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1. Introduction

As a kind of common geological material in nature, soil–rock mixture (SRM) is an important
part of landslide and debris flow, so it is widely concerned. Since this kind of soil mass is
composed of two kinds of materials, soil and rock, it is obviously different from ordinary soil in
terms of mechanical properties and deformation characteristics. Previous studies have shown
that the influence of rock content and rock shape on SRM mechanical properties, especially
internal friction angle and cohesion, is particularly significant [1]. Although a large number of
experiments have been conducted to explore the mechanical properties of SRM, few researches
have been focused on analyzing the mesostructure evolution of SRM from the perspective
of contact network. It is a popular method to analyze soil mesostructure evolution from the
perspective of contact network [2, 3], which can provide the contact information between soil
particles intuitively and reflect the evolution law [4]. This manuscript analyzes the mesoscopic
evolution of SRM with different rock contents by the discrete element method (DEM) from the
perspective of contact network, which can bridge the micro and macro parameters for granular
materials and thus provide a basis for formulating a micro–macro constitutive model for soil.

For the SRM, many researchers have made achievements in experiment, theory and numerical
simulation. Through large-scale direct shear tests, Xu et al. [1] found that in a certain range,
with the increase of rock content, the shear strength and the size of shear zone of SRM would
increase. Researchers analyzed the influence of rock content on the mechanical properties of
samples from different perspectives. Yagiz et al. [5] believed that shear strength is mainly derived
from the frictional forces developed due to sliding and interlock. Kokusho et al. [6] claimed
that mechanical properties such as shear strength are affected by particle gradation. Vallejo [7]
conducted static compaction tests on mixtures of two glass beads of different sizes (5 mm
and 0.4 mm) to explore the effect of rock content on the mechanical properties of SRM. The
results showed that when the coarse particle content is greater than 70%, the mixed structure
is completely supported by coarse particles. When the coarse particle content is between 70%
and 40%, the mixed structure is supported by both coarse and fine particles. When the coarse
particle content is less than 40%, the structure of the mixture is completely supported by fine
particles. Hamidi et al. [8] established a prediction equation for the shear strength of sand–gravel
mixtures by considering the effect of particle crushing.

In recent years, numerical simulation has been becoming an important analysis method,
which has more advantages in analyzing the local strain and many other aspects. Xu et al. [9]
established a microstructural model of SRM by DIP-FEM based on image processing technology,
and proposed three plastic zone development models of SRM. In order to further consider the
influence of rock content on the mechanical properties of the SRM from the micro perspective,
the DEM as a numerical simulation method is also used in the modeling of SRM. At present,
there are two main methods to simulate SRM by discrete element. The first method is to conduct
a three-dimensional discrete element modeling based on CT technology [10]. This method is
relatively accurate but the modeling process is complex and the cost is high. The second method
is the two-dimensional discrete element modeling based on Monte Carlo method [11]. Firstly,
the spatial locations of rock fragments are generated uniformly, and then the size and azimuth
angle are allocated to the corresponding location according to the certain rule (e.g., lognormal
distribution principle). For the convenience of modeling and calculation, this study adopts the
second method for modeling, assuming that the rock fragments are uniformly distributed.

As an analysis method, the contact network method often relies on the numerical simulation
modeling of the discrete element, which is used to analyze the evolution of soil microstructure
and the degree of particle rearrangement during the loading process. If soil is considered as gran-
ular material composed of soil particles, contact network formed by soil particle is undoubtedly
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the simplest method to describe its properties, which is closely related to its mechanical features.
According to the average contact force, Radjai et al. [12] divided the contact network into two
sub-networks, strong network and weak network, and found that the strong network plays the
main role of bearing force. Peters et al. [13] found that about half of the particles belonging to
strong networks belong to force chains (a quasi-linear structure that transfers stronger forces in
granular materials). Walker and Tordesillas [14, 15] analyzed the evolution of the meshes (they
called it n-cycle, where n is the number of edges of the mesh, such as 3-cycle and 4-cycle) in the
two-dimensional contact network. They found that the 3-cycle structure could inhibit the rota-
tion of particles and affect the stability of the sample, and the 3-cycle structure with high contact
force could provide an effective lateral support for the force chain. Tordesillas et al. [16] suggested
that using MFMC algorithm to analyze the contact network can predict the force chain particles
and the location of shear zone only according to the contact information without knowing the
contact force. Therefore, the contact network method is helpful to analyze the complex failure
mode and force transmission mode of SRM.

In this paper, the discrete element software Yade is employed to model rock–soil aggregate
(RSA) with different rock contents, and the evolution of RSA in loading process is analyzed by
the contact network method. In the process of modeling, RSA is simplified as a model composed
of two kinds of grains, in which the fine grain represents soil and the coarse grain represents
rock. In this study, the coarse grain content of the simulated samples is less than 40%, which
makes the mechanical properties of the samples closer to the soil. This is because the contact
force between two coarse particles is often much greater than other contact forces during the
loading process, and when there are many coarse particles, there will be more contacts between
the coarse particles, leading to a more complex contact network (the mixed structure is gradually
supported by coarse particles [7]). According to the evolution of the contact network, the contact
relationship and microstructure of RSA in the loading process are analyzed, and the flow network
is established according to the coordination number of particles. The maximum flow of the flow
network is introduced into the unified hardening model to predict the stress–strain relationship
during the loading process.

