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Abstract. Vibration characteristics of elastic nanostructures embedded in fluid medium have been used for
biological and mechanical sensing and also to investigate materials and mechanical properties. An analytical
approach has been developed in this paper to accurately predict toroidal vibrations of an elastic nanosphere
in water–glycerol mixture. The Maxwell and Kelvin–Voigt models are used to describe the viscoelasticity of
this fluid. The influence of key parameters such as glycerol mass fraction, sphere radius, and angular mode
number are studied. We demonstrate that the sphere radius plays a significant role on the quality factor.
Results also highlight three behavior zones: viscous fluid, transition, and elastic solid. In addition, these
investigations can serve as benchmark solution in design of liquid sensors.
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1. Introduction

Vibration analysis of embedded nanoparticles in fluid medium have attracted strong interest ow-
ing to various applications, especially in designing biological sensors [1–6]. In addition, incited
by the idea to destroy biological nanoparticles such as viruses, the elastic sphere model was also
used to study the vibration characteristics of viruses in different media [7–11]. The experimen-
tal study of the damping mechanism and resonant frequencies of these nanoparticles have been
measured by experimental techniques [5, 12, 13]. The vibrations of spherical particles were stud-
ied a century ago by Lamb [14]. Two types of modes, spheroidal and toroidal, are derived from
the stress-free boundary condition of a spherical surface. Theoretical studies were recently de-
veloped for predicting the various vibration scenarios of a gold nanosphere in water–glycerol
mixture [15–18]. In these papers, the Maxwell model is used to describe the viscoelasticity of the
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fluid. A novel analytical approach using Maxwell and Kelvin–Voigt models is proposed in this pa-
per for predicting the toroidal vibrations of an elastic sphere in water–glycerol mixture. Further-
more, the concept of toroidal mode dipstick is attractive in industry for fluid characterizations.
The idea is that the toroidal mode of an elastic structure can sense the fluid rheological proper-
ties. The toroidal mode of the structure interacts with fluid boundary, it follows that the toroidal
mode properties are highly affected [19–21]. Moreover, the metallic nanospheres whose volume
and shape do not change, vibrate toroidally.

2. Viscoelastic fluid mathematical formulation

To describe the viscoelasticity of the fluid, the Maxwell and Kelvin–Voigt models are employed.
The Maxwell model introduces the viscoelastic response of the fluid at high frequencies and
that of Kelvin–Voigt at low frequencies. The Maxwell model consists of a spring and a damper
connected in series, and for the Kelvin–Voigt model, the spring and the damper are connected
parallel. The damper represents energy losses and is characterized by the viscosity η, whereas the
spring represents the energy storage and is characterized by the elastic shear modulus µ. These
two quantities are related through the relaxation time δ = η/µ, which is the characteristic time
for the transition between viscous and elastic behavior [22]. Thus, suppose the motion of the
fluid is induced only by elastic sphere vibration. In regard to this problem, the inertial term in the
Cauchy’s equation can be omitted. Therefore, the governing equation for the fluid is simplified as
follows:

ρ f
∂v

∂t
=∇·τ, (1)

where ρ f is the density and v is the velocity vector. For an incompressible Newtonian liquid, τ
is the shear stress tensor, and which is related to the deformation by the following constitutive
equation

τ= 2ηD, (2)

where η is the shear viscosity and D = [∇v + (∇v)T ]/2 is the strain rate tensor. The standard
Newtonian constitutive equation (2) is easily generalized to account for the shear relaxation
behavior of a linear viscoelastic fluid. Considering the physical model of Maxwell and Kelvin–
Voigt, immediately leads to the following generalization

δ
∂τ

∂t
+τ= 2ηD (3)

∂τ

∂t
= 2µD+2η

∂D

∂t
. (4)

The stress–strain relation (3) is suggested by Maxwell for the characterization of viscous fluids
with elastic properties, and the stress–strain relation (4) is proposed by Kelvin–Voigt for the
description of elastic solids with viscous properties. Also, Equations (3) and (4) take into accounts
for shear relaxation effect, while giving a purely Newtonian result in the low (or high) frequency
limit and a purely elastic response in the corresponding high (or low) frequency limit.

