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Abstract. Fast Fourier transform based algorithms, relying on the initial idea proposed by Moulinec and
Suquet in 1998, are very efficient in the context of periodic homogenization in solid mechanics. The purpose
of this short note is to propose a simple modification of these algorithms to extend their application domain
from periodic boundary conditions (BC) to Dirichlet BC. The method is validated by a direct comparison
with standard finite element simulations with prescribed displacements at the boundary. The convergence
properties of the iterative algorithm are then analyzed using a simple example (2D matrix–inclusion) as a
function of various parameters (material and algorithm parameters).

Keywords. FFT-based methods, Dirichlet boundary conditions, Heterogeneous materials, Homogenization
in solid mechanics.

Manuscript received 18th September 2020, accepted 9th October 2020.

1. Introduction

Fast Fourier transform (FFT) based solvers for mechanics, initially proposed in [1], have at-
tracted increasing interest in the context of simulation of heterogeneous materials. Compared
to standard finite element (FE) codes, they are more efficient [2]. Furthermore, they are more
efficiently parallelized on distributed memory architectures [3]. However, their use involves pe-
riodic boundary conditions (BC), restricting the scope of FFT-based studies on the mechanics of
materials. In fact, applying Dirichlet BC (displacement applied on the whole boundary) allows
us to address at least two kinds of application. On the one hand, in the context of numerical
homogenization of heterogeneous materials, the use of kinematic uniform BC (KUBC) (i.e., a
linear displacement field) provides an upper bound for the effective elastic behavior [4–6]. On
the other hand, from an experimental point of view, digital imaging techniques combined with
digital image correlation provide both the microstructure and the displacement field of a speci-
men subjected to mechanical loading. This experimental displacement field can be used to apply
“realistic” BC at the boundary of an extracted “realistic” subvolume in either 2D [7] or 3D [8].
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Taking advantage of efficient FFT-based solvers for solid mechanics to apply Dirichlet BC was
addressed in [9]. This was implemented through the use of the so-called explicit jump immersed
interface method (EJIIM) based on the application of standard central finite differences, with the
simulated domain being embedded in a larger domain subjected to null displacement, and the
introduction of “jumps” as additional unknowns. In the present note, a quite different method
is proposed. The discretization of equations corresponds to linear (hexahedral) FEs with re-
duced integration, the embedding part has elastic behavior (with eigenstrain), and the so-called
eigendisplacement field is defined at the voxel corners located on the boundary. This eigendis-
placement field is unknown and adjusted to fulfill the condition on the displacement prescribed
on the boundary (i.e., Dirichlet BC). The linear system is solved through a rather simple modi-
fication of the classical fixed-point algorithm [1]. This classical algorithm is combined with the
convergence acceleration proposed by Anderson [10], which has been recently applied to effi-
ciently accelerate the same algorithm [3, 11]. This choice, instead of a Krylov linear solver, opens
the door toward future extensions to non-linear mechanical behaviors (plasticity, damage, etc.).
Indeed, the classical algorithm combined with the convergence acceleration proves to be well
suited for both linear and non-linear behaviors [3, 12].

Following a description of the method, a simulation of a simple 2D matrix/inclusion unit
cell validates the method through a comparison with a corresponding standard FE simula-
tion. The same unit cell is then used to discuss and analyze the convergence properties of the
algorithm.

The notation is as follows. Bold characters correspond to vectors. Parameters σ, τ, and ε are
respectively the stress, polarization, and strain symmetric second-order tensors; c, cB , and c0 are
elastic stiffness fourth-order symmetric tensors (all of them are isotropic in this paper); Γ0 and
G0 are Green operators acting on polarization fields though a convolution product.

