the results, used to perform
the indicator kriging.

The grid used to generate the estimates has unit cells of 4.0 cm×4.0 cm dimensions, in such a
way that the resolution of the model was 4.0 cm. The cell’s dimension was defined in this way due
to the following: (1) being smaller than all of the variographic ranges, and; (2) being a multiple of
the plate size, which contributes to align the model with the dimensions of the plate.

Based on the numerical (input) data and the variographic information, the indicator kriging
of the four thresholds (1, 2, 3, and 4) was performed, whose estimates of the indicator variables
were based on the ordinary kriging method, with the aim of mapping local variations more
appropriately. The search neighborhood used was circular, with a radius of 17.0 cm, whose value
was equal to or lower than the variographic ranges in all indicator variables in such a way that the
selected search neighborhood is an intersection of all possible search areas.

The results were given in the form of “probability below thresholds”, due to the process of
generation of the indicator variables (4). They were subtracted from 1 (maximum probability)
for the calculation of the “probabilities above thresholds”, which were used for the mapping of
probability above these ones (1, 2, 3, and 4). The probability of the damage metric to be between
threshold i and i −1 were defined as the difference between P (i ) and P (i −1).

For the purpose of comparison between different spacing scenarios among PZT patches, four
additional regular meshes were considered, based on numerical data (Figure 4): (1) 11.11 cm×
11.11 cm; (2) 14.286 cm×14.286 cm; (3) 16.67 cm×16.67 cm; and (4) 20.0 cm×20.0 cm. In all cases,
the damage was located in the center of the aluminum plate. The same procedures described
previously were performed for each of the considered scenarios.

4. Results and discussions

The statistical analysis of the numerical data showed a highly asymmetric, positive skewed
distribution (Figure 5), whose format was not determined (P-values lower than 0.01), possibly
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Figure 4. Different regular meshes illustrating the values of the damage metric data and
the damage (red circle) in the center of the aluminum plate.

Figure 5. Box-plot (A) and histogram (B) of the damage metric data showing the mean
value (red circular point and red dashed line) and outliers (red asterisk).

due to the limited amount of data. The presence of low damage metric values can also be seen by
the quartiles, which shows that 50% of the data are lower than 0.6; 25% are between 0.6 and 1.9;
and only 25% are higher than 1.9.

The extreme values (outliers) identified in the box-plot, all higher than 4, are directly associ-
ated to the damage’s location, as they are located at the plate’s center. Therefore, these are of fun-
damental importance for the prediction of the damage’s position, which justifies the use of the
threshold equal to 4 for this purpose.

The experimental semivariograms showed that the preferential directions of continuity were
the North–South (Azimuth 0°) and East–West (Azimuth 90°), where the first was the direction
of highest continuity for the thresholds 1 and 3 (geometric anisotropy), while in the other
thresholds, there was not observed any anisotropy (Table 1). The existence of anisotropy in the
semivariogram modeling can be an evidence of directional propagation of the failure and/or
affected area, being useful for the mapping of this information.

The quality of the experimental semivariograms, given by the number and arrangement of the
points in the graph, was higher in the case of the threshold equal to 1 (Figure 6), deteriorating

C. R. Mécanique — 2021, 349, n 2, 225-240
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Table 1. Parameters of the semivariogram fitting for each indicator variable

Structure
Threshold Indicator variable Orientation Nugget effect Model Contribution Range (cm)

Azimuth 0° 0.01 Spherical 0.228 48.0
1 IND0 Azimuth 90° 0.01 Spherical 0.228 30.0

Azimuth 0° 0.01 Gaussian 0.174 24.5
2 IND1 Azimuth 90° 0.01 Gaussian 0.174 24.5

Azimuth 0° 0.00 Gaussian 0.114 22.0
3 IND2 Azimuth 90° 0.00 Gaussian 0.114 19.0

Azimuth 0° 0.00 Gaussian 0.039 17.0
4 IND3 Azimuth 90° 0.00 Gaussian 0.039 17.0

sequentially from the second to the fourth threshold. This is expected, since according to Rossi
and Deutsch [43], thresholds much higher than the majority of the data can cause instabilities in
experimental semivariograms.

