
Comptes Rendus

Mécanique

Emmanuel Siéfert and Benoît Roman

Morphogenesis through elastic phase separation in a pneumatic surface
Volume 348, issue 6-7 (2020), p. 649-657.

<https://doi.org/10.5802/crmeca.43>

Part of the Thematic Issue: Tribute to an exemplary man: Yves Couder

Guest editors:Martine Ben Amar (Paris Sciences & Lettres, LPENS, Paris, France),
Laurent Limat (Paris-Diderot University, CNRS, MSC, Paris, France),
Olivier Pouliquen (Aix-Marseille Université, CNRS, IUSTI, Marseille, France)
and Emmanuel Villermaux (Aix-Marseille Université, CNRS, Centrale Marseille,
IRPHE, Marseille, France)

© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

https://doi.org/10.5802/crmeca.43
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mécanique
2020, 348, n 6-7, p. 649-657
https://doi.org/10.5802/crmeca.43

Tribute to an exemplary man: Yves Couder

Morphogenesis, elasticity

Morphogenesis through elastic phase

separation in a pneumatic surface

Emmanuel Siéfert∗, a and Benoît Romana

a PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université Université de
Paris, F-75005, Paris, France

E-mails: emmanuel.siefert@gmail.com (E. Siéfert), benoit.roman@espci.fr (B. Roman)

Abstract. We report a phenomenon of phase separation that relates in many aspects to Yves Couder’s
work: an inflatable architectured elastomer plate, expected to expand homogeneously in its plane, buckles
instead widely out-of-plane into very complex shape when internal pressure is applied. We show that this
morphogenetic pattern formation is due to a two-dimensional elastic phase separation, which induces
incompatible patchy non-Euclidean reference metric.
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Note. A tribute to Yves Couder.

1. Introduction

Morphogenesis has been one of the subjects of interest of Yves Couder, with a strong contribution
on how geometry and mechanics play a role in plant spatial organisation of organs [1, 2], and
shape regulation [3]. The study of instability in mechanics is another important string of works
by Yves Couder [4, 5]. Here we report a new elastic phase-separation instability, that leads to very
impressive shape morphogenesis.

We consider an architected elastomeric plate, with the following internal structure: a triangu-
lar network (spacing a) of cylindrical pillars (height h and diameter d) connects a top and bottom
layer (thickness e), as in Figure 1. When a pressure p is imposed in this internal chamber, which
has a internal structure everywhere identical, we can expect a uniform response of the material,
so that the plate should simply expand everywhere by the same factor. This is indeed the case
when pressure is low (see first 2 pictures in Figure 1(c)). But very surprising shape changes are
observed at one critical pressure (pressure is approximately constant in all pictures except the
first one on Figure 1(c)), where the structure locally buckles out of plane in several areas, whereas
the rest remains flat. As more air is inflated inside the plate, the shape evolves as the bumps pro-
gressively merge though a complex series of shapes in a very homogeneous structure.
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Figure 1. Elastic phase separation. (a) (left) Schematic top view of the regular pillar lat-
tice of pitch a, the diameter of the pillars being d . The boundary walls have a thickness
of approx. d/2. The structure is connected to a pressure supply (e.g. a syringe). (right)
Schematic 3D representation of a portion of the structure, e being the thickness of the top
and bottom membranes, and h the height of the pillars. (b) Upon inflation, the structure de-
forms, changing thus the actual ψ and φ parameters, leading to geometric non-linearities.
In the model proposed, the deformed pillars are approximated by cylinders, neglecting the
boundary effect on the actual shape of the pillar, and accepting the deformation mismatch
at the boundary pillar-membrane (the pillars shrink in the xy-plane, whereas the mem-
brane is stretched). (c) Series of pictures of a large plate embedding a regular triangular
lattice of pillars upon inflation (diameter of 25 cm, a = 3 mm, d = 2.4 mm, h = 3 mm,
e = 1.2 mm). Bulges appear in the plate and then propagate through the whole structure, at
a nearly constant pressure. Scale bar: 5 cm.

Note that the homogeneously internal architecture presented here is different from the case of
pneumatic shape-morphing elastomers, termed as baromorphs [6], where the geometry and ori-
entation of internal cavities are spatially varied: when inflated, the resulting non-homogeneous
expansion distorts the metric in a programmed non-Euclidean way, creates internal stresses in
the plane and leads to the buckling of the structure. Here, in the contrary, the architecture is
strictly periodic, isotropic and everywhere similar, so that a simple homogeneous planar expan-
sion is expected.