2. Discrete problem, discrete derivations, and FFT-based algorithm with periodic BC

As demonstrated by Schneider [13], the FFT-based method introduced below is strictly equivalent
to the FE method with linear hexahedral elements and reduced integration. It is also equivalent
to the method proposed by Willot [14], but the presentation is slightly different. This method is
quite different from the seminal work of Moulinec [1], which was based on the use of continuous
derivatives together with a truncation of the highest Fourier frequencies. Instead, the present
method uses discrete derivatives. Hence, this method relies on two grids just like the FE method
with nodes for displacements and centers for stresses and strains, whereas the seminal method
relies on a single grid of nodes on which all the quantities are defined. As demonstrated in [14],
the present FFT-based method improves both the quality of the solution, by reducing spurious
oscillations, and the efficiency of the iterative algorithm.

2.1. Discrete description of unit cell (Figure 1)

The 3D unit cell Ω is regularly discretized in a 3D image of voxels (rectangular parallelepiped
elements equivalent to pixels in 2D). This discretization is associated with a grid of corners and
a grid of centers (Figure 1). For a mechanical problem, the material coefficients (e.g., elasticity
coefficients) are assumed to be defined at the centers together with the stress σ and the strain ε.
These two quantities are related by the constitutive behavior equations (e.g., elastic behavior). On
the other hand, the displacement u is defined at the corners together with the stress divergence
div(σ).
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Figure 1. Illustration of unit-cell discretization and schemes used for discrete derivation
operators (the two grids of centers and corners have the same size, implicitly assuming
their use with periodic BC).

2.2. FFT evaluation of discrete derivations

The discrete gradient operator, used to evaluate the strain, results from an average value over the
voxel ω (of volume v):

ε= 1

v

∫
ω
ε(y)dVy = 1

v

∫
ω

(grad(u(y)))sym dVy = 1

v

∫
∂ω

(
u

sym⊗
n

)
(y)dSy . (1)

In the discrete case, the expression of the strain as a surface integral, defined at the voxel center,
is simplified in a discrete sum of the displacement over the eight corners of the voxel (Figure 1).
For further details, the reader may consult [15].

The discrete divergence operator is evaluated in a very similar way:

div(σ) = 1

v

∫
ω∗

div(σ)(y)dVy = 1

v

∫
∂ω∗

(σ.n)(y)dSy . (2)

Here, div(σ) is defined at voxel corners, and ω∗ is a translated voxel whose center corresponds
to a voxel corner and corners correspond to voxel centers. Hence, the expression of the stress
divergence as a surface integral is simplified in a discrete sum of the normal stress (σ ·n) over the
eight corners of the translated voxels (i.e., eight voxel centers; see Figure 1).

In the general case, if the size of the grid of centers used to discretize the unit cell is N1×N2×N3,
the size of the grid of corners is (N1 +1)× (N2 +1)× (N3 +1). In the case of periodic BC that are
implicitly applied when using discrete Fourier transform (DFT) with the FFT algorithm, the last
slices of the corners (in each direction) are omitted as they have been already taken into account
by the implicit periodic repetitions of the grid. In that case, the two grids (of centers and corners)
have the same size and the grid of centers corresponds to the grid of corners translated by the
vector of a half-voxel.

The principle of DFT-based derivation is first explained using a 1D grid. The definitions of
DFT and inverse DFT are given in (3), and (4) describes the useful translation property of DFT.
The parameter N is the grid size, subscripts n and k (with values in {0, N −1}) refer to variables in
real and Fourier spaces, respectively, and i 2 =−1.

f̂k =
N−1∑
n=0

fn exp

(
−2iπkn

N

)
fn = 1

N

N−1∑
k=0

f̂k exp

(
2iπkn

N

)
, (3)

yn = fn±1 ŷk = f̂k exp

(
±2iπk

N

)
. (4)
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Let fn be the discrete values of a function evaluated on the grid of corners (typically, the displace-
ment). Its discrete derivative D fn evaluated over the grid of centers (typically, the strain) in real
space and then in Fourier space after applying the translation property and some trigonometric
manipulations (here, h is the physical size of the grid) reads as

