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Abstract. In 2008, we published an article proposing that the microtubular cytoskeleton in plants use maxi-
mal tensile stress directions to guide organ growth [1]. Yves Couder was instrumental in that project. Here are
some memories and prospects from this collaborative and interdisciplinary endeavor.
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A revisited question

Yves Couder played a central role in a collaborative project between 2005 and 2008, with col-
leagues in the US (Elliot Meyerowitz, Marcus Heisler), Sweden (Henrik Jönsson, Pawel Krupinski)
and France (Arezki Boudaoud). Jan Traas had met Yves a number of years earlier, when he visited
the lab at INRA in Versailles (France) to talk about phyllotaxis. Yves had, together with a PhD stu-
dent, Stéphane Douady, developed a very original experimental system to study different phyl-
lotactic patterns, based on magnetic drops floating in a bath with an electrical field [2]. Jan then
already was very impressed by the way he was looking at biological problems based on holistic,
much more conceptual approaches, combining theory with rigorous and highly creative experi-
ments. It therefore seemed logical to invite him and his team to participate a couple of years later
in a Human Frontier Science Program (HFSP) project aimed at understanding the role of me-
chanics in meristem function. At that time, the role of biophysics was largely ignored by main-
stream plant developmental biologists (with some exception, e.g. [3, 4]). The few who had tried
before, testing hypotheses on the role of physical forces in growing plant structures had been dis-
appointed by technical difficulties and limitations. Overall the idea was that development was
dictated by genes and that the physical components of cells and tissues were passively obeying
orders issued by a rigid (“tightly controlled”) molecular program. Terms like “complex systems” or
“emergent properties” were not really part of our vocabulary, developmental biology was largely
a qualitative science and we only just had started to use mathematical, computational mecha-
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nistic models with the group of Christophe Godin as a way to examine and formulate complex
hypotheses [5] (for a discussion on engineering vs. systems view of the cell, see e.g. [6]).

From the initial visit to Yves’ laboratory at the Ecole Normale Supérieure in Paris, it immedi-
ately became clear that he was the right person for this project. Indeed, his team was working on
many different physical systems, with elegant and very original setups aimed at studying the dy-
namics diverse (macroscopical) systems including dunes, crack patterns in gels and ceramics [7],
branching architectures [8] or microdroplets on vibrating oil baths [9]. Pioneering work on plants,
in particular by Paul Green and colleagues, had suggested that patterns of strain and stress, gen-
erated by shape and growth, could be interpreted by the cells to control growth and cell differen-
tiation. So far, however, it had been impossible to go much beyond the general and self-evident
idea that physical forces are important in morphogenesis. We decided to re-examine this issue,
exploiting new imaging technologies combined with genetics, micromechanics and modelling.

Yves was very enthusiastic and spent several hours discussing both conceptual and technical
issues related to the project with Jan. Just two days later, Yves phoned with the good news
that his technical staff had designed a simple device to deform plant tissues. So, they spent
several days trying to deform and squeeze the tiny meristems of Arabidopsis under a confocal
microscope and it actually worked! The preliminary results were so promising that they formed
one of the cornerstones of the proposal, that was finally accepted by HFSP, incidentally allowing
Olivier Hamant and Alexis Peaucelle to join the team. This collaboration, involving two teams
of physicists and two teams of biologists turned out to be one of the most successful and
passionate in our careers. Also one of the most difficult ones, as we were coming from different
disciplines, with different cultures. Physicists were from the start much more quantitative and
precise in their approaches, the biologists much more qualitative and pragmatic when it came to
dealing with the limitations of their experimental approaches. From the biologist’s perspective,
this angle was nevertheless particularly refreshing. In particular, addressing the physical aspects
of morphogenesis seemed to bring us closer to causality, while opening many new research
avenues. When we discussed the results we had obtained, looking at the effects of mechanical
perturbations on the structural elements of the cells (the cytoskeleton), Yves suggested that they
could be explained by a negative feedback loop, where cells would mechanically resist the main
forces that acted on them (Figure 1A). Although the idea was attractive, some biologists in the
collaborative network were somewhat skeptical. Invisible forces acting on cells? Why not simply
propose that the cells were reacting to deformation? A passionate discussion followed by mail
which lasted for several weeks. At a certain moment, Yves wrote a long message explaining why
we definitely should not rule out physical forces (in the end arguing that planets do not turn
around the sun because they always turn left!):