In this article we wish to elucidate this surprising “morphogenetic” instability. We start by a
computation of the mechanical deformation of the inflated plate if assumed to be homogeneous.
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We next show that several states may be attained for the same imposed internal pressure and a
phase separation instability is expected; the coexistence of the two phases (in strongly different
stretch state and thus geometrically incompatible) explains the complex shapes observed.

2. Model and assumptions

We start by a description of the plate deformation as a function of pressure of such an architec-
tured plate (Figure 1). Throughout this paper, the ratio h/a is fixed equal to 1. The geometry of the
system is then defined by the two remaining relevant geometric parameters, Ψ = h/(h +2e) the
relative height of the pillars andΦ= (π/2

p
3)(d/a)2 the in-plane pillar density (the corresponding

airways density thus reads 1−Φ).
For the sake of simplicity, we assume that the top and bottom membranes are subjected to

spatially homogeneous equibiaxial extension in the ex and ey directions (see Figure 1(b)): the
principal stretches are λx = λy = λ. From incompressibility, λx λy λz = 1. Hence λz = 1/λ2.
Therefore, the first strain invariant, which quantifies the global amount of stretching of the
molecular chains is

J1 =λ2
x +λ2

y +λ2
z −3 = 2 λ2 + 1

λ4 −3. (1)

The material undergoes large strains in this experiment, and we use the phenomenological Gent
model [7] that takes into account the material non-linearities (strain stiffening). The strain energy
density function is designed such that it has a singularity when the first invariant J1 reaches a
limiting value Jm . Physically, it means that when the molecular chains are fully stretched, there is
no possibility for further stretch: in practice, rupture arises before this theoretical limit. According
to Gent’s model, we have the following constitutive law:

σ=−pr I+ µJm

Jm − J1
B (2)

where pr is a bulk pressure to be determined (through volume conservation), I is the identity
matrix, B the left Cauchy–Green deformation tensor and µ = E/2(1+ν) is the shear modulus of
the material.

The left Cauchy–Green deformation tensor in the top and bottom membranes can then be
expressed as

B =λ2 ex ⊗ex +λ2 ey ⊗ey + 1

λ4 ez ⊗ez . (3)

Assuming that σzz = 0 in the membrane, we get the following expression:

σxx =σy y =
(
λ2 − 1

λ4

)(
µJm

Jm − J1

)
. (4)

Moreover, we get through simple force balance, that

σxx =σy y = p
ψ

1−ψ (5)

where

ψ= Ψλp

Ψλp + (1−Ψ)/λ2 (6)

is the actual relative height of the pillars in the deformed configuration. Pillars are indeed
stretched by an amount λp and the top and bottom membranes are thinner by an amount
1/λ2 due to material incompressibility. It is thus critical to compute the deformation λp of
the pillar in the vertical direction. Deformation and stresses in the pillars are denoted with the
superscript p . Pillars are compressed in the horizontal plane by the pressure inside the chamber:
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hence, σp
xx = σ

p
y y = −p. In the vertical direction, balancing the forces perpendicular to a cut in

the x y-plane, yields:

σ
p
zz = p

1−φ
φ

(7)

where

φ= Φ

λ2λp (8)

is the actual pillar density in the deformed configuration. The pillar cross-section is indeed
reduced whereas the elementary size of the lattice increases, both effects leading to a reduction
of the pillar density. The symmetries of the pillars yieldλp

z =λp , λp
x =λp

y . From incompressibility,
we get (λp

x )2 = (λp
y )2 = 1/λp . Therefore,

J1 = (λp
x )2 + (λp

y )2 + (λp
z )2 −3 = (λp )2 + 2

λp −3. (9)

The left Cauchy–Green deformation tensor can then be expressed in the pillar as

Bp = 1

λp (ex ⊗ex +ey ⊗ey )+ (λp )2 ez ⊗ez . (10)

Hence, we have

σ
p
zz =−pr + (λp )2µJm

Jm − J1
; σ

p
xx =−pr + µJm

λp (Jm − J1)
=σp

y y (11)

where pr is a bulk pressure coming from the incompressibility that we shall now determine. As
σ

p
xx =σp

y y =−p, we have

pr = p + µJm

λp (Jm − J1)
. (12)

Therefore,

σ
p
zz =−p +

(
(λp )2 − 1

λp

)(
µJm

Jm − J1

)
. (13)

The actual in-plane pillar density φ in the deformed state reads thus φ=Φ/(λ2λp ).
To summarize, we propose a very simple model, in which the physical link of the pillars on the

membrane (i.e. boundary conditions on the pillar and actual stiffness of the membrane due to
the presence of pillars) is completely overseen. This model is believed to be more accurate when
bothΨ→ 1 and Φ→ 0, that is when the pillars are slender structures and do not affect much the
membranes stretching (see Figure 1(b)). The system to be solved is thus the following:

