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Abstract. In the present study, the governing differential equations of motion are developed by using the
Hamilton principle for a three-layered curved sandwich beam with symmetric face layers. To develop the
dynamic stiffness matrix, the face layers are considered to behave like Euler–Bernoulli beams although only
shear deformation occurs in the core. In this research, for computing the natural frequencies of curved
sandwich beams, the Wittrick–Williams algorithm is applied. After the procedure is validated by comparison
with various published results, to indicate its range of application, natural frequencies of a complex frame are
computed. Finally, a parametric study investigated the effect of thickness and curvature for various boundary
conditions on the natural frequencies.
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1. Introduction

Sandwich beams are used extensively in a variety of industries due to their unique features such
as high strength-to-weight ratio, good buckling resistance, high specific stiffness, formability into
complex shapes, and easy reparability. Moreover, these structures are used widely, for example, in
aircraft, automobile, and marine applications, which are weight-sensitive industries [1]. Accord-
ingly, many researchers have investigated the free vibration of sandwich beams. Di Taranto [2],
Mead and Sivakumaran [3], and Mead and Marcus [4] are pioneering researchers who solved the
governing differential equations of motion by using the classical theory and investigated the free
vibration of sandwich beams by calculating mode shapes and natural frequencies. The free vi-
bration of curved sandwich beams was studied by Ahmed [5, 6] by using the finite element pro-
cedure. He also investigated the effect of parameters such as curvature, core rigidity, core-to-face
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thickness ratio, and core-to-face density ratio on the natural frequencies of curved sandwich
beams. Sakiyama et al. [7] studied the effects of several types of boundary conditions on the
free vibration of a three-layered arch with various axis shapes by using an analytical method.
They used the Green function for deriving the free vibration characteristic equation and evalu-
ated the effects of core thickness, shear modulus, and a viscoelastic or elastic core on the nat-
ural frequency. A higher order refined model was presented by Marur and Kant [8] by consider-
ing seven degrees of freedom per node based on the expansion of Taylor’s series and finite el-
ement modeling to analyze the free vibration of composite and sandwich arches. By using the
penalty method to impose boundary condition and material discontinuity, Amirani et al. [9] cal-
culated the natural frequencies of a sandwich beam with functionally graded core by applying
the Galerkin method as a meshless method. Hashemi and Adique [10] used the dynamic finite
element method to study the free vibration of sandwich beams with symmetric face layers by
applying the method of weighted residuals to develop the governing equations. They assumed
that the face layers follow the Euler–Bernoulli theory, whereas the core undergoes shear defor-
mation only. In subsequent work, Hashemi and Adique [11] developed the previous model and
considered the Timoshenko beam theory for the core’s behavior, while the Rayleigh beam the-
ory was followed for the face layers to investigate the free vibration of three-layered sandwich
beams. Composite sandwich beam consists of a viscoelastic core studied via a higher order the-
ory by Arvin et al. [12]. They assumed independent transverse displacements in face layers with
linear variations through the core’s depth and showed that when the face layer fiber angles, thick-
ness of the core, or both increase, the natural frequencies for soft core beam decrease. By apply-
ing the finite element and dynamic stiffness methods, the free vibration analysis of a sandwich
beam with symmetric face layers was reviewed by Khalili et al. [13]. Their results revealed that
irrespective of the boundary condition type, when the core-to-face density ratio increases, the
first natural frequency decreases, whereas this frequency increases when the shear modulus of
the core and the face-to-core thickness ratio increase. Khdeir and Aldraihem [1] presented a new
zigzag beam theory to carry out research on the free vibration of soft-core sandwich beams. They
used the state-space method to solve for the mode shapes and natural frequencies of sandwich
beams. They also investigated the effects of core thickness and length/thickness ratio on the fre-
quency for various boundary conditions. Sadeghpour et al. [14] analyzed the debonding effect on
frequencies of a curved sandwich beam. They applied with-contact and without-contact linear
models to the debonded area by developing a high-order theory and analyzed the effects of the
boundary condition and the curvature angle on the vibration of a curved sandwich beam. Chen et
al. [15] studied a shear-deformable sandwich porous core beam and the effects of parameters in-
cluding slenderness ratio, coefficient of porosity, thickness ratio, varying porosity distributions,
and boundary conditions on the nonlinear free vibration of this beam. Many researchers have
used the dynamic stiffness matrix method to analyze the free vibration of structural elements,
including Banerjee’s research as one of the pioneering studies on this method. He used the dy-
namic stiffness method as a general theory, which saves computation time compared to numer-
ical methods, to compute the natural frequencies of a structure [16]. Using the dynamic stiffness
method, Banerjee [17] studied the free vibration analysis of three-layered symmetric sandwich
beams in which the Euler–Bernoulli beam model is considered for face layers and only transverse
shear occurs in the core. Banerjee [18] analyzed the free vibration of a twisted Timoshenko beam
by developing an exact dynamic stiffness matrix. He studied the effects of shear deformation and
rotational inertia on natural frequencies and showed that the effects on the natural frequencies
of a twisted beam are similar to those of an untwisted beam. Banerjee and Sobey [19] developed
Banerjee’s previous model [17]. They assumed that the faceplates behave like a Rayleigh beam
while the core is modeled as a Timoshenko beam. By solving the governing differential equation
through closed form, Howson and Zare [20] presented an exact dynamic stiffness matrix to study
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the flexural vibration of a sandwich beam having unequal faceplates, which necessitated the so-
lution of a transcendental eigenvalue problem. Unlike the finite element method wherein the
idealization affects the accuracy, this technique enables the convergence on any required nat-
ural frequency with certainty. The difference between the studies by Howson and Zare [20] and
Banerjee [17] was that Banerjee [17] assumed that the core mass versus the face mass is negligible
while Howson and Zare [20] derived the equations of motion without considering the axial accel-
eration of the beam and by taking into account the bending acceleration of the beam along with
the core mass. In subsequent work, Banerjee et al. [21] idealized all layers of the sandwich beam,
and the Timoshenko beam theory was considered for each layer; their results were compared
with the previous work by Banerjee and Sobey [19]. Banerjee and Gunawardana [22] investigated
the effects of moving speed and axial load on the free vibration characteristics of a moving Euler–
Bernoulli beam by applying the dynamic stiffness method. Damanpack and Khalili [23] utilized
the dynamic stiffness method to investigate the high order free vibration of sandwich beams with
a flexible core. Mode shapes and natural frequencies were calculated by applying numerical tech-
niques and the Wittrick–Williams algorithm [24], and the results were compared with experimen-
tal results. Su et al. [25] analyzed the free vibration behavior of functionally graded beams using
the dynamic stiffness method derived from the Euler–Bernoulli theory. They supposed that the
properties of material varied continuously in the thickness direction of the beam in accordance
with a power law distribution and showed that by considering these assumptions, modal inter-
change between axial and bending modes and vice versa might take place. Pagani et al. [26] used
the Carrera unified formulation and the dynamic stiffness method to study the free vibration of
laminated composite beams with arbitrary boundary conditions. Banerjee and Jackson [27] and
Banerjee and Kennedy [28] investigated the effect of rotational speed on the natural frequen-
cies of rotating beams’ free vibration by utilizing the dynamic stiffness method. In subsequent
work, Su and Banerjee [29] developed a dynamic stiffness matrix to study the effects of length-to-
thickness ratio and material distribution on mode shapes and natural frequencies of functionally
graded Timoshenko beams. Zare et al. [30] studied coupled bending–longitudinal vibrations of
three-layered sandwich beams by using the exact dynamic stiffness matrix. They showed that ex-
cept for some unusual states, for any structure constructed from sandwich elements, three fam-
ilies of modes—flexural, axial, and shear thickness—are expected. However, no one appeared to
have applied a formulation of exact dynamic stiffness for the free vibration of curved sandwich
beams to consider uniform mass distribution in a member. The current paper focuses on this
subject. The dynamic stiffness method has several advantages compared with the finite element
method and other approximate methods [31, 32]. For example, the exact formulation leads to an
idealization consisting of the minimum number of elements. Another considerable advantage is
that the dynamic stiffness matrix of an element depends only on the frequency accounts for both
stiffness and mass properties. Therefore, as in the finite element method, the dynamic stiffness
matrices of all single elements in a structure can be assembled. In the present study, first, by uti-
lizing the Hamilton principle, the governing equations of motion are presented. Then, after im-
posing harmonic oscillations, two partial differential equations are written in the form of a sixth-
order governing differential equation whose closed-form solution is developed into an exact dy-
namic member stiffness matrix of a curved sandwich beam. To calculate the natural frequencies
of explanatory examples taken from the literature, the Wittrick–Williams [24] algorithm is used.