Since toroidal vibration is assumed, we utilize a spherical coordinate system located at the
center of the sphere. Vibrations of first class or toroidal vibrations [14] are characterized by the
absence of displacement in the radial direction, and is purely an equivoluminal motion. There-
fore, the pertinent velocity field of the fluid, v(r,θ,ϕ, t ) = vθ(r,θ,ϕ, t )eθ, have only circumferential
component, where r is the usual radial coordinate in spherical coordinates, θ is the inclination,
ϕ is the azimuth, t is the time, and eθ is its corresponding basis vector. Applying the divergence
operator to both sides of (3) and (4), and taking into account the equation of motion (1), we get
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the following viscoelastic fluid equation expressed in terms of the circumferential component of
the velocity field

∇2vθ−
vθ

r 2 sin2θ
− ρ f

η

(
1+δ ∂

∂t

)
∂vθ
∂t

= 0 (5)(
1+δ ∂

∂t

)(
∇2vθ−

vθ
r 2 sin2θ

)
− ρ f

µ

∂2vθ
∂t 2 = 0. (6)

Equation (5) describes the fluid motion according to the Maxwell behavior and (6) to that of
Kelvin–Voigt behavior. Use of (5) and (6) together with the appropriate fluid boundary conditions,
allows for characterization of the viscoelastic response of simple fluids. Throughout, we assume
the time-harmonic dependence of ejωt for all variables, where ω is the angular frequency. Then,
Equations (5) and (6) can be expressed in the form

∂

∂r

(
r 2 ∂vθ

∂r

)
+ 1

sinθ

∂

∂θ

(
sinθ

∂vθ
∂θ

)
+ 1

sin2θ

∂2vθ
∂ϕ2 − vθ

sin2θ
− jωρ f

η∗
r 2vθ = 0, (7)

where the dynamic complex viscosity η∗ is given according to the used viscoelastic fluid behavior
as

η∗ =


η

1+ jωδ
for Maxwell fluid

η+ η

jωδ
for Kelvin–Voigt fluid.

(8)

Using previously developed techniques [23], Equation (7) can be solved to yield

vθ =
∞∑

n=0

n∑
m=−n

√
π

2k f r

[
AIn+ 1

2

(
k f r

)+BKn+ 1
2

(
k f r

)]
P m

n (cosθ)cos(mϕ), (9)

where k f = √
jωρ f /η∗, A and B are arbitrary constants, In+1/2(k f r ) and Kn+1/2(k f r ) are mod-

ified spherical Bessel functions of the first and second kind, P m
n (cosθ) are associated Legendre

polynomials. The integers m and n are the azimuthal and angular dependences of the toroidal
vibration mode, respectively. Note that the time factor ejωt is omitted for simplicity. In addition,
the circumferential component of stress tensor that will be used later in boundary conditions can
be written as

τrθ = η∗
(
∂vθ
∂r

− vθ
r

)
. (10)

3. Elastic sphere mathematical formulation

In this section, the constitutive equations for a viscoelastic fluid in (3) and (4) are used to examine
the fluid–structure interaction of a spherical particle executing toroidal vibration in a fluid. This
solution finds direct application in practice, because these particles are measured using ultrafast
laser spectroscopy to probe their dynamics [5, 24, 25]. Therefore, it has been established that
nanometer-sized solid particles obey the continuum hypothesis [6,26] with their dynamics being
governed by Navier’s equation

∂2u

∂t 2 = c2
s

(∇2u−∇∇·u
)+ c2

c ∇∇·u, (11)

where u is the displacement field, cc and cs are the propagation velocities of compressional and
shear waves in the elastic sphere, respectively. An analytical solution can be found for the toroidal
mode of a sphere vibrating in a viscoelastic fluid. Throughout, we assume that the solid particle
undergoes small-amplitude oscillations, and thus the usual assumption of linear elasticity is
applicable. Note again that the toroidal mode exhibits a pure circumferential displacement, that
is, u(r,θ,ϕ, t ) = uθ(r,θ,ϕ, t )eθ. The time-harmonic dependence for all variables with the same
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vibration frequencies of the viscoelastic fluid is assumed. Therefore, the governing equation for
the circumferential displacement of a sphere (11) becomes

1

r 2

∂

∂r

(
r 2 ∂uθ

∂r

)
+ 1

r 2 sinθ

∂

∂θ

(
sinθ

∂uθ
∂θ

)
+ 1

r 2 sin2θ

∂2uθ
∂ϕ2 + ω2

c2
s

uθ = 0. (12)

In a similar manner that fluid velocity, is easily to show that the elastic sphere displacement given
in (12) can be expressed as follow

uθ =
∞∑

n=0

n∑
m=−n

√
π

2ks r
C Jn+ 1

2
(ks r )cos(mϕ)P m

n (cosθ), (13)

where C is an arbitrary constant, Jn+1/2(ks r ) is the spherical Bessel functions of the first kind,
and ks = ω/cs is the shear wavenumber. Also, according to the generalized linear Hooke’s law,
the circumferential component of stress tensor that will further be used in boundary condition is
expressed as

σrθ = ρs c2
s

(
∂uθ
∂r

− uθ
r

)
, (14)

where ρs is the solid density.

