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Abstract. In this work, the computational fluid dynamics technique is employed to study operating condi-
tion effects on the optimum value of an important parameter called the nozzle exit position (NXP) for an
ejector design. This ejector uses the gas R134a as the working fluid. Numerical tests are carried out using
a combination of the REFPROP 7.0 database state equation and the high-Reynolds version of the SST k–ω
model. Good agreement in terms of entrainment ratio and critical temperature is obtained between com-
puted values and measurements. In addition, numerical results indicate that the optimum NXP maximizes
ejector performance and is highly dependent on operating conditions.
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1. Introduction

The ejector has been widely employed in refrigeration, air conditioning, petroleum refining, de-
salination, chemical systems, and other fields as an energy-recovering device owing to its simple
structure, safety, reliability, and low-grade energy for use as a power source [1]. It is composed of
four main parts: a nozzle, a suction chamber, a mixing chamber, and a diffuser. This is schemati-
cally shown in Figure 1. Its operating principle is described as follows. A high-velocity flow occurs
when high pressure flows through the nozzle throat, and a low-pressure region is formed at the
primary nozzle outlet. Therefore, a secondary low-pressure fluid flow is sucked. Moreover, energy
exchange due to the turbulent diffusion phenomenon between the high pressure and the sucked
surrounding flows generates a mixing fluid of intermediate pressure. After the flow enters the
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Figure 1. Schematic view of a supersonic ejector.

mixing chamber, flow velocities tend to equalize and the mixed flow is pressurized. Subsequently,
the mixture flows to the diffuser and its velocity falls gradually so that kinetic energy is converted
into potential energy and a relatively high-pressure flow occurs [2].

Several factors such as the compression ratio RCOM are used to assess the performance of an
ejector refrigeration system. This factor is the static pressure at the exit of the diffuser PDIF divided
by the static pressure of the evaporator inlet PEV:

RCOM = PDIF

PEV
. (1)

The coefficient of performance COP is expressed as follows:

COP = QEV

QBO +WP
= ṁS

ṁP

∆hEV

∆hBO
. (2)

It is defined as the ratio between the evaporation heat energy QEV (refrigeration effect) and the
total incoming energy (boiler and pump) in the cycle.

The entrainment ratio ER is written as follows:

ER = ṁS

ṁP
. (3)

It is defined as the ratio between the secondary and primary mass flow rates ṁS and ṁP,
respectively.

Unfortunately, the performance of the ejector system is still extremely lower than any steam
compressor and heat-driven absorption system. This inferior performance is due to the high de-
pendence of the ejector performance on operating conditions, design dimensions, and working
fluids [3]. The design dimensions include the distance between the primary nozzle exit and the
entrance of the mixing chamber, which is also called the nozzle exit position (NXP). This distance
is sometimes presented in its nondimensional form with respect to the throat diameter. This fac-
tor has a highly significant effect on the ejector efficiency when the operating conditions are dif-
ferent from the on-design conditions [4–7]. The existence of at least an optimum NXP that max-
imizes the ejector performance was stated in different studies (Table 1). This table highlights the
fact that the effects of operating conditions on ejector performance are relatively well established,
but their effects on optimum NXP are less known. In addition, there is no consensus among all
these studies about the range of the optimum NXP. Moreover, they are in contrast with the rec-
ommendations of the design guide ESDU [8], which suggests that the nozzle should be placed at
a distance of 0.5 to 1.0 length of the mixing chamber’s throat diameter upstream of the mixing
chamber inlet. Therefore, more efforts are required to clarify this issue.