2. Theory

To form the dynamic stiffness matrix of a three-layered curved sandwich beam, it is presumed
that throughout the thickness, the transverse displacement doesn’t vary, the faces are elastic and
homogeneous and the shear within them is zero, the homogeneous orthotropic core is rigid in

C. R. Mécanique, 2020, 348, n 5, 375-392



378 Daniel Dorostghoal et al.

the z-direction and carries only shear, and there is perfect bonding between interfaces of layers.
The beam length is denoted by L and the radius at the mid-plane of the beam is denoted by R.
The beam has unit width, and t is the thickness of the outer and inner faces while tc is the core
thickness. The z-axis represents the normal coordinate, and it starts from the middle surface of
every layer; the y-axis represents the circumferential coordinate, and it is located at the center
line of the curved beam. The faceplates are modeled as Euler–Bernoulli beams, while only shear
deformation exists in the core and beam deflections occur only in the y–z plane. The parameter
w is the radial displacement, which remains constant for all the layers, and v1 and v2 are the
circumferential displacements of the interior and exterior layers, respectively. Figure 1 shows
the coordinate system for a curved sandwich beam with symmetric face layers. The relations of
displacement–strain can then be written as [5]

εyi = ∂v1

∂y
+ w

R
− z

∂2w

∂y2 ; εyo = ∂v2

∂y
+ w

R
− z

∂2w

∂ y2 ; εc = εz

1+ z
R

, (1)

where εyi ,εyo , and εc are the interior face total strain, exterior face total strain, and core total
strain, respectively, z is the normal coordinate starting from the middle surface of every layer,
and