D fn = 1

h
( fn+1 − fn) D̂ fk = i

1

h
2sin

(
πk

N

)
f̂k exp

(
iπk

N

)
. (5)

If fn is evaluated on the grid of centers (typically, the stress) and its discrete derivative D fn on the
grid of corners (typically. the stress divergence), we have

D fn = 1

h
( fn − fn−1) D̂ fk = i

1

h
2sin

(
πk

N

)
f̂k exp

(
− iπk

N

)
. (6)

To summarize, the discrete derivative used in the present paper, depending on where the quan-
tities are defined (corners or centers), reads as

D̂ fk = iξ+k f̂k or D̂ fk = iξ−k f̂k with ξ+k ξ
−
k = ξ̃k . (7)

The extension of these results to 3D grids is quite technical but not difficult. Equation (1) can be
written as a sum over the eight corners of the corresponding voxel centers, and as in (5) and (6),
the translation property (Equation (4) extended to the 3D case) allows the discrete derivative
to be evaluated in Fourier space. Finally, for the displacement evaluated at voxel corners and
the gradient evaluated at voxel centers or for the stress evaluated at voxel centers and the stress
divergence at voxel corners, we have

ágrad(u)k = iûk ⊗ξ+k and ádiv(σ)k = iσ̂k .ξ−k with ξ±k = ξ̃k exp(±iξk.I/2). (8)

Here, k is a 3D integer vector (ki ∈ {0, Ni −1}), ξk =∑3
i=1(2πki /Ni )ei =∑3

i=1 ξki ei (ei is a vector of
the reference orthonormal basis), and I is the vector (1,1,1). The « modified » frequencies ξ̃k are
as follows:

ξ̃k1 =
2

h1
cos

(
ξk2

2

)
cos

(
ξk3

2

)
sin

(
ξk1

2

)
,

ξ̃k2 =
2

h2
cos

(
ξk1

2

)
cos

(
ξk3

2

)
sin

(
ξk2

2

)
,

ξ̃k3 =
2

h3
cos

(
ξk1

2

)
cos

(
ξk2

2

)
sin

(
ξk2

2

)
.

(9)

It must be emphasized that these modified frequencies are equal to the modified frequencies
reported in [14]. Instead of using a “trick” that involves rotating the basis to evaluate finite
differences, lending the name “rotated scheme” to the method in [14], the present derivation
method relies on general expressions, corresponding to surface integrals over a small domain ω,
such as proposed equations (1) and (2). These general expressions allow for multiple definitions
of first discrete derivatives depending on the choice made for the domain ω (one voxel in the
present work); see Figure 11 in [15].

The second-order discrete derivatives are defined here as a succession of two first-order
discrete derivatives. After the two opposite transfers from centers to corners and then from
corners to centers (or inversely), the translation terms exp(±iξk · I/2) vanish.

Finally, as noted in [13], with the choice made for the discrete derivatives (Equations (7)
and (8)), the resolution of the problem with the FFT-based algorithm (see below) is equivalent to
its resolution with a standard FE code using linear hexahedral elements with reduced integration
(one integration point per element).
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2.3. FFT-based algorithm with periodic BC

The set of equations for a mechanical (elastic) problem to solve, under the small strain assump-
tion, on a unit cellΩ is as follows:

div(σ(x)) = 0

σ(x) = c(x) : ε(x)

ε(x) = (∇u)sym(x)

u(x) =∇U · x + ũ(x)

+ boundary conditions on ∂Ω.

(10)

Here, σ, ε, u, and c are the stress, strain, displacement, and stiffness tensor fields, respectively.
The parameter ∇U denotes the applied average displacement gradient and ũ is the unknown
displacement fluctuation. In the case of periodic BC (on ∂Ω), ũ is periodic and the traction vector
(t =σ ·n) is antiperiodic. In that case, the problem can be solved by using a fixed-point algorithm
based on the application of the Green operator Γ0, which can be advantageously computed in
Fourier space. The original fixed-point algorithm proposed in [16] reads as

τ= (c − c0) : ε

ε̃=−Γ0 ∗τ (� Fourier)

ε=∇U sym + ε̃.