2. The discrete element model of soil–rock mixture samples

Since the pioneering work of Cundall and Strack [17], DEM has been widely used to study differ-
ent aspects of soil mechanics. Based on the basic constitutive relationships between interacting
particles, DEM technology can provide the macroscopic response of particle assemblies under
the variation of the external load. Each particle has its own mass, radius and moment of inertia.
In each step of the calculation, the interaction between the particles and the resulting force on
each particle are derived from the position of the particles by the law of interaction. Newton’s
second law is then integrated by explicit second-order finite difference scheme to calculate the
new positions of the particles.

2.1. Interparticle behavior

The computing software used in this manuscript is Yade [18,19]. In the process of calculating the
contact force, the normal force Fn caused by the intergranular relative displacement in normal
direction can be derived from the normal stiffness kn . Similarly, the shear force Ft caused by the
incremental tangential relative displacement can be derived from the tangential stiffness kt and
this tangential behavior conforms to the Coulomb friction law.
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Table 1. DEM parameters

Parameter Value
Number of particles 10,000

Sample height 0.03 m
Sample width 0.03 m

Particle diameter d 1.45 mm
Particle density ρ 2600 kg·m−3

Normal spring stiffness kn 5×107 N·m−1

Shear spring stiffness ks 2.5×107 N·m−1

Damping coefficient 0.2
Loading strain rate 0.05 s−1

2.2. Modeling approach

In the study of mechanical properties of SRM, the rock–soil threshold is a key parameter, which
can be used to reasonably distinguish the rock and soil media in the mixture. In a certain scale of
study, the particles whose sizes have a great impact on the failure mechanism and macroscopic
mechanical properties of SRM are considered as “rocks,” while the remaining particles are
considered as “soil.” Therefore, the concepts of “soil” and “rock” in SRM are relative, depending
on the study scale. Medley et al. [1, 20] conducted a detailed study and proposed a criterion to
distinguish the middle soil and rock in SRM based on the threshold value of soil and rock:

f =
{

R(d ≥ dthr)

S(d < dthr),
(1)

where

dthr = 0.05Lc , (2)

where R and S represent soil and “rock,” respectively; d is the diameter of the particle; dthr is the
threshold of soil and rock; Lc is the characteristic engineering scale, which varies according to
the working scale of the engineering problem under investigation. For the triaxial sample, Lc is
equal to its diameter. The minimum size of rock fragments in this study is determined based on
the above assumption.

In this study, the rock content of SRM is defined as the ratio between the mass of rock
fragments and the total mass of the sample, that is, the mass ratio of coarse grain.

2.3. Triaxial compression tests

The modeling process based on DEM software Yade is shown as follows. Firstly, a sand sample
model with random particle distribution is established. Secondly, the location and size of rock
fragments are generated randomly according to the rock content. Finally, the particles within the
range of each cuttings are combined with the clump command to represent each rock fragments.

The DEM numerical sample initially generated is composed of 10,000 spherical particles, the
number of which is similar to that of Ju et al. [10] and He et al. [11]. The particle size is 1.45 mm,
and the sample size is 30 mm×30 mm×30 mm. The relevant parameters of the initial generated
samples are shown in Table 1.

The generation of the samples is mainly divided into two stages. In the first stage, all particles
are placed uniformly within the range of the sample, and there is no contact or overlap between
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Figure 1. A view on aggregates (Axial strain = 0).

any two particles. The interparticle friction is set to 0 (to facilitate the generating of denser sam-
ples), and the particle radius is uniformly increased, during which the position of the boundary
wall remains unchanged. This process continues until the porosity reaches 0.40. In the second
stage, the interparticle friction is changed to 0.577 (equal to tan30°), so that the initial sample is
generated. Then, according to the coarse grain content (in this study, 0%, 10%, and 20%), some of
the particles are combined into rock fragments with the clump command, as shown in Figure 1
(the fine grain is red and the coarse grain is green). It is assumed that the rock fragments are ap-
proximately circular in shape, and their particle size is 4 mm. This treatment effectively reflects
the relative irregularity of the rock fragments’ surface.

In the triaxial compression tests of the numerical sample, isotropic compaction is firstly
adopted to increase the confining pressure of the sample to the specified value (in this study,
50 kPa, 100 kPa, 200 kPa and 400 kPa). In order to ensure the homogeneity of loading and avoid
the undesirable effects at the boundary, the loading plates adopt the frictionless rigid wall et
al. [21]. The load is applied through the displacement of the wall, the loading strain rate in the
Y -axis direction is constant and the stress in the X /Z direction is equal to the value of confining
pressure. The loading strain rate is 0.05 s−1, which satisfies the equation of quantifying the impact
of inertia [22, 23] on the test, I = ε̇d

√
ρ/p ′ < 10−3 (ε̇ is the strain rate, d the mean size of grains

in the assembly, ρ the grain density and p ′ the mean effective stress). Therefore, the system can
be considered to maintain quasistatic conditions during the loading process, where the inertial
effect is negligible.