εz = 1

tc

[(
1− tc

2R

)
v2 −

(
1+ tc

2R

)
v1 +h

∂w

∂y

]
; h = t + tc . (2)

As we only consider the flexural vibration,

v1 =−v2 =−v. (3)

The parameter U is the potential energy of a curved sandwich beam with three layers. It consists
of three parts. They are the strain energy of the top and bottom faces, Uo f and Ui f , respectively,
and the strain energy of the core, Uc :

U =Ui f +Uo f +Uc . (4)

Since the beam has unit width, we have

Ui f = 1

2

∫ L

0

∫ t
2

− t
2

σ f i εyi dz dy , (5)

Uo f = 1

2

∫ L

0

∫ t
2

− t
2

σ f o εyo dz dy , (6)

Uc = 1

2

∫ L

0

∫ tc
2

− tc
2

σcεc dz dy , (7)

where by using (1), we have

σ f i = Eεyi ; σ f o = Eεyo ; σc =Gcεc . (8a,b,c)

Here, σ f i , σ f o , and σc are the normal stresses on the inner and outer faces and the core
transverse shear stress, respectively; E and Gc are the elasticity modulus and core shear modulus,
respectively.

The total kinetic energy of the curved beam denoted by T consists of three parts, the kinetic
energy of two faces, Ti f and To f , and the kinetic energy for the core Tc :

T = Ti f +To f +Tc , (9)
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Figure 1. Symmetric three-layered curved sandwich beam and its coordinate system:
(a) infinitesimal element and the coordinate system; (b) beam configuration.

where

Ti f = 1

2
ρ f

∫ L

0

∫ t
2

− t
2

[
v̇2

1 + ẇ2]dz dy , (10)

To f = 1

2
ρ f

∫ L

0

∫ t
2

− t
2

[
v̇2

2 + ẇ2]dz dy , (11)

Tc = 1

2
ρc

∫ L

0

∫ tc
2

− tc
2

[
v̇2

c + ẇ2]dz dy . (12)
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Here, ρ f and ρc are the mass per unit volume of the two faces and the core, respectively, and vc

is the core’s circumferential displacement defined by

vc =− z

tc

[
(v1 − v2)− t

∂w

∂y

]
. (13)

The dot and prime in expressions indicate differentiation with respect to time and y .
The Hamilton principle states that in a conservative system, equations of motion are obtained

from the first time variation of the difference between potential and kinetic energies in any
interval of time with respect to all independent variables of the system, that is,

δ(1)ϕ= δ(1)
∫ t2

t1

(U −T )dt = δ(1)
∫ t2

t1

∫ L

0
F dy dt = 0. (14)

The function F can then be obtained using (4) and (9):

F = 1

2

{
α2

1

[
v ′2 +

( w

R

)2
]
+α2

3w ′′2 +α2
2

(
2v +h w ′)2 − (

βv̇2 +γẇ2)} , (15)

where

α1 =
p

2Et ; α2 =
√(

1

tc
+ tc

4R2

)
Gc (16a)

α3 =
√

Et 3

6
; β= 2tρ f + 1

3 tcρc ; γ= 2tρ f + tcρc . (16b)

The Euler–Lagrange equations are generated from (14) as follows:

∂F

∂v
− ∂

∂y

∂F

∂v ′ −
∂

∂t

∂F

∂v̇
= 0;

∂F

∂w
− ∂

∂y

∂F

∂w ′ −
∂

∂t

∂F

∂ẇ
+ ∂2

∂y2

∂F

∂w ′′ = 0. (17a,b)

At the ends of the beam, the boundary conditions are

∂F

∂w ′′ = 0 or w ′ = 0

∂

∂y

∂F

∂w ′′ −
∂F

∂w ′ = 0 or w = 0

∂F

∂v ′ = 0 or v = 0.

(18a,b,c)

Now, imposing (17a,b) on (15) gives us the required partial differential equations of motion as
follows: 

4α2
2v +2hα2

2w ′−α2
1v ′′+βv̈ = 0,

α2
1

R2 w −α2
2h2w ′′−2hα2

2v ′+γẅ +α2
3w ′′′′ = 0.

(19)

Relations for axial force, shear force, and bending moment are defined by applying the boundary
conditions as follows: 

α2
1v ′ = n = 0,

α2
3w ′′′−α2

2h2w ′−2α2
2hv = q = 0,

α2
3w ′′ = m = 0,

(20a,b,c)

where n, q , and m are the axial force, the shear force, and the bending moment at the ends of the
member, respectively.

Now, the effect of harmonic motion applies as follows:

f
(
y, t

)= F
(
y
)

eiωt . (21)
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Applying (21) to the partial differential equations of motion yields the following linear differential
equations: 

−2hα2
2

α2
1

W ′+ 1

α2
1

(
ω2β−4α2

2

)
V +V ′′ = 0,

1

α2
3

(
α2

1

R2 −ω2γ

)
W − h2α2

2

α2
3

W ′′+W ′′′′− 2hα2
2

α2
3

V ′ = 0.

(22)

Furthermore, substituting (21) into (20), the other requirements for developing the required
stiffness relation are 

α2
3W ′′ = M ,

α2
3W ′′′−α2

2h2W ′−2α2
2hV =Q,

α2
1V ′ = N .