(11)

The stiffness tensor c0 is homogeneous throughout the unit cell and Γ0 is the periodic Green
operator associated with the homogeneous medium of stiffness c0. To construct Γ0, the set of
equations (div(σ) = 0; ε̃= (grad(ũ))sym; σ= c0 : ε̃+τ) must be written in Fourier space and recast
to obtain ̂̃ε as a function of τ̂ (the reader may refer to the appendix in [1]). The expressions of the
discrete divergence and the gradient in Fourier space given in (8) are then used in place of their
corresponding continuous expressions from the appendix of [1] for constructing Γ0.

Following the same idea, a similar Green operator G0 is defined, relating the displacement
fluctuation ũ to the polarization τ: ũ = −G0 ∗ τ. The parameter G0 is used in Section 3.2, in
algorithm (16), to apply Dirichlet BC.

3. FFT-based algorithm with Dirichlet BC

3.1. Method

The strategy used to solve problem (10) with Dirichlet BC (ũ = ũd on ∂Ω) with an FFT-based
solver, which assumes periodic BC, consists in defining an elastic buffer zone ΩB around Ω,
performing the FFT-based simulation with periodic BC on the larger unit cell ΩL (= Ω∪ΩB),
and then prescribing ũ = ũd on ∂Ω, which is now regarded as an internal surface within ΩL (see
Figure 2). As the stress/strain fields, solutions of the elastic problem, are independent of any rigid-
body translation, the displacement fluctuation can be applied up to a constant, which we fix by
setting arbitrarily the average displacement fluctuation field on ∂Ω to 0:

〈ũd 〉∂Ω = 0. (12)

The main idea of the method is to (a) define the so-called eigendisplacement fluctuation field
ũ∗ on ∂Ω (defined on the grid of corners), which gives rise to an eigenstrain field ε∗ defined at
voxel centers in the first layer of voxels in ΩB surrounding ∂Ω and (b) optimize ũ∗ for fulfilling
the Dirichlet BC. In the buffer zone, the elastic behavior reads as

σ= cB : (ε−ε∗) onΩB, (13)

C. R. Mécanique, 2020, 348, n 8-9, 693-704
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Figure 2. Illustration of the method proposed to apply Dirichlet BC with an FFT-based
solver.

where cB is the homogeneous elastic stiffness tensor of the buffer zone. Note that ε∗ is zero except
in the first layer of voxels surrounding ∂Ω.

3.2. Algorithm

The eigendisplacement fluctuation field ũ∗ is a sum of increments δũ∗ (evaluated from the
fixed-point algorithm (16)), which are null everywhere except on ∂Ω, where they are defined
as the difference between the applied displacement fluctuation and the current displacement
fluctuation (minus their average values to remove rigid-body-translation contributions):

δũ∗ = (ũd −〈ũd 〉∂Ω)− (ũ −〈ũ〉∂Ω) on ∂Ω. (14)

Note that 〈ũd 〉∂Ω was arbitrarily set to zero in (12).
The eigenstrain field is then defined onΩB at voxel centers as

ε∗ = (grad(ũ∗))sym onΩB. (15)

Applying the discrete gradient defined in Section 2.2 yields the result that ε∗ is null onΩB except
on the first layer of voxels surrounding ∂Ω.

With these definitions in hand, the algorithm detailed in (17) is first introduced in (16). It
consists of two iteration steps: step (A) solves the problem on the enlarged unit cell with an
eigenstrain field defined on the layer of voxels surrounding ∂Ω and step (B) defines a new
eigenstrain field from the current field and the gap between the displacement fluctuations
applied on ∂Ω and the current displacement fluctuation on ∂Ω obtained from step (A). The
convergence of this simple algorithm is not guaranteed, but it can be improved by using a
convergence acceleration technique.