The evolution of the deviator stress and volume strain during loading is shown in Figures 2
and 3, respectively. Here, for more intuitive analysis, the compressive pressure and compressive
strain are regarded as positive. It can be seen from the trend of the curve that the specimen shows
strain softening behavior during the loading process, accompanied by the phenomenon of shear
expansion. The peak shear strength increases with the confining pressure, and the dilatancy of
the sample at failure decreases with the increase of confining pressure, which is qualitatively
similar to the observation results of dense granular materials in laboratory experiments [24]. The
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Figure 2. Deviator stress–axial strain curves at different confining pressures.

higher the coarse grain concentration, the higher the peak shear stress and the more obvious the
dilatancy, which is similar to the results of other researchers [1, 7]. In the range of coarse grain
concentrations in this study, the deviator stress of different samples under the same confining
pressure in the critical state will reach the same level. This may be due to the larger disturbance of
the coarse particles to the surrounding particles when they rotate and stagger during the loading
process, resulting in greater dilatancy. In the early stage of loading, the main interaction between
particles is occlusion, which makes the interaction between coarse and fine particles contribute
more shear stress, leading to the increase of the peak shear stress with the increase of the coarse
grain concentration. As the loading continues, the shear band may be gradually formed, and the
interaction between particles is dominated by the sliding of particles in the shear band, while the
sliding between particles is mainly controlled by the interparticle friction, so the shear stress will
reach the same level in the critical state. For loose granular materials, the macro shear band is
not often observed. In this paper, the simulated sample is medium-dense, in which all of them
exhibit strain softening behavior and contraction followed by dilatancy. Of course, if the content
of coarse grains is further increased (beyond the range of this study), there will be more sliding
between coarse grains in the shear zone, which will greatly improve the shear stress level in the
critical state, which is not intended to be discussed in this paper.
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Figure 3. Volumetric strain–axial strain at different confining pressures.

3. Contact network analysis

3.1. Evolution of force chains

In the particle system, the larger force is usually transferred along the path of the quasi-straight
line, and a chain-like structure consisting of particles in this path is called a force chain et al. [13].
When the force chain structure buckles due to the axial compression, its axial load decreases as
its particles move laterally. The description of the structure and evolution of the force chain is
one of the core contents of granular material research. Many scholars have proposed their own
methods to identify the force chain [13, 25]. In this paper, the force chain identification is based
on the following criteria: the normal contact force is greater than the average value, the angle is
less than 45° (Fc > F , θc < 45°), and the minimum number of grains to constitute a force chain is
3, as shown in Figure 4. Since the evolution trend of contact network is the same under different
confining pressures [3], the following analysis takes the samples under 200 kPa confining pressure
as example.

If the force chains are regarded as a force transmission structure in the granular material
(Figure 5), then the evolution trend of the force transmission ability of the sample can be
intuitively known through the statistics of their number, length and proportion of force chains
(the proportion of the number of particles in the force chain to the total number of particles, and
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Figure 4. Identification of force chains.

Figure 5. Distribution of force chains (blue particles) at peak deviator stress.

the total number of particles in the samples with different coarse grain contents are different).
According to Figure 6(a, b, c), it can be seen that the number, length and proportion of force
chains increase first, then decrease and finally tend to be stable. Figure 6(d) shows that in the
initial stage, the force chain proportion increases with the increase of the deviator stress, then
decreases slowly and finally decreases to the critical state with the decrease of the deviator stress.
This is because the specimen is compacted in the early stage of loading, so that the force chains
begin to grow. As the loading continues, the force chains gradually bear more external load,
which makes the particles around them gradually unable to support them [26], so the force
chains begin to buckle and destroy, and thus the shear band is produced [14]. When the shear
zone is completely formed, the evolution of the force chain tends to be stable. The higher the
coarse grain content, the lower the force chain proportion, which shows that coarse particles can
transfer more force than fine particles, so many fine particles are replaced in the force chain.
In addition, the proportion of force chains also affects the distribution of force chain length.
Previous studies have shown that the distribution of the length of the force chain is approximately
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Figure 6. Evolution of force chains.

exponential [27]. In this study, the distribution of the length of the force chain at each moment in
the loading process can be fit by the following equation:

P (N ) = e−((N−3)/A)1−RFC A

, (3)

where RFC is the proportion of the particles belonging to the force chains in all particles, N is
the length of the force chain (the number of particles on the force chain), P (N ) is the normalized
value of the number of force chains and A depends on the search method of force chains and
material properties (in this study, A is 2). In this treatment, it is assumed that the higher the
RFC , the longer the force chains are likely to be generated in the particle system. The length
distribution of the force chains at the moment when the deviator stress reaches its peak and at
the moment of the critical state (when the axial strain reaches 0.20) is shown in Figure 7.