“In very general terms physics has built, over the centuries, abstract tools that have proven
useful for the analysis of a large variety of natural phenomena. There was a time where biology
and physics were both part of "natural philosophy". That the physics approach is insufficient to
investigate the complexity of life is evident. To analyse it, biology has built new and powerful tools.
However, living systems are also part of the physical world so that physics applies to them. The
problem is rather on whether physics can help [to] solve biological riddles. This is what our project
was about. In this regard some of the basic concepts of physics have to be accepted, otherwise the
dialog becomes impossible. I agree that no one can see a stress in a living tissue. But no one has
ever seen a stress in a piece of metal either. Yet the computation of stress fields turns out useful
in designing e.g. aircrafts. Stresses are more abstract but not more complex than strains. Forces are
more abstract than displacements, yet a simpler interpretation of the planetary motions is obtained
in terms of forces than in terms of trajectories.”

His input and the computational models subsequently made by our colleagues in Sweden
further convinced us that the mechanical feedback Yves proposed, where cells would treat
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Figure 1. Matching stress and CMT pattern at the shoot apical meristem. A. Back of the en-
velope notes from Yves Couder. B. Original figure, reproduced with authorization from [1].
Stress pattern (left) and CMT orientations (right). C. Diagram showing the mechanical feed-
back on cortical microtubules for a (pressurized) cylindrical tissue. D. Cell contours (red)
and CMT (green) orientations in the Arabidopsis shoot apical meristem. Scale bar: 10 µm.
Panels B and D adapted with permission from [1].

forces as signals, could actually explain major shape changes in plants (Figure 1B–D, [1]). Yves
even went on suggesting further work to explore the resemblance between meristematic cells
treated with cytoskeleton destabilizing drugs and soap bubbles. We indeed found ourselves doing
experiments which seemed completely trivial to us, but not at all to physicists. We thus finally
showed that foams and plant cells, two apparently very different systems with very different
dynamics shared a number of basic physical properties [10].

A result with many implications

As usual in science, our study on the cortical microtubule response to tensile stress required fur-
ther confirmation to be fully established. We thus developed new mechanical perturbations, no-
tably in the form of cell wall weakening with the cellulose synthase inhibitor isoxaben. In such
conditions, we observed an hyper-alignment of CMTs in the shoot apical meristem, again match-
ing the predicted stress pattern [11]. Over the years, we extended our study to other types of
tissues, namely epidermal cells from cotyledons [12], sepals [13], hypocotyls and stems [14].
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In parallel, other teams further confirmed this finding in these tissues but with different mi-
cromechancial tools, such as hypocotyl stretcher [15], and in other tissues, such as leaves [16]
or immature seeds [17]. Note that earlier studies were performed in other species than Arabidop-
sis thaliana, like sunflower [18] or Nitella [19], with consistent predictions. We also used cell-cell
adhesion mutants to reveal the tensile stress pattern: the orientation of the cracks in tissues being
perpendicular to the maximal direction of the pulling force. This further confirmed a good match
between tensile stress pattern and CMT orientation [14].