(A)


τ= (c − c0) : (ε−ε∗)

ũ =−G0 ∗τ (� Fourier)

ε=∇U sym + (grad(ũ))sym.

(B)

{
δũ∗ = (ũd −〈ũd 〉∂Ω)− (ũ −〈ũ〉∂Ω)

ε∗ = ε∗+ (grad(δũ∗))sym.

(16)

Finally, a modification of the classical fixed-point algorithm [16] is proposed in algorithm (17) to
solve the periodic problem onΩL with prescribed Dirichlet BC on ∂Ω. The classical algorithm [16]
consists of three steps from algorithm (17): (1) evaluation of behavior, (2) application of the
Green operator, and (5) evaluation of the equilibrium criterion. Hence, the algorithm modified

C. R. Mécanique, 2020, 348, n 8-9, 693-704
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for applying Dirichlet BC consists of slight modifications of the classical algorithm by the addition
of the following steps: (3) computation of eigendisplacement fluctuation, (4) computation of
eigenstrain, and (5) evaluation of the error on Dirichlet BC.

Initialize: ε=∇U sym onΩL, ε∗ = 0 onΩL, ũ∗ = 0 on ∂Ω
Do while Errσ > Errσ0 and ErrBC > ErrBC0

1/ Behavior onΩL:

(ε,ε∗) →σ→ τ=σ− c0 : ε. (17)

2/ Green (� Fourier) onΩL:

ũ = −G0 ∗τ, ε̃= (grad(ũ))sym

ε = ∇U sym + ε̃
u = ∇U · x + ũ.

3/ Eigendisplacement fluctuation on ∂Ω:

δũ∗ = (ũd −〈ũd 〉∂Ω)− (ũ −〈ũ〉∂Ω)

ũ∗ = ũ∗+δũ∗.

4/ Eigenstrain onΩB:

ε∗ = (grad(ũ∗))sym.

5/ Convergence criteria:

onΩL, Errσ = ‖div(σ)‖/‖σ‖ (in Fourier space)

on ∂Ω, ErrBC = ‖δũ‖/‖u‖.

As implemented in the FFT-based code AMITEX_FFTP to accelerate the original fixed-point
algorithm [11], the Anderson convergence acceleration procedure is adapted to the present
context. To summarize, the Anderson acceleration procedure [10] stores the last NACV couples
(unknown vector U , residual vector R) and, every MACV iterations, proposes a new unknown
vector (instead of the vector proposed by the fixed-point algorithm).

In the present case, the strain components evaluated on the Ntot voxel centers of ΩL are ar-
ranged in the strain vector Uε of size 6Ntot. The eigendisplacement fluctuation components eval-
uated on the ntot voxel corners defining the contour ∂Ω are arranged in the eigendisplacement
vector Uũ∗ of size 3ntot. Residual vectors Rε and Rũ∗ are constructed in the same manner from
δε and δũ∗ (here, δε denotes the difference between ε values after and before the application
of the Green operator). Vectors Uũ∗ and Uε on one side and Rε and Rũ∗ on the other side are
then arranged to form the unknown and residual vectors U and R, respectively. Note that as dis-
placements and strains are different quantities, before applying a convergence acceleration pro-
cedure to the last NACV couples of unknown and residual vectors (U ,R), the NACV subvectors Uũ∗

are normalized by the norm of the last stored Uũ∗ . The same procedure is adopted for the NACV

subvectors Uε, Rε, and Rũ∗ .
The “algorithm parameters” influencing the convergence are the stiffness of the reference

material c0, the elastic coefficients and thickness of the buffer zone, and the parameters NACV

and MACV. The tolerances on the equilibrium and BC criteria are Errσ0 and ErrBC0, respectively.

4. Numerical validation and analysis

The choice of c0, following the rule proposed in [1] (x0 = (1/2)(min(x)+max(x)), where x denotes
the Lamé coefficients λ and µ), proves to be also relevant to the present algorithm modified for
Dirichlet BC.