3.2. Coordination number and contact force

For granular materials, the contact network composed of the contact relationships between the
particles can intuitively reflect the bearing capacities. In the contact network, each particle in the
packing is represented as a node, and an edge exists between two particles if there is a contact (or
many connects) between them. The process of particle rearrangement is the process of loss of old
contact and formation of new contact in contact network. The coordination number of a node is
equal to the number of edges attached to that node, and the coordination number of a contact
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Figure 7. Length distribution of force chains.

network is equal to the average of the values of all nodes in this contact network. Coordination
number is a convenient parameter of contact network, which can be used to represent the
characteristics of the network, reflect the degree of particle rearrangement and the lateral support
of the force chain.

It can be seen from Figure 8 that the overall trend of the coordination number evolution is
a rapid decline after a short rise and finally, a gradual stabilization. The higher the coarse grain
content, the lower the overall coordination number. The coordination number of the particles in
the force chain is larger than that of other particles. This is because at the beginning of loading,
the sample is compacted, and then with grain rearrangement and formation of shear band, a
large number of contacts are broken until the sample is destroyed and the particles no longer
have large-scale rearrangement. Because the force chain structure needs more lateral supports to
ensure its stable force transmission, there will be more particles around the force chain particles.
In the process of loading, when the coarse particles rotate and stagger, the disturbance to the
surrounding particles is greater, and there are more particles around the coarse particles (see the
subgraph in Figure 8(d)), so the coarse particles make the surrounding particles rearrange on a
larger scale, thus making the overall coordination number drop faster.

C. R. Mécanique, 2021, 349, n 1, 83-102
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Figure 8. Evolution of coordination number.

According to the above analysis, the particles with a high coordination number are more likely
to form force chains, and the force chains play an important supporting role in the whole particle
system. This may indicate that the contact force of two particles with a higher coordination
number is usually greater. In order to explore the relationship between the coordination number
and the contact force, we counted all the contact forces at the moment of the peak state (axial
strain = 0.05), and classified them according to the coordination number of the two particles
making up the contact, and tried to take the average value for each type of contact. We find
that the quadric surface fit by the least square method can reflect the relationship between the
coordination number and the average value of each kind of contact force, as shown in Figure 9
(Z1, Z2 are the coordination number of the two particles, f n is the average normal contact force).
The fitting function is expressed as follows:

f n = AZ 2
1 +B Z1Z2 + AZ 2

2 +C Z1 +C Z2 +D, (4)

where A,B ,C ,D are the fitting parameters, which are related to the coarse grain content in this
study (when the coarse grain content is 0, A = −0.0167,B = −0.0003,C = 0.2199,D = −0.7326;
when the coarse grain content is 10%, A = −0.0008,B = 0.0006,C = 0.0735,D = −0.1454; when
the coarse grain content is 20%, A = −0.0019,B = 0.0014,C = 0.1239,D = −0.6295). When
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Figure 9. Distribution of contact forces at peak deviator stress.

the calculation result is less than zero, the fitting value is equal to zero, because this study
assumes that the contact force between particles does not include tension. The significance of
this treatment is to show that if the maximum allowable contact force of the contact is related
to the coordination number of the two particles, only when the coordination numbers of both
particles are high can the contact have the possibility of generating larger contact force. It can
be seen from the corresponding relationship between the function (curved surface) and the
simulation results (scattered points) in Figure 9 that the fitting effect is better when the coarse
grain content is 0%. When the content of coarse particles is 20%, Equation (4) can better fit the
contact force between fine particles and fine particles (Part A) and the contact force between
fine particles and coarse particles (Part B), but it will significantly underestimate the contact
force between coarse particles and coarse particles (Part C). Therefore, this method can only be
used to estimate the situation when the coarse grain content is small. When the coarse grain
content is high, the contact between coarse particles will be more, which will make the fitting
more inaccurate.

3.3. Network-flow model of force transfer

In order to connect the force transfer ability of the contact network with the macroscopic
mechanical response of the specimen, it is a good choice to establish a network-flow model
for force transfer. At present, the main applications of the network-flow model of force transfer
are as follows: to locate the position of shear band with maximum-flow–minimum-cut [28], and
to predict the formation of force chains with maximum-flow–minimum-cost (MFMC) [29]. The
flow network is composed of a source node, a sink node, intermediate nodes and edges. In the
flow network, the flow transfers from the source to the sink along the edges and passes through
intermediate nodes. Each edge in the flow network has its own capacity, which indicates the
maximum flow that the edge is allowed to pass through. If the flow is regarded as the contact force
transmitted in the particle system, the network-flow models of force transmission in granular
material can be established. The steps for establishing a network-flow model for force transfer
are shown in Figure 10. According to the distribution of the force chains, the transfer of larger
contact forces is mainly along the direction of principal stress. Therefore, it is assumed that the
top wall and bottom wall are the source and sink, the particles are the intermediate nodes, and the
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Figure 10. The network-flow models of force transmission.