In this study, a computational fluid dynamics (CFD) investigation method for the performance
of a single-phase ejector operated with R134a is reported (Table 2). The numerical model is first
calibrated by comparing the simulation values to the experimental results obtained from an
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Table 1. Value or range of the optimum NXP established in the literature

Reference Value or range (Primary)–(secondary)–(discharge) (bar) Refrigerant
[9] 0.21 (-) (1.80)–(0.07)–(0.1) Methanol

[10] −5 mm (19.21)–(1.02)–(3.06) R245fa
[11] 1.7–3.4 (-) (4.5–6)–(0.435–0.47)–(0.8) R141b
[12] 8.25, 8.91, 9.57 mm (20.24–23.13)–(3.94–4.36)–(4.5–4.87) R134a
[13] −5 mm (3.7)–(0.9–1.1)–(1.2) R134a
[14] 5 mm (7.3–12.2)–(1.2, 2.88)–(3.2) R600a
[15] 56–96 mm (2.7–1.99)–(0.012–0.017)–(0.02) Steam water
[16] 0 (5.7)–(0.7)–(1.1) Air
[17] 5–10 mm (13.44)–(2.21)–(3.91) R600a
[18] 24.7 mm (2)–(0.01)–(0.03) Steam water

Table 2. Thermodynamic properties of the refrigerant R134a

Name Chemical
formula

Molecular
weight

(kg/kmol)

Critical
temperature

(°C)

Critical
pressure

(MPa)

Critical
density
(kg/m3)

NBP
(°C)

Wet/dry ODP: Ozone
Depletion
Potential

GWP: Global
Warming
Potential

Safety
group

R134a CH2FCF3 102.03 101.1 4.06 507.87 −26.50 Wet 0 1300 A1

NBP, normal boiling point.

ejector implemented on an experimental refrigeration cycle [19]. Then, the influence of operating
conditions on the optimum NXP is studied. In subsequent sections, a discussion about the CFD
model basis and computed results is presented.

2. Numerical modelling

2.1. Governing equations

These governing equations are discretized in an axisymmetric domain, where the fluid is as-
sumed compressible and steady and whose walls are smooth and adiabatic.

The continuity equation is expressed as follows:

∂ρ

∂t
+ ∂(ρui )

∂xi
= 0. (4)

The momentum equation is expressed as follows:

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
=− ∂P

∂xi
+ ∂τi j

∂x j
. (5)

The energy equation is written as follows:

∂

∂t
(ρE)+ ∂ui (ρE +P )

∂xi
= ∂

∂xi

(
keff

∂T

∂xi

)
+ ∂

∂xi
(u jτi j ). (6)

The term τi j of (5) and (6) can be written in the form

τi j =µeff

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
. (7)
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Table 3. Main geometrical parameters of the tested ejector

Parameters Values
Diameter of nozzle throat (mm) 2.0

Diameter of nozzle exit (mm) 3.0
Angle of nozzle divergence (°) 1.4

Diameter of constant mixing chamber Dthroat (mm) 4.8
Length of diffuser (mm) 120.15

Length of mixing chamber (mm) 41.39
Length of constant mixing chamber (mm) 21.82

Diameter of diffuser exit (mm) 20
Angle of mixing chamber convergence (°) 30

Nozzle exit position (NXP, mm) −1.46, −2.8, −14.14, −5.58, −6.82, −8.22,
−9.5, −10.85, −12.19, −13.53, 14.87

Table 4a. Experimental operating conditions

C1 C2 C3
T (°C) P (Pa) T (°C) P (Pa) T (°C) P (Pa)

Primary 79.37 2,598,000 84.39 2,888,800 89.15 3,188,100
Secondary 10 414,610 10 414,610 10 414,610
ER (EXP) 0.494 0.398 0.339

TCR (°C) (EXP) 29.41 32.48 35.41
Superheating temperature: +10 °C

2.2. Turbulence model

The SST k–ω model has been widely used due to its good prediction capabilities for a wide range
of turbulent flows such as transonic and adverse pressure gradient flows. This model uses the
k–ω wall region and the standard k–ε formulations in the near and the far field, respectively.
This model is recommended by different studies and a guide [20–22] since it provides accurate
data compared with other models such as k–ω, standard k–ε, realizable k–ε, and k–ε RNG. In
this paper, all simulations are performed using this model in the high-Reynolds number range to
provide accurate and predicted results in a reasonable running time.