C. R. Mécanique, 2020, 348, n 8-9, 693-704
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Figure 3. Soft inclusion within a matrix (elastic contrast 105) subjected to uniaxial strain
(horizontal) with null displacement fluctuations (the so-called KUBC in [4]): discretization
(left), axial stress field from the FE (middle), and the FFT-based (right) methods.

In our implementation of the convergence acceleration, NACV = 4. For the simulations of
elastic matrix/inclusion considered below, the value MACV = 5 and the buffer zone behavior
given by the stiffest behavior between the matrix and the inclusion are optimized from numerical
experiments with respect to convergence. For the sake of conciseness, the results are not reported
below. We focus our interest on the mechanical contrast, the applied displacement, the buffer
zone thickness, and the spatial resolution. However, note that the buffer zone behavior has an
important effect on the convergence and not respecting this “rule” may significantly deteriorate
the convergence.

Finally, the tolerances on the criteria of both the equilibrium and the BC are set to 10−4.

4.1. Validation

As mentioned in Section 2.2, the FFT-based method proposed in the present paper is equivalent
to an FE method using linear elements with reduced integration [13]. Therefore, a direct compari-
son between them will serve as a validation of the implementation. Since 3D linear elements with
reduced integration are unavailable in our FE code (CAST3M [17]), the comparison is performed
on a 2D plane-strain simulation with purely uniaxial average strain and null displacement fluc-
tuations (u(x) = ∇U · x on ∂Ω, where ∇U = ε0

11e1 ⊗ e1 and ε0
11 = 0.01), which corresponds to the

so-called KUBC [4]. The 3D FFT-based implementation accounts for a single layer of voxels in
the out-of-plane direction. The square unit cellΩ (D0 ×D0) consists of a disk inclusion of radius
0.3D0 with its center being located at (0.36D0, 0.36D0) to avoid any symmetry. The discretization
is 30×30×1 voxels forΩ. This configuration is equivalent to a 2D plane-strain simulation. It must
be emphasized that the inclusion is quite close to the boundary ∂Ω, where the displacement is
prescribed. In addition, the inclusion is very soft with an elastic contrast of 105 (Em = 105 GPa,
Ei = 1 GPa, and νm = νi = 0.3).

For soft inclusion, the elastic coefficients of the buffer zone are the same as those of the matrix.
The thickness of the buffer zone is 5 voxels. Therefore, the size of the enlarged unit cell ΩL is
(30+2×5)× (30+2×5)×1.

The comparison of the two axial stress fields in Figure 3 reveals almost perfect agreement be-
tween standard FE and FFT-based results up to the precision of the iterative FFT-based method.
The range of the color bar, adjusted to the range of the fields, demonstrates that even the ex-
tremum values are nicely reproduced. This nice comparison validates our method proposed for
applying Dirichlet BC with a FFT-based solver. Note that the spurious oscillations, observed in
both simulations, cannot be attributed to any FFT-based artifact (such as the Gibbs phenomenon
or aliasing) but rather to an artifact related to the use of linear FE with reduced integration, the
hourglass [18].

C. R. Mécanique, 2020, 348, n 8-9, 693-704
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Table 1. Iterations for different elastic contrasts and different boundary conditions

α ∞ 105 102 101 100 10−1 10−3 10−5 10−10

Dirichlet 46 46 50 50 0 70 110 111 111
Periodic 27 27 25 27 0 16 32 32 32

In spite of quite challenging conditions for the modified FFT-based algorithm (high contrast
and proximity of the inclusion to the boundary), convergence is reached after 46 iterations.
Section 4.2 provides a deeper convergence analysis.

4.2. Analysis

The following analysis relies on the reference simulation described above (same geometry, dis-
cretization, elastic stiffness and thickness of the buffer zone, BC, reference material behavior,
convergence acceleration parameters, and convergence criteria). The conclusions drawn in the
following are limited to similar simulations.