flow is the force transferred from the top wall to the bottom wall. The contacts between particles
or between particle and wall is defined as the edges in the flow network. The capacity of the edge
represents the maximum contact force that can be carried by the contact. It is defined that the
transfer of flow between particles can be two-fold, but the transfer of flow between particle and
wall is one-way (it can only be transferred from the source to the intermediate node, or from
the intermediate node to the sink), and the inflow flow at each intermediate node is equal to
the outflow flow. This reflects the balance of forces on each particle, and the external force is
inputted into the particle system through the loading plates. As the force on the loading plate
is artificially loaded, the capacity between the wall and particles is regarded as infinite, and the
capacity between particles depends on the property of the contact. In the example of Figure 10,

C. R. Mécanique, 2021, 349, n 1, 83-102
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Figure 11. Evolution of maximum flow.

we assume that the maximum contact force (capacity) between each particle is 1, as shown in
Figure 10(c). By solving the maximum network flow, we can get the maximum flow scheme shown
in Figure 10(d). The calculation method can be referred to reference [30]. From Figure 10(d), it can
be seen that the maximum flow through the network is 2, and a scheme of flow distribution is also
given (the yellow path is the flow path, the second number in brackets is the flow size and the first
is the capacity).

Determining the reasonable capacity for each edge is the key to the effective use of network-
flow model of force transfer, which requires the construction of a reasonable capacity function.
According to the previous content, we assume that the capacity function is related to the coordi-
nation number, which is (4). It is assumed that when the sample is in the peak state, each contact
reaches its best state. It is found that if (4) obtained by fitting the average value of 1.4 times of
the contact forces in the peak state is taken as the capacity function, then the maximum flow at
this time is almost equal toσ1 (forces on upper and lower loading plates, i.e., the maximal princi-
pal stress of the specimen). The capacity function of each sample can be obtained by fitting each
sample according to the contact force distribution of the peak state. According to the capacity
function, the maximum flow of the sample at each time during the loading process is calculated.
In order to better compare the maximum flow with the macroscopic mechanical response of the
samples, we subtract the confining pressure from the value of the maximum flow and divide it
by the area of the loading plate, so that the new maximum flow and deviator stress are the same
dimension, as shown in Figure 11.

It can be seen from the figure that the curve trend of the maximum flow is that after a short
rise, the maximum flow decreases rapidly and finally reaches a stable state. In the initial state,
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the value of the maximum flow increases with the increase of the coarse grain content, but they
will eventually reach the same stable state. The relationship between the deviator stress and the
maximum flow can be divided into three stages: before reaching the peak state, the deviator
stress is lower than the maximum flow; after reaching the peak state, the deviator stress gradually
decreases until it is lower than the maximum flow; and after the maximum flow reaches the stable
value, the deviator stress gradually tends to be stable. This shows that the maximum flow is a
specific quantification of the force transfer ability of the particle system. As mentioned above,
the force transfer ability of the sample changes with the evolution of the force transfer structure
of force chain, while the sample with a high coarse grain content has stronger force transfer ability
in the initial state, and all the samples have the same force transfer ability in the critical state. The
distribution of force in particle system always tends to reach the best state of force transmission,
so the deviator stress increases continuously at the initial state to approach the maximum flow.
After the peak state, because the deviator stress of the system exceeds the capacity of the network-
flow model of force transfer, it begins to show the trend of strain softening, and finally reaches a
stable value with the maximum flow.

4. Maximum flow and unified hardening model

In the past, the network-flow model of force transfer mostly predicted the position of shear band
and paths of force chains through the contact relationship between particles, but it was rarely
used to predict the stress–strain relationship during the loading process. This study attempts to
apply the maximum flow to the unified hardening model and further explore the practicability
of the network-flow model of force transfer. By using the new hardening parameter H to replace
the hardening parameter in the modified Cam-clay model [31, 32], i.e., the plastic volume strain,
Yao et al. [33, 34] revised the modified Cam-clay model which can describe the shear contraction
followed by dilatancy, which is called the unified hardening model.

4.1. Unified hardening parameter H

For dense sand, the hardening parameters of the unified hardening model can be expressed as
follows [33, 34]:

H =
∫

dH =
∫ M 4

f −η4

M 4 −η4 dεp
v , (5)

where M is the critical state stress ratio, η (η = q/p, q is the deviatoric stress, p is the mean
principal stress) is the stress ratio, εp

v is the plastic volume strain and M f is the potential strength.
The potential failure stress ratio M f is introduced to characterize the potential ability of the
sample to resist shear failure under current conditions. Based on different assumptions, M f has
different calculation methods. In this study, we consider that the potential strength is related to
the force transfer ability of the contact network, i.e., M f = Fmax/p, Fmax is the maximum flow of
the network-flow model of force transfer.