(23)

Due to the appearance of W ′ in boundary condition equations, we introduce

ψ= dW

dy
, (24)

and the matrix form of (22) is generated by employing the operator D = d/dy as follows:
D2 + 1

α2
1

(
ω2β−4α2

2

) − 2hα2
2

α2
1

D

−2hα2
2

α2
3

D D4 + 1

α2
3

(
α2

1

R2 −ω2γ

)
− h2α2

2

α2
3

D2


[

V
W

]
= 0. (25)

The following sixth-order linear differential equation results via developing the determinant of
the matrix operator: [

D6 + c1D4 + c2D2 + c3
]
Φ= 0, (26)

where 

c1 = 1

α2
1

(
ω2β−4α2

2

)− h2α2
2

α2
3

,

c2 = 1

α2
3

(
α2

1

R2 −ω2γ

)
− h2α2

2ω
2β

α2
1α

2
3

,

c3 = 1

α2
1α

2
3

(
ω2β−4α2

2

) (
α2

1

R2 −ω2γ

)
,

(27)

and Φ can be either of the variables V or W . The linear differential equation (Equation (26)) can
be solved in the following form:

Φ=
6∑

j=1
Hi j C jξ j ; ξ j = eη j y ; 0 < y < L. (28a,b)

Substituting (28b) into (26) yields the characteristic equation (Equation (29)) whose roots are η j

and C j are arbitrary constants:

η6 + c1η
4 + c2η

2 + c3 = 0. (29)
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Figure 2. Nodal displacements and forces: (a) local coordinate system; (b) member coor-
dinate system.

The η j define Φ, and (23) and (24) are other required quantities for the stiffness formulation,
which yield the following results:

W =
6∑

j=1
H1 j C j ξ j ; ψ=

6∑
j=1

H2 j C j ξ j ; V =
6∑

j=1
H3 j C j ξ j (30a)

Q =
6∑

j=1
H4 j C j ξ j ; M =

6∑
j=1

H5 j C j ξ j ; N =
6∑

j=1
H6 j C j ξ j . (30b)

It is assumed that H1 j = 1; accordingly, relations between the Hi j are obtained as follows:

H1 j = 1, H2 j = η j , H3 j =
2hα2

2η j

α2
1η

2
j +ω2β−4α2

2

(31a)

H4 j =α2
3η

3
j −α2

2h2η j −2hα2
2H3 j , H5 j =α2

3η
2
j , H6 j =α2

1H3 jη j . (31b)

Now, to transform from the local coordinate system (Figure 2(a)) to the member coordinate
system (Figure 2(b)), Equation (32) is imposed on (23) and (24):

at y = 0 : W =W1, ψ=ψ1, V =V1, Q =Q1, M =−M1, N =−N1, (32a)

at y = L : W =W2, ψ=ψ2, V =V2, Q =−Q2, M = M2, N = N2, (32b)

and from (30),

d = S ·C and p = S∗ ·C , (33)

where

d =



W1

ψ1

V1

W2

ψ2

V2

 , p =



Q1

M1

N1

Q2

M2

N2

 , C =



C1

C2

C3

C4

C5

C6

 (34)

and

s1 j = H1 j ; s2 j = H2 j ; s3 j = H3 j , s4 j = H1 jχ j ; s5 j = H2 jχ j ; s6 j = H3 jχ j ,

s∗1 j = H4 j ; s∗2 j =−H5 j ; s∗3 j =−H6 j ; s∗4 j =−H4 jχ j ; s∗5 j = H5 jχ j ; s∗6 j = H6 jχ j ,

χ j = eη j L ( j = 1,2, . . . ,6). (35)
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Figure 3. Nodal forces and displacements of a curved sandwich beam: (a) member coordi-
nate system; (b) global coordinate system.

Here, si j and s∗i j are the components of S and S∗, respectively. In the following, by omitting the
constant vector C from (33), the required dynamic stiffness matrix k can be produced:

C = S−1d , so p = kd , where k = S∗·S−1. (36)

3. Transformation matrix

To analyze the curved sandwich beam in a plane structure, stiffness matrix transformation from
member coordinates to global coordinates is essential (see Figure 3). Moments and rotations
during this process remain unchanged. Thus, from Figure 3, it is obvious that

X1 =W1 Sin(θ+α)+V1 Cos(θ+α)
Y1 =−W1 Cos(θ+α)+V1 Sin(θ+α)
X2 =W2 Sin(θ−α)+V2 Cos(θ−α)
Y2 =−W2 Cos(θ−α)+V2 Sin(θ−α)

,


PX 1 =Q1 Sin(θ+α)+N1 Cos(θ+α)
PY 1 =−Q1 Cos(θ+α)+N1 Sin(θ+α)
PX 2 =Q2 Sin(θ−α)+N2 Cos(θ−α)
PY 2 =−Q2 Cos(θ−α)+N2 Sin(θ−α)

. (37)

Equation (37) are transformation relations, and their matrix forms are written as follows:

dG =



X1

Ψ1

Y1

X2

Ψ2

Y2

= T



W1

Ψ1

V1

W2

Ψ2

V2

= T d , pG =



PX 1

M1

PY 1

PX 2

M2

PY 2

= T



Q1

M1

N1

Q2

M2

N2

= T p, (38)

where quantities in global coordinates are specified by the subscript G .