From this central feedback module, and because the key role of cellulose microfibrils in
plant morphogenesis, we could derive important developmental implications. The examples
below illustrate how this initial work with Yves turned out to be a major building block for our
research. Using computational modeling and a mutant impaired in the response of CMTs to
mechanical stress, we revealed that the shoot apical meristem actively maintained mechanical
conflicts between cells growing at different speed, through the CMT response to mechanical
stress: differential growth between adjacent cells trigger the alignment of CMTs, fueling growth
anisotropy, which in turn, further amplifies differential growth. We believe that such a loop on
growth heterogeneity primes organogenesis: a basal level of differential growth is always present
at the shoot apical meristem, which can then be mobilized to trigger local outgrowth, e.g. upon
local increase in the hormone auxin concentration [20]. In the sepal, such differential growth
triggers a different response: cells around rapidly growing trichomes are resisting the induced
tensile stress pattern by aligning their CMTs, and this mechanically isolates the fast-growing
cell from the rest of the tissue, in the form of a predicted stiff ring around trichomes. We called
this mechanism “mechanical shielding”. From our morphometric analysis, it seems that such
a mechanism contributes to sepal shape reproducibility, because it would prevent fast growing
cells from distorting the tissue [21].

Needless to say, this work also echoes a number of studies in the animal kingdom. In particu-
lar, the CMT response to tensile stress appears quite homologous to that of actin cables to tensile
stress. In particular, upon single stretching, actin cables form and align with the maximal direc-
tion of tensile stress [22]. Therefore, not only the initial work with Yves allowed to revisit a num-
ber of developmental questions in plants, it also generated new bridges with the development
community working on animal systems.

A project opening new prospects

Yet, one essential element is still missing today. How could cells perceive the direction of mechan-
ical stress? This is in fact a question that goes beyond plant biology, as most mechanoperception
mechanisms actually relate to the perception of stress magnitude, not stress direction. Reports
on animal systems suggest that actin could be a mechanosensor on its own. In particular, upon
bending, actin becomes more branched and this affects the overall cortical network [23]. In a dif-
ferent mechanism, actin severing by cofilin depends on tension in the actin filament [24]. Be-
cause the actin filaments are extended structures, they convey and are sensitive to directional
information. In that sense, they can behave as sensors of stress direction. Could CMTs share a
similar function?

In vitro assays, using optical traps, demonstrate that microtubule polymerization is stimulated
when they are pulled, whereas depolymerization occurs upon compression [25, 26]. Assuming
that CMTs are indirectly connected to the cell wall, then tension in the wall may be transmitted
to the microtubules, and polymerization of tensed microtubules would be favored. Such a bias
would be sufficient to orient the network of CMTs in the cell, at least based on in silico studies [27].
In another scenario, rather comparable to the cofilin- and tension-dependent actin behavior, the
microtubule severing katanin may be involved in the ability of CMTs to align with tensile stress.
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The katanin mutant exhibits a slower CMT response to stress [20]. Furthermore, there is evidence
that katanin preferentially targets defects in the microtubule lattice in Drosophila [28]. Therefore,
one could speculate that tensed microtubules also exhibit different defect patterns than non-
tensed ones, leading to their preferential alignment with maximal tensile stress direction. In
addition to these speculations, two major black boxes in this framework remain.

First, the molecular factors of the CMT-cell wall continuum are still ill-described, and thus
it is unclear how a cue from the cell wall may affect CMTs. There is evidence that CMTs are
physically anchored to the plasma membrane (e.g. [29]). CMTs may be recruited to the plasma
membrane through phospholipids, e.g. thanks to the interaction between phosphatidic acid
and the microtubule bundling protein MAP65 [30]. Last, the CMT-cellulose machinery may
contribute to the propagation of stress from the cell wall to the CMTs [31].

Second, even if cell wall cues could be transmitted to CMTs, these would rather be strains
than stresses. How can cells sense stress direction through local strains? The idea that stress may
induce damages to the cell wall and/or to the CMTs may provide a way to translate stress in some
kind of code, in the CMT lattice. How this could work is still an open question. Alternatively,
sensing stress may rather involve curvature than strain only. The example of actin bending
illustrates how such local curvature can serve as a cue for cytoskeleton reorganization [23].
Alternatively, key cues may come for local curvature in the cell, and notably cell edges. There
is evidence that such domains play important role in CMT organization [32, 33]. It remains
to understand how the cell could sense such geometries, and translate them into cues for
cytoskeleton organization.
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