The relationship between M f , η, and M in the loading process of the sample is shown in
Figure 12. The different relationships between them indicates the different stages in the loading
process:

(1) In strain hardening state (dH > 0)
(a) When 0 < η< M , dεp

v > 0, the sample is in a state of contraction.
(b) When η= M , dεp

v = 0, the sample is in the boundary between the state of contraction
and the state of dilatancy.

(c) When M < η< M f , dεp
v < 0, the sample is in a state of dilatancy.
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Figure 12. Potential failure stress ratio M f , stress ratio η (= q/p), critical state stress ratio
M and volumetric strain εv against deviatoric strain εd .

(2) In peak state (dH = 0)
When η = M f , the potential strength is equal to the peak strength, and the sample
changes from strain hardening state to strain softening state.

(3) In strain softening state (dH < 0)

Since dH < 0, η > M and η is slightly higher than M f , dεp
v < 0, which indicates contraction.

When the sample reaches the critical state, η= M = M f and dεp
v = dH = 0.

4.2. Elastoplastic constitutive relation in p–q space

The yield surface assumption is similar to the modified Cam-clay model, and the associated flow
rule is adopted, as shown in (6), (7). The hardening parameter H [33] is shown in (5). Equation (7)
is the result obtained after the hardening parameter H is substituted into (6). Equation (6) can
also represent the yield function of the modified Cam-clay model. Equations (6) and (7) indicate
that the unified hardening model is based on the modification of the modified Cam-clay model.

f = g = ln
p

px
+ ln

(
1+ q2

M 2p2

)
= 0 (6)

f = ln
p

px0
+ ln

(
1+ q2

M 2p2

)
− 1

cp
H = 0, (7)

where px is the intersection of the yield surface with the p-axis; px0 is the initial value of px with
ε

p
v = 0 and H = 0; cp = (λ−κ)/(1+e0); λ is the slope of the normal compression line; κ is the slope

of the unloading line and e0 is the initial void ratio.
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According to the above equation, the constitutive relation of the unified hardening model in
p–q space can be expressed as follows:{

dp
dq

}
=

[
Cpp Cpq

Cpq Cqq

]{
dεv

dεd

}
(8)

Cpp =
K ((M 4

f −η4)p +12Gcpη
2)

(M 4
f −η4)p +12Gcpη2 +K cp (M 2 −η2)2

Cpq = 3KG(−2cp (M 2 −η2)η)

(M 4
f −η4)p +12Gcpη2 +K cp (M 2 −η2)2

Cqq =
3G((M 4

f −η4)p +K cp (M 2 −η2)2)

(M 4
f −η4)p +12Gcpη2 +K cp (M 2 −η2)2

(9)

K = E/[3(1−2ν)] (10)

G = E/[2(1+ν)] (11)

E = 3p(1−2ν)(1+e0)/κ, (12)

where K and G are the elastic bulk modulus and the elastic shear modulus, respectively; E is
the elastic modulus and ν is Poisson’s ratio. Potential strength M f is related to the force transfer
ability of the contact network, i.e., M f = Fmax/p, Fmax is the maximum flow of the network-flow
model of force transfer (obtained from Section 3.3). When M f = M , Equation (9) is the same as
that in modified Cam-clay model.

4.3. Prediction and verification of the model

Ishihara et al. [35, 36] conducted a large number of triaxial tests on Toyoura sand, and the test
results have been used by many scholars to verify its constitutive model. According to this, Yao et
al. [37] adopted the corresponding model parameters in the study of unified hardening model
of sand. In this paper, the stress–strain relationship of contact network is only used for primary
discussion, so the selection of relevant parameters is also in accordance with this (the slope of
the normal compression line λ is 0.135; the slope of the unloading line κ is 0.04; Poisson’s ratio ν
is 0.3). The critical state stress ratio M is set as 0.8 according to DEM simulation results.

According to the selection of parameters and the previous contact network analysis, the com-
parison between simulated values of three samples with different coarse grain concentrations
under 200 kPa is shown in Figure 13. The results show that the unified hardening model consid-
ering the maximum flow can roughly reflect the tendency of the deviator stress and volume strain
of the samples with different coarse grain contents during loading. In general, the model can re-
flect the trend of the deviator stress and volume change with the different coarse grain concentra-
tions: the higher the coarse grain content, the higher the peak value of deviator stress, the more
obvious the phenomenon of dilatancy, but when the critical state is reached, the deviator stress
values of all samples are equal. This shows that the force transfer ability of the sample reflected
by the network-flow model of force transfer can be used to explain the stress–strain relationship
of the sample in the loading process to a certain extent.

5. Conclusions

In summary, this study investigated the macroscopic mechanical behavior of SRM with different
rock contents and confining pressures under triaxial compression loading path, and established
a connection between macroscopic and microscopic through contact network. The conclusions
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Figure 13. Simulation and fitting values of deviator stress and volume strain.

are summarized as follows (it is worth noting that for reasons of length, this paper only considers
the case of triaxial compression loading path).