T =



sin(θ+α) 0 cos(θ+α) 0 0 0
0 1 0 0 0 0

−cos(θ+α) 0 sin(θ+α) 0 0 0
0 0 0 sin(θ−α) 0 cos(θ−α)
0 0 0 0 1 0
0 0 0 −cos(θ−α) 0 sin(θ−α)

 , (39)

where T is the transformation matrix. Thus, the element stiffness matrix in global coordinates,
kG , is

kG = T T k T. (40)
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4. Convergence on natural frequencies

After transformation of the stiffness matrix from member coordinates to global coordinates,
by assembling the element matrices, the dynamic structure stiffness matrix K is generated. By
solving the equation K D = 0, the required natural frequencies are obtained. In many cases, this
process is carried out by computing the determinant of K and equaling it to zero. However, when
K is produced using the exact member theory, the calculation of the dynamic stiffness matrix
determinant and finding when its sign changes through zero, can miss roots. This is because in
the exact dynamic stiffness matrix method, the determinant of K is a complex, transcendental
function of natural frequency. Moreover, a number of natural frequencies may be near or may
coincide with each other, whereas other frequencies may exceptionally be related to D = 0. The
Wittrick–Williams algorithm [24] completely overcomes this problem. This algorithm utilizes
a unique procedure to compute any structure’s natural frequency to any desired precision.
Instead of calculating the natural frequencies of a structure, the Wittrick–Williams algorithm [24]
estimates the frequencies that are lower than an arbitrarily chosen trial frequency. For details,
readers can refer to the original paper.

5. Numerical results and discussion

In this section, first, the dynamic stiffness theory and the Wittrick–Williams algorithm [24] are
used to calculate the natural frequencies of curved sandwich beams under different boundary
conditions taken from the literature to prove the validity of the theory and demonstrate its range
of application. In Example 4, only the results of the authors are given for a frame consisting of two
curved beams and one straight beam as the other studies do not give the natural frequencies for
this frame using other formulations and methods. The validation of the results of this example is
conducted via comparison with the results obtained by ABAQUS. Finally, the effect of thickness
and curvature for various boundary conditions on the natural frequencies is studied.

5.1. Example 1

The first example considers a simply supported curved sandwich beam with identical faceplates,
having the material and geometric properties listed in Table 1.

The first five natural frequencies are computed by using one element in the analysis, and the
comparative results for these natural frequencies are presented in Table 2.

To confirm the correctness of the assembling process for the dynamic stiffness and the
utilization of the Wittrick–Williams method [24], Figure 4 shows the normalized mode shapes
of the first three natural frequencies of Example 1 by splitting the beam into six elements.
Since the bending rigidity is very small compared with the circumferential rigidity, the bending
deformations dominate.

5.2. Example 2

In this example, a clamped–clamped beam having the material and geometric properties listed
in Table 1 is considered. Table 3 presents the comparative results.

5.3. Example 3

The next problem considers a cantilever supported curved sandwich beam having the material
and geometric properties listed in Table 1. Table 4 presents the comparative results. In this

C. R. Mécanique, 2020, 348, n 5, 375-392
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Figure 4. The normalized mode shapes corresponding to the first three natural frequencies
of Example 1: first mode at 198.3981 Hz; second mode at 392.9364 Hz; third mode at
743.4269 Hz.

Table 1. Data for numerical examples

Case L (m) t (mm) tc (mm) E (GPa) R (m) ρ f (kg ·m−3) ρc (kg ·m−3) Gc (MPa)

Material data 0.7112 0.4572 12.7 68.9 4.2672 2680 32.8 82.68

example, there is a notable difference between the results of the current theory and the results
obtained by Sakiyama et al. [7] and Marur and Kant [8] because of different basic assumptions
and the consideration of transverse shear deformation. The ABAQUS results are also presented.

Tables 2–4 show good agreement between the results of the current theory and the available
comparable results in the literature. The theory used by Ahmed [5] and Adique [33] is similar
to the theory applied in the current study, that is, the transverse shear deformation is ignored.
Therefore, their results have a very good correlation with the natural frequencies of the present
theory. In the work by Ahmed [5, 34], the finite element method is used so that the degrees
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Table 2. Natural frequencies (Hz) of simply supported curved sandwich beam

Freq. No.
Current
theory Ahmed [5] Adique [33] Sakiyama et al. [7] Marur and Kant [8]

7 elements 10 elements 40 elements
1 198.3981 199.5 199.5 198.96 182.7 182.2877
2 392.9364 394 394 393.769 351.4 348.2241
3 743.4269 747 746 745.377 726.1 714.3247
4 1169.8081 1176 1175 1173.584 1162 1135.0752
5 1630.6193 1642 1639 1636.783 1633 1585.4760

Table 3. Natural frequencies (Hz) of clamped–clamped curved sandwich beam

Freq. No. Current theory Ahmed [5] Adique [33] Ahmed [34] Marur and Kant [8]
7 elements 10 elements 40 elements 10 elements