σxx = p
ψ

1−ψ =
(
λ2 − 1

λ4

) µJm

Jm −2 λ2 − 1

λ4 +3


σ

p
zz = p

1−φ
φ

=−p +
(
(λp )2 − 1

λp

) µJm

Jm − (λp )2 − 2

λp +3


φ= Φ

λ2λp

ψ= Ψλp

Ψλp + (1−Ψ)/λ2

(14)

where the unknowns are λ and λp , µ and Jm are material properties, Ψ and Φ are geometric
parameters of the structures and p the applied pressure.
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Figure 2. Fit of a tensile test on a ribbon made of Elite Double 8 from Zhermack with the
incompressible Gent model: the two parameters, namely the shear modulus µ and the
limited value of the first invariant Jm are found to best fit the experimental curve for the
values of 7.2×104 Pa and 14.2 respectively.

Table 1. Material properties deduced from a simple traction test by fitting the curve with
the expected response of a Gent hyperelastic model

Material Shear modulus µ First invariant limit Jm

Ecoflex 0050 3.0×104 Pa 23
Elite Double 8 7.2×104 Pa 14.2
DragonSkin 10 15×104 Pa 18
DragonSkin 20 21×104 Pa 7.6

3. Experimental realisation and quantitative comparison with the model

A tensile test is first performed at low speed to measure the characteristics of the silicone
elastomer as shown in Figure 2 for the case of Elite Double 8 from Zhermack (see Table 1 for the
typical values measured during this thesis). Fitting the experimental stress-deformation curve
with the theoretical constitutive law of Gent model for incompressible hyperelastic materials,
one infers the shear modulus of the material µ and the limiting value of the first invariant Jm for
each elastomer.

The plates with internal pillar structures are made of silicone elastomers (see Table 1) in a
3 steps process. Equal quantities of catalyst and base liquids are mixed and placed in a vacuum
chamber to remove trapped air bubble. Two sheets of thickness e are spread on a flat surface. After
curing, a circular 3D-printed annulus (thickness h, inner radius R) is placed on top of one sheet
and a new mixture is poured inside the annulus. A 3D-printed perforated plate (radius R −d/2,
thickness h, holes of diameter d forming a triangular lattice of pitch a) is then placed inside the
annulus and pushed through the liquid mixture to reach the bottom elastomeric sheet. Exceeding
liquid above the plate is scraped with a ruler. After curing, the structure (now comprising the sheet
and the the pillars) is removed from the perforated plate and is finally “glued” to the remaining
flat sheet using a thin layer of uncured mixture of the same material.

C. R. Mécanique, 2020, 348, n 6-7, 649-657
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Figure 3. (a) Series of pictures of a portion of a plate for various imposed volumes. (b)
Deformation response of the plate as a function of the dimensionless applied pressure p/µ
for various values of Ψ,Φ and Jm . Triangles correspond to experimental measurements,
solid lines to the theoretical response. Snapshots in (a) correspond to some data points on
the blue curve. The deformation may be easily measured by following the evolution of the
average distance between pillar centres. (c) Minimum value of Jm (color scale) in order to
have the superelastic instability as a function of the geometrical parametersΨ andΦ.

The experimental deformation in the pressurized structure is measured by taking top view
pictures at various stages, as shown in Figure 3(a). In regions where the in plane expansion
is homogeneous, the evolution of the local mean distance between two pillars is tracked to
extract the stretching factor λ as a function of pressure (Figure 3(b)). The volume, rather than
the pressure, of air injected in the structure is controlled in order to reach as many equilibrium
states as possible during both inflation and deflation. Solving the system of equations (14) with
Matlab, the computed theory obtained is in good quantitative agreement with the experimental
data points without any fitting parameter (see Figure 3(b)). Both the linear response at small
pressure and the strong non-linearities at larger pressure are well predicted by the model. We
obtain, for long enough chains (i.e. for large Jm), an S-curve. It means that two phases may coexist
for one given pressure, one stretched, the other barely strained.