(1) The results of DEM numerical simulation show that the samples with 0%, 10% and 20%
coarse particles have different mechanical behaviors under the same confining pressure.
The higher the coarse grain content, the higher the peak shear stress and the more
obvious the dilatancy. In the critical state, all specimens reach the same deviator stress
level.

(2) The evolution of the force chains can reflect the change of the force transfer ability of the
particle system. The number, length and proportion of force chains increase first, then
decrease, and finally tend to be stable. The higher the coarse grain contact, the lower
the force chain proportion. In addition, the proportion of force chains also affects the
distribution of force chain length.

(3) The particles with a high coordination number are more likely to form force chains, and
the contact force of two particles with a higher coordination number is usually greater.
The quadric surface fit by the least square method can reflect the relationship between
the coordination number and the average value of each kind of contact force, but this
method is only suitable for the case of low coarse grain content.

(4) Taking the relationship between the contact force and coordination number as a capacity
function, the network-flow model of force transfer can be constructed to quantify the
force transfer ability of contact network. By connecting the maximum flow in network
flow with the unified hardening model, the stress–strain relationship of SRM can be
predicted relatively well to some extent.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgements

The authors appreciate the funding provided by the National Key Research and Development
Program of China (Project No. 2017YFC1501003). Thanks are extended to the anonymous review-
ers for their helpful suggestions on the quality improvement of our paper.

C. R. Mécanique, 2021, 349, n 1, 83-102



Ran Xu et al. 101

References

[1] X. Wen-Jie, X. Qiang, H. Rui-Lin, “Study on the shear strength of soil–rock mixture by large scale direct shear test”,
Int. J. Rock Mech. Min. Sci. 48 (2011), no. 8, p. 1235-1247.

[2] J. Tian, E. Liu, L. Jiang, X. Jiang, Y. Sun, R. Xu, “Influence of particle shape on the microstructure evolution and the
mechanical properties of granular materials”, C. R. Méc. 346 (2018), no. 6, p. 460-476.

[3] J. Xiaoqiong, L. Enlong, J. Lian et al., “Evolution of meso-structures and mechanical properties of granular materials
under triaxial compression state fromcomplex network perspective”, Granul. Matter 20 (2018), no. 3, article no. 54.

[4] J. Lian, L. Enlong, T. Jianqiu et al., “Effects of inter-particle frictional coefficients on evolution of contact networks in
landslide process”, Engineering 9 (2017), p. 917-936.

[5] S. Yagiz, “Brief note on the influence of shape and percentage of gravel on the shear strength of sand and gravel
mixtures”, Bull. Eng. Geol. Environ. 60 (2001), no. 4, p. 321-323.

[6] T. Kokusho, T. Hara, R. Hiraoka, “Undrained shear strength of granular soils with different particle gradations”,
J. Geotech. Geoenviron. Eng. 130 (2004), no. 6, p. 621-629.

[7] L. E. Vallejo, “Interpretation of the limits in shear strength in binary granular mixtures”, Can. Geotech. J. 38 (2001),
no. 5, p. 1097-1104.

[8] A. Hamidi, M. Alizadeh, S. M. Soleimani, “Effect of particle crushing on shear strength and dilation characteristics of
sand-gravel mixtures”, Int J. Civil Eng. 7 (2009), no. 1, p. 61-71.

[9] W. J. Xu, Z. Q. Yue, R. L. Hu, “Study on the mesostructure and mesomechanical characteristics of the soil–rock mixture
using digital image processing based finite element method”, Int. J. Rock Mech. Min. Sci. 45 (2008), no. 5, p. 749-762.

[10] Y. Ju, H. F. Sun, M. X. Xing, X. F. Wang, J. T. Zheng, “Numerical analysis of the failure process of soil–rock mixtures
through computed tomography and PFC3D models”, Int. J. Coal Sci. Technol. 5 (2018), no. 2, p. 126-141.

[11] J. He, X. Li, S.-D. Li, J.-L. Gu, “Numerical study of rock–soil aggregate by discrete element modeling”, in Sixth
International Conference on Fuzzy Systems and Knowledge Discovery, IEEE, 2009, p. 565-569.

[12] F. Radjai, D. E. Wolf, M. Jean et al., “Bimodal character of stress transmission in granular packings”, Phys. Rev. Lett.
80 (1998), no. 1, p. 61-64.

[13] J. F. Peters, M. Muthuswamy, J. Wibowo et al., “Characterization of force chains in granular material”, Phys. Rev. E 72
(2005), no. 4, article no. 041307.

[14] A. Tordesillas, D. M. Walker, Q. Lin, “Force cycles and force chains”, Phys. Rev. E 81 (2010), no. 1, article no. 011302.
[15] D. M. Walker, A. Tordesllas, “Topological evolution in dense granularmaterials:a complex networks perspective”, Int.