1 262.0415 264.5 264.2 263.094 240 243.2431
2 515.4826 524 522 517.882 474 477.4111
3 871.4298 895 889 875.794 843 839.3961
4 1280.2359 1325 1312 1286.882 1253 1237.50
5 1719.0399 1792 1767 1728.185 1697 1664.37

Table 4. Natural frequencies (Hz) of cantilever curved sandwich beam

Freq. No.
Current
theory Ahmed [5] Adique [33]

Sakiyama
et al. [7]

Marur and
Kant [8] ABAQUS

7 elements 10 elements 40 elements
1 178.0778 179 179 178.631 33.8 33.74 180.4352
2 264.6783 266 266 265.664 198.5 197.04 268.3472
3 540.3804 547 546 542.815 513 505.07 548.2974
4 921.8040 938 934 926.289 910 889.61 935.6445
5 1357.3238 1388 1379 1364.231 1356 1317.20 1378.01

of freedoms at each node, shape functions, and the number of elements affect the precision
of results. Ahmed [5] studied a beam with four degrees of freedom per node and only flexural
vibration, but in the next study [34], he used six degrees of freedom and the beam undergoes
shear deformation. Therefore, due to less stiffness in the latter, the results are lower than those of
the former. Adique [33] used the dynamic finite element method to analyze the free vibration of
a symmetric curved sandwich beam based on Ahmed’s theory [5]. As can be seen, by increasing
the number of elements and consequently improving the accuracy of finite element methods,
the required natural frequencies decrease. Since the present theory as an exact finite element
method results in an idealization including the minimum number of elements, the results were
expected to be lower than those obtained by Ahmed [5] and Adique [33]. Sakiyama et al. [7]
derived the free vibration characteristic equation for a three-layered sandwich arch by employing
Green functions, and Marur and Kant [8] analyzed the free vibration of sandwich arches with
seven degrees of freedom per node using a higher order refined model. There are discrepancies
between the results they obtained and those from the current study due to many factors including
different basic assumptions, approximate solution methods, and the consideration of transverse
shear deformation.
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Figure 5. Frame of Example 4 consisting of two curved sandwich beams and one straight
sandwich beam.

5.4. Example 4

To indicate the range of application of the current theory, a frame consisting of two curved
beams and one straight beam with identical faceplates, shown in Figure 5, is analyzed. Since
the formulations and methods by other authors cannot be used for this complex frame, Table 5
gives only the results of the current study. As regards the obtained frequencies not depending on
the considered elements, the dynamic stiffness method is an accurate procedure. However, in
the finite element method, the precision of results depends on the number of elements, which
shows its effect at higher frequencies. As is seen in previous examples, at higher frequencies,
the difference between the results of the dynamic stiffness matrix theory and the finite element
method has increased. In the dynamic stiffness method, mass and stiffness effects are considered
in the element’s dynamic stiffness matrix that is only based on frequency. This makes it possible
to assemble the individual element matrices of a structure in a common procedure.

In the present formulation, by considering R equal to infinity in the formulations, the straight
beam stiffness matrix can be generated. The basic material and geometric properties of curved
and straight beams are the same as those listed in Table 1 except that the lengths of curved beams
are 0.3556 m and various lengths are considered for straight beams. The lengths of straight beams
are 0.4 m, 0.2 m, 0.05 m, and 0.001 m.

Table 5 presents the authors’ results for a frame consisting of two curved beams and one
straight beam with identical faceplates shown in Figure 5. Due to a lack of comparable frames
in the literature, frequency validity is checked by comparing with the results of modeling in
ABAQUS. From Table 5, it can be observed that there are no notable differences between the
results obtained from the theory and ABAQUS. Furthermore, we used a parametric study to
validate the results as follows. The results in column 2 of Table 5 were obtained using a straight
beam of length 0.4 m. Then, the length of the straight beam was reduced gradually. By doing this,
since the frame is clamped–clamped, the required natural frequencies should come close to the
natural frequencies of the curved beam in Example 2. As can be seen in column 7 of Table 5,
when the length of the straight beam is 0.001 m, the results are very close to the frequencies from
Example 2.

5.5. Parametric study of the free vibration analysis

In this section, parametric studies are presented to analyze the effect of thickness and curvature
on natural frequencies of sandwich beams for the case in Table 1.

The effect of variation in face/core thickness ratios on natural frequencies has been studied,
and the results are given in Tables 6–8. In this case, the face thickness is considered constant, but
the core thickness is varied. The ratio of face thickness to core thickness of the beam presented
in Table 1 is t/tc = 0.036. The variation in the first natural frequency with t/tc ratios is shown in
Figure 6. As is obvious in Figure 6, when the face/core thickness ratio increases, the first natural
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Figure 6. Variation in first natural frequency with t/tc .