4. Sphere–fluid interaction and eigenvalue equation

The vibration frequencies of the coupled system shall be obtained by application of the appro-
priate boundary conditions. Therefore, the following relations are suitable: (i) flux continuity that
describes mass conservation and equilibrium of the normal forces at the sphere–fluid interface

vθ = jωuθ, τrθ =σrθ . (15)

(ii) The nonslip boundary condition for the outside surface of viscoelastic fluid is assumed

vθ = 0. (16)

Equations (15) and (16) show the boundary and interface conditions between viscoelastic fluid
and elastic sphere. Substitution of (9) and (13) into these boundary conditions and taking into
account the Equations (10) and (14), provides three linear and homogeneous equations for
the arbitrary constants A,B , and C . This system of equations has a nontrivial solution if the
determinant of the coefficients equals zero. This leads to the following complex eigenvalue
equation

In+ 1
2

(
k f b

)
Kn+ 3

2

(
k f a

)+Kn+ 1
2

(
k f b

)
In+ 3

2

(
k f a

)
In+ 1

2

(
k f b

)
Kn+ 1

2

(
k f a

)−Kn+ 1
2

(
k f b

)
In+ 1

2

(
k f a

) + jρs cs

k f η∗

[
Jn+ 3

2
(ks a)

Jn+ 1
2

(ks a)
− n −1

ks a

(
1− jksη

∗

ρs cs

)]
= 0.

(17)
Complex eigenvalue equation (17) constitute an implicit transcendental function of n andω. The
roots ω may be computed for a fixed n. It is interesting to note that this complex eigenvalue
equation is independent of the values of m. This arises as a consequence of the presence of
spherical symmetry. Moreover, in the case of an elastic sphere vibrating in vacuum, eigenvalue
equation (17) becomes

Jn+ 3
2

(ks a)− n −1

ks a
Jn+ 1

2
(ks a) = 0 (18)

which was previously obtained by Lamb [14].
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Table 1. Fluid properties for different glycerol mass fractions χ

χ 0 0.36 0.56 0.71 0.80 0.85

ρ f (kg/m3) 1000 1090 1140 1190 1210 1220
η (mPa·s) 0.894 2.7 5.27 20 44.7 92.3
δ (ps) 0.647 1.87 3.51 12.7 27.1 54.2

5. Results and discussion

In this paragraph, the numerical calculations for a gold nanosphere submerged in a viscoelastic
fluid are conducted in order to quantitatively investigate the fluid model effect on the vibration
characteristics of the fluid–structure interaction system.

Due to the presence of a damping mechanism, the angular frequency can be written as
ω = ωr + jωi with ωr and ωi are, respectively, the real and imaginary parts of the angular

frequency. In this paper, the quality factor Q =
√
ω2

r +ω2
i /(2ωi ) which is a scaled rate of energy

dissipation, and is defined as the ratio of the maximum energy stored, in the particle to the
energy dissipated per cycle [15, 16]. In addition, the vibration frequency means the real part of
the frequency and is defined as f = ωr /(2π). Furthermore, it should be mentioned that, since
the complex eigenvalue equation (17) are derived for three-dimensional motions, there exist an
infinite number of eigenvalues for each angular mode number n.

The material properties given in Table 1 for viscoelastic fluid and which are used by Galstyan
et al. [15] were taken to construct this numerical example. The density ρs = 19,700 kg/m3 and the
propagation velocity of shear waves in the gold nanosphere cs = 1200 m/s used in this work were
also derived from Galstyan et al. [15].

Table 2 shows the first ten natural toroidal frequencies and quality factors of a gold nanosphere
in a water–glycerol mixture with χ = 0.56. It is seen that for each model (Kelvin–Voigt, Maxwell,
Newtonian) the lowest frequency value is obtained for n = 2 (lowest frequency). This mode is
called fundamental toroidal mode. Otherwise for a fixed n, the quality factor increases (and
the damping decreases) with frequency. On the other hand, the calculated frequency does not
depend on the used model and remains closed to the values obtained by Lamb for a sphere in
vacuum. Therefore, the frequency is not very sensitive to the surrounding liquid (see Figure 5).
On the contrary the quality factor values depend strongly on the model and on the viscoelastic
properties of the medium. In addition, the modes in Table 2 are not in order with the parameters
n and l . For example, the frequency of mode (4,1) is lower than that of mode (1,1). Therefore, one
should be careful to find the right mode of the vibration.