2.3. Geometrical and numerical conditions

The main geometrical parameters of the tested supersonic ejector are presented in Table 3 as
defined in [19]. All grids are modelled using the software GAMBIT based on two-dimensional
and axisymmetric conditions. These conditions are certainly crucial to our purpose since three-
dimensional effects do not perturb the accuracy of numerical results as verified by Sharifi and
Boroomand [23].

Seven experimental operating conditions are used in this study and are summarized in
Tables 4a and 4b. Each condition is denoted as a saturation property (temperature or pressure).
The total pressure and temperature are assumed to be nearly equal to their static values (kinetic
energies are negligible).

Primary and secondary flow inlets are set as pressure inlets and the outlet flow is set as the
pressure outlet. The implicit pressure-based coupled algorithm is adopted to solve the nonlin-
ear governing equations due to high Mach numbers in the flow domain [22]. Convective and dif-
fusion terms are discretized following second-order upwind and central difference schemes, re-
spectively. Table 5 displays the details of the numerical conditions used in this CFD model.
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Table 4b. Experimental operating conditions

C4 C5 C6 C7
T (°C) P (Pa) T (°C) P (Pa) T (°C) P (Pa) T (°C) P (Pa)

Primary 79.37 2,598,000 84.39 2,888,800 89.15 3,188,100 89.15 3,188,100
Secondary 7 374,630 7 374,630 7 374,630 5 349,660
ER (EXP) 0.422 0.342 0.297 0.273

TCR (°C) (EXP) 28.95 31.68 34.11 32.02
Superheating temperature: +10 °C

Table 5. Specific settings introduced in the CFD model

Formulation Implicit
Solver Coupled pressure-based

Primary flow Pressure inlet
Secondary flow Pressure inlet

Outlet flow Pressure outlet
Turbulence model SST k–ω in high-Reynolds number (30 < y+ < 60)

Near-wall treatment Integrated in the turbulence model
Pressure interpolation PREssure STaggering Option (PRESTO!)

Gradients and derivative Least-squares cell-based
Working fluid R134a

The turbulence intensity I and hydraulic diameters DH are specified at the inlet and outlet
turbulence boundary conditions where kinetic energies are negligible. Numerical studies [22,
24, 25] have indicated that the value 5% is a good estimate for the turbulence intensity in the
absence of experimental data. To avoid the divergence of calculations, under-relaxation factors
are adjusted at the start from the value 0.5. Convergence is achieved when residues of each
equation are not greater than 10−6 and are stable.

2.4. Working fluid

The tested ejector uses 1,1,1,2-tetrafluoroethane (C2H2F4), which is also known as R134a or HFC
134a refrigerant. It is classified as AHSRAE safety group A1 (nonflammable and not toxic). In the
present study, this refrigerant is assumed to exist constantly in a single phase since its boiling
point is −26.50 °C. The state equation from the Reference Fluid Thermodynamic and Transport
Properties (REFPROP) 7.0 equation database is used to calculate the fluid density ρ as a function
of thermodynamic variables pressure (P ) and temperature (T ). This thermodynamic model is
based on numerical formulations and experimental measurements of the working fluid R134a
available in [26]. However, this numerical model remains stable only at temperatures in the range
170–455 K and pressures up to 70 MPa. Table 6 lists all thermophysical properties used in the CFD
model. These properties are assumed to be constant at the average temperature between the
secondary inlet and outlet conditions. They were provided by the REFPROP database of National
Institute of Standards and Technology (NIST).

3. Details of mesh study

Grid independence is verified by comparing five structured grids. All meshes are refined near
walls and also in the vicinity of the mixing layer as shown in Figure 2. In addition, each mesh is
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Figure 2. Grid elements of the ejector CFD model.