4.2.1. Mechanical contrast

The number of iterations for the simulations performed with different elastic contrasts,
α= Ematrix/Einclusion, are reported in Table 1 together with those for the simulations with peri-
odic BC (i.e., using the same algorithm without the additional steps for Dirichlet BC and without
the buffer zone).

As expected, the convergence of the algorithm is worse with additional conditions to be
satisfied (i.e., the Dirichlet BC) than without. This remark holds for different contrasts but with
a factor of ∼2 for soft inclusion and a factor of ∼3.5 for stiff inclusion. However, the number of
iterations remains reasonable even for very high elastic contrasts.

4.2.2. Heterogeneous Dirichlet BC

In the previous simulations, Dirichlet BC are applied with null displacement fluctuations.
Here, the axial displacement fluctuations are either random or sinusoidal (other components are
null) according to

ũd1 = 0.2ε0
11D0

1

2
sin

(
(x1 +x2)4π

D0

)
−〈ũd1〉∂Ω,

ũd1 = 0.2ε0
11D0 rand−〈ũd1〉∂Ω,

(18)

where rand is a random generator with values uniformly distributed in [0,1]. In both cases,
the range of displacement fluctuations covers 20% of the maximum “average” displacement
(ε0

11D0/2). The axial stress fields simulated with these two types of Dirichlet BC, displayed in
Figure 4 for pore inclusion, allow us to visualize their effect. The number of iterations of the
simulations with different types of Dirichlet BC are reported in Table 2 for the two extreme cases
(pore and very stiff inclusion) and for the homogeneous case. It is striking to observe that the
type and the range of the prescribed displacement fluctuations have a very limited effect on
the convergence. For the homogeneous case, the algorithm proves to be very efficient with both
random and sinusoidal Dirichlet BC. As regards KUBC, the initial guess of the algorithm provides
directly the solution (homogeneous strain).

4.2.3. Convergence evolution

Up until now, only the number of iterations at convergence was reported to analyze the
algorithm performance. The main observations regarding the evolution of the convergence
criteria are summarized below.

C. R. Mécanique, 2020, 348, n 8-9, 693-704
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Figure 4. Axial stress fields obtained for pore inclusion with sinusoidal (left) and random
(right) Dirichlet BC.

Table 2. Iterations for different Dirichlet BC (null, random, and sinusoidal displacement
fluctuations) in two extreme cases (porous and stiff inclusions) and the homogeneous case

Null (=KUBC) Random Sinusoidal
Pore (α=∞) 46 46 52

Homogeneous (α= 1) 0 25 20
Stiff inclusion (α= 10−10) 111 140 130

For a homogeneous unit cell and non-null Dirichlet BC (sinusoidal for example), the fixed-
point algorithm without any convergence acceleration exhibits a monotonic decrease in both the
criteria, and convergence is reached after 47 iterations. When using convergence acceleration,
convergence decreases monotonically between each acceleration (every set of MACV iterations,
where MACV = 5). Moreover, each acceleration drastically reduces the criteria up to convergence
after 20 iterations.

For soft inclusion, the fixed-point algorithm without acceleration converges monotonically
up to an elastic contrast of 2 (with 74 iterations). For higher contrasts, the convergence rate
worsens so that acceleration is required to reach convergence. During the MACV(= 5) iterations
of the fixed point, the two criteria increase or oscillate almost randomly, and each acceleration
drastically reduces their values. Considering the criteria evaluated only after accelerations (i.e.,
every MACV(= 5) iterations), the convergence is monotonic.

For stiff inclusion, the same behavior is observed. The non-accelerated fixed-point algorithm
converges monotonically up to a contrast of 0.5 (with 46 iterations). For higher contrasts (α< 0.5),
acceleration is required to reach convergence. However, in this case, even the criteria evaluated
only after accelerations (i.e., every MACV(= 5) iterations) do not decrease monotonically, which
explains the higher number of iterations reported for stiff inclusions compared to soft inclusions
in Table 1.