5.1. Influence of the glycerol mass fraction

In this paragraph, we investigate how the quality factor of the fundamental toroidal mode (n = 2)
varies with the glycerol mass fraction in both Newtonian and viscoelastic fluids. Three radius
are taken into account: a = 40 nm (Figure 1(a)); a = 20 nm (Figure 1(b)); and a = 10 nm
(Figure 1(c)). In Figure 1, by increasing the glycerol mass fraction, Newtonian and Kelvin–Voigt
models predicted a monotonically decreasing relationship between the quality factor and the
glycerol mass fraction. However, Maxwell mode highlighted a nonmonotonically behavior which
manifested the intrinsic viscoelastic properties of fluid. A pair of critical glycerol mass fractions
(0.56, 0.71) is highlighted for a gold nanosphere radius equal to 40 nm (Figure 1(a)). It is seen
that the Newtonian curve converge to the Maxwell one for χ < 0.56 and to Kelvin–Voigt one for
χ> 0.71. Forχ< 0.56, the water–glycerol mixture behaves as a viscoelastic liquid, and forχ> 0.71,
the mixture behaves as a viscoelastic solid. A transition zone appears for 0.56 < χ < 0.71. In this
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Table 2. Quality factor and vibration frequency of the gold nanosphere with 20 (nm) radius
vibrating in water–glycerol mixture with χ= 0.56

Kelvin–Voigt Maxwell Newtonian
n l Q f (GHz) Q f (GHz) Q f (GHz) fLamb (GHz)

2 1 7.166 25.077 8.674 23.755 7.976 23.213 23.884
3 1 8.957 37.766 12.068 36.950 9.358 36.070 36.905
4 1 9.900 49.404 15.214 48.831 9.875 47.699 48.649
1 1 34.335 54.930 53.034 54.983 44.383 54.625 55.036
5 1 10.349 60.566 18.297 60.116 10.011 58.802 59.933
2 2 37.659 67.977 60.883 68.109 45.526 67.665 68.143
6 1 10.499 71.458 21.333 71.056 9.954 69.614 70.699
3 2 39.583 80.437 68.240 80.624 45.522 80.107 80.643
7 1 10.470 82.179 24.315 81.772 9.794 80.247 81.358
1 2 49.990 86.557 82.600 86.816 60.020 86.333 86.850

l describes the harmonic number.

Figure 1. Quality factor versus glycerol mass fraction. (a) For a = 40 nm, (b) for a = 20 nm,
and (c) for a = 10 nm.

range of glycerol mass fraction the quality factor values calculated with Newtonian, Maxwell and
Kelvin–Voigt models are different. The same behavior is observed if a = 20 nm (Figure 1(b)).
In this case, the pair of critical values is (0.36, 0.56). The water–glycerol mixture behaves as a
viscous liquid for χ < 0.36 and as an elastic solid for χ > 0.56. The transition zone observed for
0.36 < χ < 0.56 is shifted to the left if the sphere radius decreases from a = 40 nm to a = 20 nm.
If the sphere radius decreases to 10 nm (Figure 1(c)), the convergence between Maxwell and
Newton curves are not observed. Otherwise, the Kelvin–Voigt and Newton curves converge for
χ > 0.36. For χ < 0.36, the quality factor values calculated with Newtonian, Maxwell and Kelvin–
Voigt models are different. These values correspond to the transition zone which is shifted toward
left when the sphere radius decreases from 20 nm to 10 nm. Consequently, for low sphere radius
(10 nm) the water–glycerol mixture behaves as an elastic solid.

5.2. Influence of the sphere radius

In this paragraph, we investigate how the sphere radius influences the variation of the quality
factor. Figure 2 illustrates the sphere radius effect on the quality factor for three glycerol mass
fraction (χ= 0,0.56,0.71). The predicted quality factor by the Newtonian and Kelvin–Voigt models
increases with increasing radius. This is due to the decreasing of the damping component as the
radius increases. A nonmonotonic variations of the quality factor with the radius is observed for
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Figure 2. Quality factor versus nanosphere radius.