J. Solids Struct. 47 (2010), no. 5, p. 624-639.
[16] A. Tordesillas, S. T. Tobin, M. Cil et al., “Network flow model of force transmission in unbonded and bonded granular

media”, Phys. Rev. E 91 (2015), no. 6, article no. 062204.
[17] P. A. Cundall, O. D. L. Strack, “Discussion: A discrete numerical model for granular assemblies”, Géotechnique 30

(1980), no. 3, p. 331-336.
[18] J. Kozicki, F. V. Donze, “YADE-OPEN DEM: an open-source software using a discrete element method to simulate

granular material”, Eng. Comput. 26 (2009), no. 7-8, p. 786-805.
[19] J. Kozicki, F. V. Donze, “A new open-source software developed for numerical simulations using discrete modeling

methods”, Comput. Methods Appl. Mech. Eng. 197 (2008), no. 49-50, p. 4429-4443.
[20] E. Medley, E. S. Lindquist, “The engineering significance of the scale-independence of some Franciscan mélanges in

California”, in USA 35th U. S. Symposium, 1995, p. 907-914.
[21] L. Scholtes, B. Chareyre, F. Nicot et al., “Micromechanics of granular materials with capillary effects”, Int. J. Eng. Sci.

47 (2009), no. 1, p. 64-75.
[22] F. da Cruz, S. Emam, M. Prochnow et al., “Rheophysics of dense granular materials: Discrete simulation of plane

shear flows”, Phys. Rev. E 72 (2005), no. 2, article no. 021309.
[23] J. C. Lopera Perez, C. Y. Kwok, C. OŒSullivan et al., “Assessing the quasi-static conditions for shearing in granular

media within the critical state soil mechanics framework”, Soils Found. 56 (2016), p. 152-159.
[24] G. Yan, H. S. Yu, G. Mcdowell, “Simulation of granular material behaviour using DEM”, Proc. Earth Planet. Sci. 1

(2009), no. 1, p. 598-605.
[25] S. Qi-cheng, X. Hai-li, L. Jian-guo, J. Feng, “Skeleton and force chain network in static granular material”, Rock Soil

Mech. 30 (2009), p. 83-87.
[26] H. Zhu, F. Nicot, F. Darve, “Meso-structure organization in two-dimensional granular materials along biaxial loading

path”, Int. J. Solids Struct. 96 (2016), p. 25-37.
[27] L. Zhang, Y. J. Wang, J. Zhang, “Force-chain distributions in granular systems”, Phys. Rev. E 89 (2014), no. 1, article

no. 012203.
[28] A. Tordesillas, A. Cramer, D. M. Walker, “Minimum cut and shear bands”, AIP Conf. Proc. 1542 (2013), no. 1, p. 507-

510.
[29] Q. Lin, A. Tordesillas, “Towards an optimization theory for deforming dense granular materials: Minimum cost

maximum flow solutions”, J. Ind. Manag. Optim. 10 (2014), no. 1, p. 337-362.

C. R. Mécanique, 2021, 349, n 1, 83-102



102 Ran Xu et al.

[30] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, “Network flows: theory, algorithms and applications”, J. Oper. Res. Soc. 45
(1993), no. 11, p. 791-796.

[31] K. H. Roscoe, A. Thurairajah, A. N. Schofield, “Yielding of clays in states wetter than critical”, Géotechnique 13 (1963),
no. 3, p. 211-240.

[32] K. H. Roscoe, A. N. Burland, in On the Generalized Behaviour of “Wet” Clay (J. Heyman, F. Leckie, eds.), Cambridge
University Press, London, 1968, p. 535-609.

[33] Y. P. Yao, W. Hou, A. N. Zhou, “UH model: three-dimensional unified hardening model for overconsolidated clays”,
Geotechnique 59 (2009), no. 5, p. 451-469.

[34] Y. P. Yao, D. A. Sun, T. Luo, “A critical state model for sands dependent on stress and density”, Int. J. Numer. Anal.
Meth. Geomech. 28 (2004), no. 4, p. 323-337.

[35] R. Verdugo, K. Ishihara, “The steady state of sandy soils”, Soil Found. 36 (1996), p. 81-91.
[36] K. Ishihara, “Liquefaction and flow failure during earthquakes”, Géotechnique 43 (1996), no. 3, p. 351-415.
[37] Y. P. Yao, L. Liu, T. Luo, “UH model for sands (in Chinese)”, Chinese J. Geotech. Eng. 38 (2016), p. 2147-2153.

C. R. Mécanique, 2021, 349, n 1, 83-102


	1. Introduction
	2. The discrete element model of soil–rock mixture samples
	2.1. Interparticle behavior
	2.2. Modeling approach
	2.3. Triaxial compression tests

	3. Contact network analysis
	3.1. Evolution of force chains
	3.2. Coordination number and contact force
	3.3. Network-flow model of force transfer

	4. Maximum flow and unified hardening model
	4.1. Unified hardening parameter H
	4.2. Elastoplastic constitutive relation in p–q space
	4.3. Prediction and verification of the model

	5. Conclusions
	Conflicts of interest
	Acknowledgements
	References