Table 5. Natural frequencies (Hz) of the frame in Example 4

Freq.
No. Length of the straight beam (m)

Results of
Example 2

0.4 0.2 0.05 0.001
Current theory ABAQUS Current theory ABAQUS

1 194.352 196.7056 214.1217 209.8393 245.6083 261.6727 262.0415
2 282.9247 286.3509 362.4141 355.1658 466.8177 514.4214 515.4826
3 446.6675 452.0766 601.0842 589.0625 787.8813 869.6252 871.4298
4 660.2134 668.2086 892.072 874.2306 1161.8662 1277.6902 1280.2359
5 905.7481 916.7167 1214.7961 1190.5 1566.4927 1715.7687 1719.0399

Table 6. Natural frequencies (Hz) of simply supported curved sandwich beam

Mode Face/core thickness ratio
t/tc = 0.005 t/tc = 0.01 t/tc = 0.02 t/tc = 0.03 t/tc = 0.036 t/tc = 0.04 t/tc = 0.05 t/tc = 0.06 t/tc = 0.07

1 441.1567 305.0456 226.5296 204.3470 198.3981 195.7702 191.8288 189.8133 188.7099
2 1269.1684 896.9036 580.0264 442.3579 392.9364 367.7215 322.1543 292.1560 271.3317
3 2166.6490 1625.2373 1100.7168 843.1455 743.4269 690.5363 590.1485 519.5161 467.4218
4 3055.9792 2376.5712 1680.0883 1316.2752 1169.8081 1090.5666 936.5129 824.6754 739.8788
5 3931.2771 3123.6820 2275.9073 1818.8453 1630.6193 1527.5399 1324.1196 1173.5140 1057.3412
6 6505.9800 3861.9549 2872.6895 2331.1017 2105.1944 1980.5930 1732.3224 1546.1203 1400.8007
7 7356.2522 4592.0975 3465.4645 2844.4591 2583.6794 2439.2250 2149.7367 1930.8139 1758.6082

frequency of the simply supported and the clamped–clamped curved sandwich beams decreases,
while the first natural frequency of the cantilever beam initially decreases and then increases
slightly. This is because bending stiffness is affected due to the variation in the thickness of layers.

The natural frequency variation with radius/length ratios is shown in Tables 9–11. In this
case, the beam length is considered constant, but the beam radius is varied. The ratio of the
radius to the length of the studied beam in Table 1 is R/L = 6. Finally, the first natural frequency
variation with R/L ratios is shown in Figure 7. As is obvious in Figure 7, regardless of the boundary
condition type, when the radius/length ratio is increased, the natural frequencies decrease. This

C. R. Mécanique, 2020, 348, n 5, 375-392



Daniel Dorostghoal et al. 389

L

Figure 7. Variation in first natural frequency with R/L.

Table 7. Natural frequencies (Hz) of clamped–clamped curved sandwich beam

Mode Face/core thickness ratio
t/tc = 0.005 t/tc = 0.01 t/tc = 0.02 t/tc = 0.03 t/tc = 0.036 t/tc = 0.04 t/tc = 0.05 t/tc = 0.06 t/tc = 0.07

1 676.5804 498.1699 346.6145 283.5876 262.0415 251.3821 232.8582 221.3132 213.6784
2 1393.3100 1062.0884 738.3015 577.7566 515.4826 482.4824 420.0601 376.4699 344.6312
3 2225.1003 1730.1208 1233.2649 975.3312 871.4298 815.1661 705.6735 626.1120 565.7858
4 3078.9171 2437.0599 1775.9446 1424.3711 1280.2359 1201.3941 1045.8973 930.7671 841.9129
5 6516.6326 3160.1721 2343.0952 1901.8418 1719.0399 1618.4659 1418.5846 1268.9949 1152.3633
6 7348.9513 3885.2600 2920.5603 2394.0886 2174.4006 2053.0771 1810.7129 1628.0549 1484.6967
7 7995.3571 4608.7714 3501.1267 2893.1264 2638.2352 2497.0890 2214.1503 1999.8777 1830.9360

Table 8. Natural frequencies (Hz) of cantilever curved sandwich beam

Mode Face/core thickness ratio
t/tc = 0.005 t/tc = 0.01 t/tc = 0.02 t/tc = 0.03 t/tc = 0.036 t/tc = 0.04 t/tc = 0.05 t/tc = 0.06 t/tc = 0.07

1 203.5314 178.1010 174.6543 176.7994 178.0778 178.7587 180.2606 181.4085 182.3038
2 742.7778 529.3031 356.7094 287.7490 264.6783 253.2926 233.7711 221.7394 213.8516
3 1600.0192 1182.7375 794.8032 610.3972 540.3804 503.5813 434.7018 387.1439 352.7017
4 2476.4789 1906.5706 1331.6039 1038.3522 921.8040 859.0934 738.0510 650.9510 585.4255
5 3362.6367 2654.3428 1911.0955 1517.5808 1357.3238 1269.9910 1098.6723 972.7112 876.0916
6 6688.2504 3398.8743 2504.6669 2019.8048 1819.2553 1709.1274 1490.7946 1328.0522 1201.6687
7 7141.4991 4137.1116 3100.4683 2530.9081 2293.0884 2161.7918 1899.7375 1702.5968 1548.2029

is because of the decrease in bending stiffness with increasing radius of the curved beam. The
natural frequencies of a straight beam with the same properties listed in Table 1 except that
R = ∞ are presented in the last column. As can be seen in Tables 9–11, at upper frequencies,
with variation in the radius/length ratio, the differences between frequencies decrease. Therefore,
the tenth frequencies for different radius/length ratios are very close together, and it can be
concluded that the effect of curvature on upper frequencies is less.
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Table 9. Natural frequencies (Hz) of simply supported curved sandwich beam