Figure 3. Quality factor versus normalized nanosphere radius.

the Maxwell fluid. If χ = 0 (Figure 2(a)), the numerical results obtained with the Maxwell and
Newtonian model converge for each sphere radius. If χ= 0.56 (Figure 2(b)), we can define a pair
of critical radius (15 nm and 30 nm). It is seen that the difference between the quality factor
values calculated with Newton and Kelvin–Voigt models are negligible if a < 15 nm. Otherwise,
the quality factor values obtained with the Newtonian model converge toward those obtained
with the Maxwell model for a > 30 nm. For a < 15 nm, the water–glycerol mixture behaves as
a viscoelastic solid, and for a > 30 nm, the mixture behaves as a viscoelastic fluid. A transition
zone appears for 15 < a < 30 nm. In this range of radius, the quality factor values calculated
with Newtonian, Maxwell and Kelvin–Voigt models are different. For if χ = 0.71 (Figure 2(c)),
the pair of critical radius is 55 and 100 nm. The Newtonian curve converge toward Kelvin–Voigt
curve for a < 55 nm and toward Maxwell curve if a > 100 nm. It is shown (Figures 2(b) and (c))
that the water–glycerol mixture can be considered as a viscoelastic solid for low radius values
and as a viscoelastic liquid for high radius values. These critical radius increase with glycerol
concentration.

Instead of plotting the quality factor against the radius (see Figure 2), we can use a non-
dimensional normalized radius (ρ f ωa2/η). Figure 3 illustrates the influence of the normalized
nanosphere radius on the quality factor for three glycerol mass fraction (0,0.56,0.71). The pre-
dicted quality factor by the Newtonian and Kelvin–Voigt models increases with increasing nor-
malized nanosphere radius. A nonmonotonic variation of the quality factor with the normalized
radius is observed for the Maxwell fluid. It is seen that the difference between the quality factor
values calculated with Newton and Kelvin–Voigt models are negligible if the normalized radius is
lower than 12. Otherwise, the quality factor values obtained with the Newtonian model converge
toward those obtained with the Maxwell model if the normalized radius is greater than 12.

C. R. Mécanique, 2021, 349, n 1, 179-188
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Figure 4. Quality factor as function of angular mode number n.

5.3. Influence of the angular mode number

The quality factor of a gold nanosphere vibrating in Newtonian, Maxwell and Kelvin–Voigt fluids
as a function of angular mode number n is depicted in Figure 4 for three glycerol mixtures
(χ = 0,0.56,0.71). One can observe that the quality factor for the purely toroidal mode (n = 1)
is higher than that of the mode number n = 2 (fundamental toroidal mode). According to (17),
the numerical results obtained with the Maxwell and Newtonian models converge for χ = 0
(Figure 4(a)). Otherwise, the results obtained with the Kelvin–Voigt and Newtonian models
converge for χ= 0.71 (Figure 4(c)). For high glycerol concentration, the mixture behaves as a solid
if χ= 0.56 (Figure 4(b)), a pair of critical modes numbers can be defined (n = 3,7). It is shown that
the quality factor values calculated with Newtonian model converge to Maxwell ones for n < 3
(low frequencies). Otherwise, the Newtonian and Kelvin–Voigt models converge for n > 7 (high
frequencies). The viscoelastic medium behaves as a viscous fluid for n < 3 (low frequencies) and
as an elastic solid n > 7 (high frequencies).

5.4. Effect of surrounding fluid on the vibration frequency

In this paragraph, the effect of surrounding fluid on the vibration frequency is depicted in
Figure 5, for an isotropic gold nanosphere submerged in a glycerol–water mixture modeled by
a Maxwell fluid. One can observe from Figure 5 that the vibration frequency decreases with
the increasing nanosphere radius. Figure 5 also shows that the surrounding fluid has a little
effect on the vibration frequency except for small radius values. This indicates that the effect
of surrounding fluid on the vibration frequency is more significant when smaller nano-sized
spheres are considered. This behavior is also found for Kelvin–Voigt model. Therefore, for radii
greater than 18 nm, the vibration frequencies are simply determined using (18) that corresponds
to a dry sphere.

6. Conclusion

In this paper, an analytical approach to predict toroidal vibrations of an elastic nanosphere in
Newtonian and viscoelastic fluids is proposed. The viscoelasticity is described using Maxwell
and Kelvin–Voigt models. The obtained complex eigenvalue equation is first used to study the
effect of glycerol concentration on the quality factor of a gold nanosphere vibrating in water–
glycerol mixture. A pair of critical concentrations is highlighted and defines three behavior zones:
Maxwell, transition and Kelvin–Voigt. In the Maxwell and Kelvin–Voigt domains, the mixture can
be considered as a viscous fluid and an elastic solid, respectively. The effect of the sphere radius
and mode number on the quality factor was also studied. A pair of critical radius and critical
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Figure 5. Vibration frequency versus nanosphere radius in the case of Maxwell fluid.

mode numbers are also highlighted. Three behavior zones can also be defined for each glycerol
concentration. For low radius or high frequency values the medium can be considered as an
elastic solid. For high radius or low frequency values, the medium behaves as a viscous fluid.
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