Table 6. Thermophysical properties of the tested refrigerant used in simulations

Kinematic viscosity ×10−5 (Pa·s) 1.44
Thermal conductivity (W/m/K) 0.021

Heat capacity (J/kg/K) 2240.1

Table 7. Grid independence tests (areas L1 and L2; NXP =−5.85 mm)

Mesh ER Er (%) PL1 (Pa) Er (%) VL1 (m/s) Er (%) PL2 (Pa) Er (%) VL2 (m/s) Er (%)
21,930 0.542 — 374,940 — 324.97 — 705,850 — 8.91 —
39,191 0.548 1.09 369,110 1.58 326.55 0.48 705,860 0.00 8.81 1.22
68,161 0.552 0.72 36,5170 1.08 327.30 0.23 705,860 0.00 8.75 0.69

116,075 0.555 0.54 363,030 0.59 327.76 0.14 705,860 0.00 8.71 0.43
207,323 0.556 0.18 361,110 0.53 328.15 0.12 705,860 0.00 8.68 0.32

Er % =
∣∣∣∣CFDi+1 −CFDi

CFDi+1

∣∣∣∣×100 (i = 5)

obtained by increasing the cell number of the previous grid by 33% in all directions as suggested
by Çengel and Cimbala [27]. There is approximately a ratio of 1.7 between each of the two
successive grids. Table 7 presents the values of entrainment ratios (ER), area-weighted average
pressures (PL1), and velocities (VL1) for five grids in two areas L1 and L2. It is shown that the
entrainment ratios, pressures, and velocities decrease as the number of cells increases. Then
they gradually decrease and become negligible especially when the grids contain 116,075 and
207,323 cells, respectively. Figure 3 shows the variation in the Mach number along the ejector axis.
Small discrepancies are visible in the region proximal to the diffuser between grids containing
116,075 and 207,323 cells. As regards the real gas model from NIST, it is expected that the solution
converges in a longer time than does the ideal gas model due to the complexity of the equations.
Moreover, after analysing the numerical tests listed in Table 7, the grid of 116,075 cells is selected
for subsequent simulations (y+ ≈ 50).

C. R. Mécanique, 2021, 349, n 1, 189-202
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Figure 3. Effects of grid levels on Mach number distribution along the ejector axis for C1
(NXP =−5.85 mm).

Figure 4. Comparison between numerical and experimental results: (a) entrainment ratio
and (b) critical temperature.

4. Results and discussion

4.1. Validation

Figures 4(a,b) show plots of computed and experimental values of the entrainment ratio and
the critical temperature, respectively, for seven operating conditions (listed in Tables 4a and 4b).
Good agreement is noted between these results since the maximum errors are 5.13% and 5.41%
for the entrainment ratio and the critical temperature, respectively. Therefore, these findings
confirm that the tested numerical model is well adapted to supersonic flows in ejectors.

Figure 5 illustrates the effects of discharge or condenser temperature (TDIS) on predicted
and experimental entrainment ratios for C2. The curves contain a similar horizontal part (AB)
called the critical mode (on-design condition), which is followed by a sharply decreasing part
(BC) called the subcritical mode (off-design condition) [28]. The dividing point of the two parts
corresponds to the maximum discharge temperature TCR (point B), which is called the critical
temperature. This is commonly considered the operating condition limit, where the ejector is

C. R. Mécanique, 2021, 349, n 1, 189-202
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Figure 5. Comparison between entrainment ratio distributions along the ejector axis for
C2 (NXP =−5.85 mm).

Figure 6. CFD and experimental distributions of entrainment ratio with different NXPs
for C2.

at its most efficient working condition. The numerical value TCR = 31.5 °C differs from the
experimental value 32.48 °C with a negligible relative error of 3.00%. Good overall agreement is
also noted between the numerical results and the experimental data in the on-design and off-
design conditions.