Mode Radius/length ratio
R/L = 3 R/L = 4 R/L = 5 R/L = 6 R/L = 7 R/L = 8 R/L = 9 R =∞

1 362.0003 278.5001 229.7919 198.3981 176.7544 161.1729 149.5535 93.5720
2 496.5171 439.1168 409.7832 392.9364 382.3430 375.3223 370.4220 351.0407
3 803.9435 769.3234 752.6597 743.4269 737.7204 733.9912 731.4085 721.0534
4 1210.1645 1186.9369 1175.8964 1169.8081 1166.0356 1163.5686 1161.8545 1154.6642
5 1660.6365 1643.3661 1635.1577 1630.6193 1627.7923 1625.9359 1624.6395 1618.9420
6 2129.1663 2115.4108 2108.8528 2105.1944 2102.9307 2101.4287 2100.3736 2095.5507
7 2603.6915 2592.2330 2586.7504 2583.6794 2581.7727 2580.5000 2579.6035 2575.3767
8 3078.8213 3068.9839 3064.2613 3061.6066 3059.9527 3058.8451 3058.0623 3054.2829
9 3552.3002 3543.6736 3539.5203 3537.1787 3535.7158 3534.7335 3534.0374 3530.6142

10 4023.3316 4015.6486 4011.9403 4009.8447 4008.5312 4007.6492 4007.0221 4003.8931

Table 10. Natural frequencies (Hz) of clamped–clamped curved sandwich beam

Mode Radius/length ratio
R/L = 3 R/L = 4 R/L = 5 R/L = 6 R/L = 7 R/L = 8 R/L = 9 R =∞

1 400.3792 326.8695 286.5300 262.0415 246.0767 235.1449 227.3470 195.2168
2 597.6979 551.2195 528.3241 515.4826 507.5457 502.3447 498.7463 484.9597
3 922.3984 893.0089 879.0732 871.4298 866.7558 863.7225 861.6364 853.7371
4 1315.4372 1295.0094 1285.4443 1280.2359 1277.0572 1275.0012 1273.5897 1268.2617
5 1745.4078 1730.0670 1722.9202 1719.0399 1716.6731 1715.1442 1714.0954 1710.1410
6 2195.3194 2183.1411 2177.4812 2174.4006 2172.5393 2171.3331 2170.5046 2167.3827
7 2655.5078 2645.4458 2640.7755 2638.2352 2636.7020 2635.7068 2635.0241 2632.4524
8 3120.3565 3111.7943 3107.8233 3105.6640 3104.3613 3103.5155 3102.9356 3100.7510
9 3586.7354 3579.2855 3575.8319 3573.9546 3572.8221 3572.0869 3571.5827 3569.6841

10 4052.9878 4046.3930 4043.3368 4041.6758 4040.6727 4040.0235 4039.5775 4037.8981

Table 11. Natural frequencies (Hz) of cantilever curved sandwich beam

Mode Radius/length ratio
R/L = 3 R/L = 4 R/L = 5 R/L = 6 R/L = 7 R/L = 8 R/L = 9 R =∞

1 351.2354 264.3706 212.4634 178.0778 153.5863 135.3773 121.3244 33.7455
2 401.9126 328.8635 288.8645 264.6783 248.8537 238.0653 230.3777 198.7873
3 619.1296 574.4774 552.5895 540.3804 532.7970 527.8545 524.4377 511.3698
4 970.0016 942.1611 928.9925 921.8040 917.3714 914.5126 912.5470 905.1088
5 1390.4815 1371.2149 1362.2050 1357.3238 1354.3105 1352.3765 1351.0488 1346.0384
6 1844.1536 1829.6707 1822.9283 1819.2553 1817.0372 1815.5957 1814.6070 1810.8797
7 2312.8974 2301.3629 2296.0044 2293.0884 2291.3272 2290.1853 2289.4013 2286.4473
8 2787.3462 2777.7780 2773.3381 2770.9234 2769.4659 2768.5202 2767.8714 2765.4274
9 3262.8311 3254.6566 3250.8661 3248.8051 3247.5616 3246.7546 3246.2007 3244.1163

10 3737.1438 3730.0049 3726.6960 3724.8973 3723.8124 3723.1080 3722.6250 3720.8062

6. Conclusions

First, assuming the face layers to behave like Euler–Bernoulli beams while only shear deformation
occurs in the core, by employing the Hamilton principle, the differential equations of motion
of a symmetric curved sandwich beam are formulated and applied to obtain the dynamic
stiffness matrix for this beam. By assembling the element matrices in a common procedure,
the dynamic stiffness matrix for the overall structure can be produced. Then, to calculate the
natural frequencies, the Wittrick–Williams algorithm is applied to this dynamic stiffness matrix.
The results of the current study agree well with the available results of other theories. The present
formulation has the advantage over other theories that it also enables computing the natural
frequencies of a complex frame consisting of curved and straight sandwich members to study the
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dynamic behavior of complex sandwich frames to estimate the resonance frequency. Reduction
in the natural frequencies of the curved sandwich beam with increasing face/core thickness
and radius/length ratios regardless of the boundary condition type is demonstrated through
parametric studies.
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