It can also be observed that the models used in the semivariogram modeling were spherical
(threshold equal to 1) and Gaussian (thresholds equal to 2, 3, and 4). This model reflects a
phenomenon characterized by a much higher continuity in relation to the spherical one. In this
way, despite the fact that the semivariogram ranges decreases as the thresholds become higher,
located in the distribution’s upper tail (thresholds equal to 3 and 4), the Gaussian model and the
null nugget effect indicate a more continuous phenomenon in relation to the other situations.
Due to the fact that 62% of the damage metric data are lower than 1, the resulting indicator kriging
for this threshold value is characterized by having a much higher spatial variability in relation to
the other ones, which is reflected by the shape of the semivariogram (spherical model) and its
nugget effect, which represents 4.20% of the sill.

The semivariogram fitting of the indicator variable attributed to the threshold equal to 4 shows
a modeling based on only one point of the experimental semivariogram. This is an expecting
result, as indicator variables based on values much higher than the majority of data—in the upper
tail of the distribution—may result in deteriorated semivariograms. However, an improvement in
the semivariograms can be achieved when additional data are included in the analysis.

The performing of the indicator kriging resulted in maps of the probabilities of the damage
metric to be: (1) higher than 1, 2, 3, and 4 (Figures 7a, c, e and g); (2) between 1 and 2 (Figure 7b);
(3) between 2 and 3 (Figure 7d); and (4) between 3 and 4 (Figure 7f). Once the damage is located
in the center of the plate, as the threshold value increases, the highest probabilities of the val-
ues to be higher than a particular threshold are sequentially restricted to the plate’s center, con-
verging the existence of these values limited to this site. Particularly in the case of the thresh-
old equal to 4 (Figure 7g), the highest probabilities are restricted to the plate’s center, where the
damage is located, in such a way that the mapping of extreme values could predict the damages’
locations.

On the other hand, the map related to the probability of the damage metric being higher than
1 (the lowest threshold value considered) shows an extensive area of high probability, being able
to indicate the affected area due to the structural failure.

Therefore, information extracted by the probability maps can be used for mapping the area
related to the existence of a structural failure (case of the threshold equal to 4) and/or affected
by the failure (eventually the case of the threshold equal to 1), providing data for supporting the
maintenance of the structure.

Comparing the mean values of the indicator variables in the model results with those in
the numerical (sample) data (Figure 8), it can be seen that the respective mean values were
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Figure 6. Experimental semivariogram and respective model fitting for each indicator
variable and preferential direction of continuity. (A) IND0, (B) IND1, (C) IND2, and
(D) IND3.

C. R. Mécanique — 2021, 349, n 2, 225-240



234 Daniel Resende Gonçalves et al.

Figure 7. Probability maps of the damage metric values to be higher than 1 (A), 2 (C), 3 (E),
4 (G); and to be between 1 and 2 (B), between 2 and 3 (D), and between 3 and 4 (F).

C. R. Mécanique — 2021, 349, n 2, 225-240
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Figure 8. Mean values of the indicator variables related to their respective thresholds in the
model and numerical (input) data.

approximately reproduced in the model, since the highest difference was 8.72%, attributed to
the threshold equal to 1. This deviation could be a consequence of the higher spatial variability
of this situation in relation to the other thresholds. The lower deviation (0.43%) was attributed to
the threshold equal to 4, despite the low reliability of its experimental semivariogram, which can
be a consequence of the high continuity of this scenario, with probabilities higher than 0 strictly
limited to the plate’s center, where the damage is located.

The mapping of the probability below thresholds between model and numerical data by
bands in X (East–West) and Y (North–South) directions of the plate (Figure 9) shows that the
model approximately reproduces the input data. The reproducibility is apparently lower for low
threshold values, and sequentially higher for the high ones. It is possible to note that the spatial
distribution of the values in the model is smoothed in relation to the numerical data, which is a
consequence of the smooth effect of the estimator, presented as an inherent characteristic of the
kriging methods.

Figure 10 illustrates the probability maps above thresholds for scenarios with regular spacing
of 9.09 cm and 11.11 cm. In this figure, it is possible to verify the reduction of the model’s reliability
in the 11.11 cm scenario, observed by the occurrence of probability values more distant from
the extremes (0 and 1). This behavior is more accentuated at the thresholds equal to 1, 2, and
3. For the threshold equal to 4, specifically in the damage region, there was no significant loss
reliability, being able to accurately predict the location of the failure. Thus, it can be concluded
that the ability to predict the occurrence of damage was not impaired by increasing the spacing
from 9.09 cm to 11.11 cm.