When the mechanical response of a system (assumed homogeneous) includes a regime where
strain decreases with load, and later a subsequent stiffening (i.e. S shaped curved), a phenome-
non analogous to a phase separation occurs. In such cases, a Maxwell construction [8] leads to
a constant load for which two different state coexist in a spatially extended system. Such phase
transition are well known in mechanics, and rather termed “localization”, “propagative instabil-
ity” or “coexistent phases”. Examples are the hysteretic buckling of the tape-spring measurer [9],
the collapse of depressurized cylinders [10], the rippling of multi-walled carbon nanotubes [11],
the necking instability in plastic bar [12, 13] or the plateau in the stress-strain response for elas-
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Figure 4. An inflated tubular balloon is an example of phase separation in a 1D system: a
portion with very large expansion of the diameter (on the left of the balloon) coexists with
a portion in a phase with rather small deformation (right side of the balloon).

tic foams [14]. But maybe the simplest and more common example is the inflation of a cylindri-
cal hyperelastic ballon [8], which presents regions with very large diameter expansion coexisting
with regions hardly stretched (see Figure 4).

Our system depends on two geometric parameters, namely Φ and Ψ, that may impact this
bulge instability. In Figure 3(c), we show for each possible pair (Ψ,Φ), the minimum limiting first
invariant value Jm in order to get this instability. It appears that the in-plane relative stiffness,
measured byΨ, and the vertical stiffness, measured by Φ, must typically have the same value in
order to get the instability at low Jm .

Because they are one-dimensional objects, roots that grow non-uniformly, bars under local-
ized plastic extension [12], or cylindrical balloon [8] (Figure 4), the resulting inhomogeneous ax-
ial stretch does not produce geometrical incompatibilities. They are free to deform according to
the growth distribution and therefore do not develop internal stresses. Conversely, non-uniform
growth of two-dimensional sheets can be geometrically incompatible [15,16], leading to the accu-
mulation of stresses within the sheet. For example, if one portion of the sheet grows more rapidly
than its surrounding, it may buckle out of plane, as studied by Bense et al. [17] in the case of an ex-
panding patch of dielectric elastomer in a passive elastomer sheet. In the cylindrical balloon con-
figuration, the apparition of a bulge, which is much more stretched than the rest of the balloon,
is not affected by the barely stretched rest of the ballon. There is a smooth transition between the
two phases, but no internal stresses build up in the balloon, as a nearly 1D structure. In the 2D
sheet, conversely, the apparition of a bulge is geometrically incompatible with its barely stretched
surrounding. The structure thus locally buckles out of plane, as shown in Figure 1(c), leading to a
complex topology of the very simple and initially regular internal structure. The two phases cor-
responding to the same pressure, the structure picks the proportion of the highly stretch phase
depending on the air volume inserted in the structure.

Although the target strain-pressure curve and the subsequent bulge apparition are well under-
stood and captured by our minimal model, the induced 3D shapes are beyond the scope of this
article. They involve the theory of non Euclidean incompatible plates at finite deformation with
a specific superelastic response.

When the plate is smaller (but the thickness stays the same), its radius R gets closer to the
typical boundary layer width between the two phases. The structure can thus encompass only
one bulge and the shape is more controlled; the presence of an elastomeric wall around the
structures frustrates the in-plane extension of the structure and a well-defined bowl shape is
obtained (Figure 5).

C. R. Mécanique, 2020, 348, n 6-7, 649-657
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Figure 5. Pneumatic inflation of an architected elastomeric disk with the same internal
structure as in Figure 1, but with a smaller external radius R. Only one bulge appears here
and, together with the constraint imposed by the outer walls, the structure shapes into a
bowl.

4. Conclusion

We have reported in this article a surprising shape morphogenesis from an uniform object,
expected to expand uniformly. In contrast with the shape-morphing triggered by programmed
inhomogeneous (incompatible) in-plane expansion, here the internal structure of the plate is
identical everywhere, but phase separation induces area with very large expansion to co-exist
with regions with very little expansion. This is the 2D (plate) equivalent of the tubular balloon
phase separation. because it is 2D, geometrical incompatibilities lead to out-of plane buckling.

We have only described here the reason for the instability and many questions remain: can we
predict the shapes obtained? What sets the size of the boundary layer between the phases? what
is the mechanical response of such phase-separated shells?
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We however had the opportunity to show and discuss this phenomenon with Yves Couder, a
few months before he passed away. Despite his physical handicap at that time, Yves enjoyed the
experiments, and the discussion then drifted around the phyllotaxy of new algies that appeared
in Bretagne; the stress concentration experienced when your partly non-responsive body has to
be moved by other people; the work by an artist friend who performs cuts in a cube of mattress
foam, which only takes its programmed shape once reversed inside-out. . . This journey through
apparently disconnected subjects was in fact about the relation between forces, geometry and
shape. And indeed, for somebody very interested also in etymology as Yves Couder, it is not a
coincidence that « comprendre » (« to understand » in French) originates from the latin « cum »
(together) and « prehendere » (take/bring): for him, to understand is really to « bring together »,
draw analogy and unify apparently disconnected phenomena.
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