4.2.4. Buffer zone and spatial resolution

The thickness of the buffer zone (Nb in voxels) together with the effect of the spatial resolution
(N0 in voxels) is presented in Tables 3 and 4 for the two extreme cases. The sizes ofΩ andΩL are
respectively N 2

0 and (N0 +2Nb)2 in the present 2D case.
In spite of the non-monotonic convergence of our algorithm (see Section 4.2.3), some trends

can be observed and the following conclusions can be drawn: (a) for a given spatial resolution, the
thicker the buffer zone, the better the convergence; (b) for a given thickness of the buffer zone (in
voxels), the higher the resolution, the worse the convergence. Ultimately, the ratio Nb/N0 appears
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Table 3. Iterations for various spatial resolution (N0) and contour thickness (Nb) values:
pore inclusion

N0\Nb 5 10 20 30
30 46 70 45 35
60 195 50 36 40

120 1560 155 50 45

Table 4. Iterations for various spatial resolution (N0) and contour thickness (Nb) values:
stiff inclusion (contrast 10−10)

N0\Nb 5 10 20 30
30 111 70 60 80
60 2465 180 60 50

120 Stop 3000 Stop 3000 205 95

to be a key parameter. Above a given value, the convergence is quite stable. From Tables 3 and 4,
this optimal ratio is estimated approximately as 0.2 (5/30) for pore inclusions and 0.33 (10/30) for
stiff inclusions.

In practice, the optimization of the ratio Nb/N0 should take into account not only the number
of iterations but also the problem size, which increases as (N0 + 2Nb)2 in 2D and (N0 + 2Nb)3

in 3D.

5. Conclusions, discussion, and future prospects

A novel approach has been proposed for applying Dirichlet BC with an FFT-based solver for
solid mechanics. The approach relies on (a) an embedding buffer zone surrounding the unit
cell, (b) discretization of the equations corresponding to linear FE with reduced integration,
(c) a simple modification of the classical fixed-point algorithm [1] with the introduction of
the so-called eigendisplacement field at the boundary as an additional unknown, and (d) a
convergence acceleration procedure required to attain convergence when the elastic contrast
becomes significant.

The approach has been validated by a direct comparison with a mathematically equivalent FE
simulation performed using a linear FE with reduced integration. As expected, the solution fields
are almost identical up to the precision of the iterative method. Then, the convergence of the
method has been analyzed for the case of the 2D matrix/inclusion unit cell used for validation.
The method converges with a quite reasonable number of iterations (.100) for both pore and
very stiff inclusions with soft inclusions exhibiting better performance. Neither the type (null,
random, and sinusoidal) nor the range of the displacement fluctuations applied at the boundary
significantly affects the efficiency of the method. Finally, an optimal ratio (between the buffer
zone thickness and the unit-cell size) is obtained above which the convergence is quite stable.

The price to pay for applying Dirichlet BC with the modified FFT-based solver when com-
pared to periodic BC with the non-modified solver arises from different points. The number of
iterations is higher and the size of the problem with the buffer zone is larger (in addition, each it-
eration involves additional steps, but this increased cost is probably not predominant). However,
the method remains efficient. The method can also be efficiently parallelized, which is a major
advantage when compared to standard FE-based codes. In addition, in spite of its reduced per-
formance, this is a convenient method for users to test various BC with the same code and the
same inputs.
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As a future prospect, a more comprehensive comparison should be conducted with regard
to the performance of standard FE-based solvers, especially in 3D. Despite the reduced perfor-
mance, is the FFT-based method modified for Dirichlet BC still more efficient? Moreover, the ap-
plicability of the method will have to be verified and analyzed for non-linear behaviors, for the
finite strain framework, and for non-parallelepiped unit cells. The last approach could also ben-
efit from an adaptation of the immersed interface method proposed in [9]. The adaption of the
method to mixed BC should also be addressed in the future. Finally, the method will be integrated
into the massively parallel FFT-based code AMITEX_FFTP [3].
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