The NXP is considered one of the most important geometrical parameters of the ejector [29].
Figure 6 illustrates the comparison between computed and experimental entrainment ratios with
different NXPs (listed in Table 3) for condition C2. The experimental and numerical optimum
NXPs are at a distance of approximately 2.5 mm from each other. Furthermore, it is noted that
the NXP value −5.58 mm selected by [19] does not correspond to the optimum value and may
be considered as arbitrary data. Figure 7 depicts the velocity streamlines for different NXPs at the
points A, B, C, and D (see Figure 6) for the operating condition C2. It is noted that the expansion
of the jet, issuing from the primary nozzle exit, decreases when the NXP increases. Therefore,
the pressures of the secondary and primary flows are gradually reduced on the mixing chamber
wall, resulting in the disappearance of vortices and an increase in the entrainment ratio up to

C. R. Mécanique, 2021, 349, n 1, 189-202



Ali Hadj and Mohammed Boulenouar 197

Figure 7. The velocity streamlines at different NXPs for C2.

NXP = −9.5 mm. Then, the excessive speed reduces the ejector performance as the primary
nozzle exit moves to the constant mixing chamber’s inlet as shown in Figure 6.

4.2. Effects of operating conditions on the optimum NXP

4.2.1. Primary temperature

Figure 8 displays the distributions of entrainment ratios at critical temperatures for three
primary temperatures (79.37, 84.39, and 89.15 °C), which represent conditions C1, C2, and C3,
respectively. The secondary temperature is kept constant at 10 °C (Table 4a). It is reported that
the increase in the primary temperature produces two effects: (1) decrease in ER; (2) movement
of the optimum NXP towards the inlet of the constant mixing chamber as demonstrated by
Zhu et al. [11]. A decrease of 3.59% in ER for an increase of 1 °C in the primary temperature is
noted. Moreover, a movement of 1.33 mm by the optimum NXP towards the inlet of the constant
mixing chamber is observed. Figure 9 shows the pressure distribution on the ejector wall at three
optimum NXPs for conditions C1, C2, and C3. From this figure, it is noted that the choking
positions possess minimal pressures and exist in the constant mixing chamber, which is also
demonstrated in [24]. Furthermore, the normal shock waves from the end of the constant mixing
chamber appear to be the reason for the change in the supersonic flow to a subsonic flow [27,28].

C. R. Mécanique, 2021, 349, n 1, 189-202
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Figure 8. CFD distributions of entrainment ratios for three primary temperatures C1, C2,
and C3.

Figure 9. Pressure distributions on the ejector wall for three optimum NXPs for conditions
C1, C2, and C3.

4.2.2. Secondary temperature

Figure 10 shows distributions of entrainment ratios at critical temperatures for three sec-
ondary temperatures (10, 7, and 5 °C), where the primary temperature is fixed at 89.15 °C. These
conditions are represented by C3, C6, and C7 (Table 4b), respectively. It is reported that an in-
crease in the secondary temperature produces two effects: (1) increase in ER; (2) recoil of the op-
timal NXP to the inlet of the mixing chamber. An increase of 5.52% in the entrainment ratio is pro-
vided by a rise of 1 °C in the secondary temperature and a movement of 1.27 mm by the optimum
NXP to the inlet of the mixing chamber. The characteristics illustrated in Figures 8 and 10 can be
explained by applying (3). An increase in the primary temperature causes a rise in the primary
mass flow rate and keeps the secondary mass flow rate constant. Thus, ER decreases as shown
in Figure 8. However, a rise in the secondary temperature involves an increase in the secondary
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Figure 10. CFD distributions of entrainment ratios for three conditions C3, C6, and C7.

Figure 11. CFD distributions of entrainment ratios for three superheating temperatures 0,
5, and 10 °C for C2.

mass flow rate and keeps the primary mass flow rate constant. Thus ER increases as depicted in
Figure 10.