The greatest loss of reliability for the thresholds equal to 1, 2, and 3 in the 11.11 cm scenario
may be due to the greater spatial variability between the values of the respective indicator
variables, as the sample variances were 0.248, 0.218, and 0.145, respectively. This does not occur
with the threshold equal to 4 because there are few damage metric values greater than 4, resulting
in a sample variance equal to 0.060.

C. R. Mécanique — 2021, 349, n 2, 225-240
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Figure 9. Swath plots of the indicator variables comparing the model results with the input
data in X and Y directions: (A) threshold equal to 1 (IND0); (B) threshold equal to 2 (IND1);
(C) threshold equal to 3 (IND2); and (D) threshold equal to 4 (IND3).

Figure 11 presents the maps of probability above thresholds for the scenarios with regular
spacing of 14.286 cm and 16.67 cm. In these cases, it is possible to verify the increase in the
reliability of the results from the 14.286 cm to 16.67 cm scenarios, evidenced by the occurrence
of probability values closer to the extremes (0 and 1) with the increase of the damage metric
data spacing. This can be explained as a consequence of the presence of a damage metric value
overlapping the fault location (center of the plate) for the 16.67 cm spacing scenario, which does
not occur for the 14.286 cm mesh.

C. R. Mécanique — 2021, 349, n 2, 225-240
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Figure 10. Probability maps for values above thresholds for scenarios with regular meshes
of 9.09 cm and 11.11 cm.

Figure 11. Probability maps for values above thresholds for scenarios with regular meshes
of 14.286 cm and 16.67 cm.

The results for the threshold equal to 4 show less ability to predict the position of the damage
in the center of the plate for these models when compared with the aforementioned results. This
occurs due to the greater distance between the sampled points in these scenarios. The 16.67 cm
spacing scenario showed a more adequate result in relation to the 14.286 cm one, probably
due to sampling overlapping the failure site. However, in general conditions of failure in several
positions, the result of this condition could be less reliable in relation to the other considered
scenarios.

For the scenario with a regular spacing of 20 cm, it was not possible to obtain experimen-
tal semivariograms, and, therefore, perform the indicator kriging. This represents that for the
structure under study, due to its size and geometry, it is not possible to obtain models to predict

C. R. Mécanique — 2021, 349, n 2, 225-240
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failure occurrence sites for meshes with spacing greater than 16.67 cm. This was a procedure
evaluated in this contribution to define some criteria for limiting the sampling distribution of the
impedance signatures of the PZT patches. However, this same trial procedure must be conducted
for each specific structure to be studied.

5. Conclusions

Concluding, it was possible to map the probabilities of occurrence of several damage metric
intervals in a mesh of sensors enabling the possibility of damage detection by the use of indicator
kriging. Especially, the probability model based on the threshold equal to 4 showed that the
highest probabilities—to be higher than 4—were strictly limited to the plate’s center, where the
damage is located. Therefore, from this approach, it is possible to delineate the damage’s position
from mapping the probabilities of damage metric values to be higher than the extreme ones
(outliers).

The geometric anisotropy observed in the semivariograms probably is an indicative of pref-
erential directions of the damage’s propagation, and can be useful to acquire this information.
However, this question needs additional research, with the aim of validating this one.

The model approximately reproduced the input numerical data, given the low differences
observed between the model and sample means of the indicator variables. Furthermore, the
swath plots in the X and Y directions show the capacity of the model to predict the input values,
despite the smooth effect inherent of the estimation methods based on kriging.

The analysis of scenarios based on different spacing of PZT patches showed that the increase
in the damage metric data spacing caused a loss of reliability of the model to predict the location
of the structural failure. This was more pronounced in the meshes with spacing of 14.286 cm
and 16.67 cm. However, even in these scenarios, it would be possible to identify the approximate
position of the damage.

The impossibility of obtaining experimental variograms for the scenario with a 20 cm spacing
between PZT patches showed a limiting factor in the methodology. However, although it is a trial
procedure, it can be applied to other dimensions and geometries of structures to identify the
minimum number of sensors/actuators as well as their arrangement on the plate.

The information obtained in the probabilities’ mapping can be useful to identify the location
of failure sources and/or affected areas due to a structural failure. However, future contributions
should focus on producing different damage locations as well as different severities in order to
have more quantitative results to improve the decision-making process. This incipient contribu-
tion aims to present the initial possibilities, case study, and applicability to join geostatistic tools
to the SHM.
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