4.2.3. Superheating temperature

Figure 11 presents the profiles of the entrainment ratio for three superheating temperatures
(0, 5, and 10 °C) for fixed primary and secondary temperatures (84.39 and 10 °C, respectively). It
is observed that ER increases with rise in the superheating temperature, but the optimal NXP
remains fixed. Furthermore, an increase of 1 °C in the superheating temperature involves an
increase of 0.97% in ER. Thus, ER benefits from the superheating of the fluid because the gas
R134a is a wet fluid. Therefore, from Figures 8, 10, and 11, it is concluded that an increase of 1 °C in
the secondary temperature provides a better increment in entrainment ratio than those provided
by the primary and superheating temperatures. Table 8 presents the values of relative optimum
δ and ejector enhancement for all the conditions tested and shown in Figures 8, 10, and 11. It is
revealed that the CFD results of this work are different from the values cited in Table 1 particularly
from the recommendations of ESDU [8].

C. R. Mécanique, 2021, 349, n 1, 189-202
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Table 8. A summary of all optimum NXPs

Operating condition (°C)
+ Superheating

temperature

C1 + 10 C2 + 10 C3 + 10 C3 + 10 C6 + 10 C7 + 10 C2 + 10 C2 + 5 C2 + 0

Optimum NXP (mm) −12.19 −10.85 −10.85 −10.85 −12.19 −12.19 −9.50 −9.50 −9.50
δ 2.53 2.26 2.26 2.26 2.53 2.53 1.98 1.98 1.98

ER (CFD) 0.510 0.432 0.378 0.378 0.375 0.320 0.432 0.425 0.410
Enhancement of ER (%) 3.24 8.54 11.50 11.50 26.26 17.22 8.54 6.78 3.02

δ=
∣∣∣∣ optimum NXP

DThroat

∣∣∣∣ Enhancement (%) =
(

ERCFD −EREXP

EREXP

)
·100

5. Conclusion

This paper presents a CFD model for studying the performance of the supersonic ejector of a re-
frigeration system using R134 as the working fluid. The geometrical domain chosen is assumed
to be two-dimensional and axisymmetric. The Navier–Stokes equations are discretized by the fi-
nite volume method of the commercial code Fluent. A combination of the REFPROP 7.0 database
state equation and the high-Reynolds version of the SST k–ω model is used in simulations. The
computed values show that the numerical model is well adapted to performance calculations of
the ejector for different operating conditions. It has been shown that the relative errors in terms
of the entrainment ratio and critical temperature do not exceed 5.13% and 5.41%, respectively,
compared to the experimental data. In addition, it is noted that the optimum nozzle position is
highly dependent on operating conditions. It is demonstrated that the entrainment ratio is im-
proved when the primary temperature decreases and the optimum NXP moves to the constant
mixing section. Furthermore, the entrainment ratio is improved when the secondary tempera-
ture rises and the optimum NXP moves to the constant mixing section. The enhancement of the
superheating temperature improves slightly the entrainment but maintains the optimum NXP at
a fixed position. It is also shown that an increase of 1 °C in the secondary temperature provides
a better increment in the entrainment ratio (5.52%) than those provided by the primary and su-
perheating temperatures (3.59% and 0.97%, respectively). Finally, all the computed values of the
relative optimum NXPs from this study are different from the aforementioned reference values.
The authors conclude that for designing an ejector with high entrainment performance in the on-
design zone, the optimum NXP should be carefully selected for different operating conditions.

Nomenclature

Unit
h local enthalpy (J)
E total energy (J)
Er relative error (-)
M a Mach number (-)
P static pressure (Pa)
T temperature (K)
u velocity (m/s)
x axial coordinate (m)
y transversal coordinate (m)
ṁ mass flow rate (kg/s)
k turbulence kinetic energy (J)
ω specific dissipation rate (s−1)
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Abbreviations

ER entrainment ratio (-)
NXP nozzle exit position (m)
COP coefficient of performance (-)

Greek letters

ρ density (kg/m3)
µ dynamic viscosity (Ns/m2)
τ stress tensor (N/m2)

Subscripts

i , j , k space components
eff effective
CR critical
DIF diffuser
EV evaporator
BO boiler
CO condenser
COM compression
P primary
S secondary
DIS discharge
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