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Figure 1. Attractor.

1. Introduction

Homogenization in a perforated domain in critical cases leads to the appearance of an additional
potential (“strange term”) in the limit (homogenized) equation (see [1–6]). We discovered the
same phenomenon in the homogenization of attractors (see Figure 11 for example) for the
reaction–diffusion equation.

2. Notation and settings

Let Ω be a bounded domain in Rn , n ≥ 3, with a piecewise smooth boundary ∂Ω. Let G0 be a
domain in Y = (−1/2,1/2)n such that G0 is a compact set diffeomorphic to a ball.

For δ> 0 and B , we denote δB = {x : δ−1x ∈ B}. Assume that ε is small enough so that

εn/(n−2)G0 ⊂ εY .

For j ∈Zn , we define

P j
ε = ε j , Y j

ε = P j
ε +εY , G j

ε = P j
ε +εn/(n−2)G0.

We define the domain Ω̃ε = {x ∈Ω : ρ(x,∂Ω) >p
n ε} and the set of admissible indexes as

Υε = { j ∈Zn : G j
ε ∩ Ω̃ε 6= ;}.

Note that |Υε| ∼= dε−n , where d > 0 is a constant. Consider the following domain:

Ωε =Ω\Gε, where Gε =
⋃

j∈Υε
G j
ε .

Denote
Qε =Ωε× (0,+∞), Q =Ω× (0,+∞).

We study the asymptotic behavior of attractors of the problem

∂uε
∂t

=∆uε− f (uε)+ g (x), x ∈Ωε,

∂uε
∂ν

+εn/(2−n)b j
ε(x)uε = 0, x ∈ ∂G j

ε , j ∈Υε, t ∈ (0,+∞),

uε = 0, x ∈ ∂Ω,
uε =U (x), x ∈Ωε, t = 0.

(1)

1http://docplayer.ru/32107834-Lekciya-5-haoticheskoe-povedenie-dinamicheskih-sistem-sistema-lorenca.html.
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Here, ν is the outward unit vector to the boundary, g (x) ∈ L2(Ω),

b j
ε(x) = b

(
x,

x −P j
ε

εn/(n−2)

)
,

where b(x, y) ∈C (Ω×Rn), such that 0 < b0 ≤ b(x, y) ≤ B0 for some constants b0 and B0, b(x, y) is
one-periodic in y , and f (v) ∈C (R) satisfies the following inequalities:

f (v) · v ≥ K |v |p −C , | f (v)| ≤C1(|v |p−1 +1), p ≥ 2. (2)

Note that we do not assume that the nonlinear function f (v) satisfies the Lipschitz condition
with respect to v .

We denote the spaces H := L2(Ω), Hε := L2(Ωε), V := H 1
0 (Ω), and Vε := H 1(Ωε;∂Ω)—set of

functions from H 1(Ωε) with zero trace on ∂Ω—and Lp := Lp (Ω) and Lp,ε := Lp (Ωε). The norms
in these spaces are denoted, respectively, by

‖v‖2 :=
∫
Ω
|v(x)|2 dx, ‖v‖2

ε :=
∫
Ωε

|v(x)|2 dx, ‖v‖2
1 :=

∫
Ω
|∇v(x)|2 dx,

‖v‖2
1ε :=

∫
Ωε

|∇v(x)|2 dx, ‖v‖p
Lp

:=
∫
Ω
|v(x)|p dx, ‖v‖p

Lp ε
:=

∫
Ωε

|v(x)|p dx.

Recall that V′ := H−1(Ω) and Lq are the dual spaces of V and Lp , respectively, where q = p/(p −1).
Moreover, V′

ε is the dual space for Vε.
As in [7, 8], we study weak solutions of the initial boundary value problem (1), that is, the

functions

uε(x, s) ∈ Lloc
∞ (R+;Hε)∩Lloc

2 (R+;Vε)∩Lloc
p (R+;Lp,ε),

which satisfy problem (1) in the distributional sense, that is,

−
∫

Qε

uε
∂ψ

∂t
dx dt +

∫
Qε

∇uε∇ψdx dt +
∫

Qε

f (uε)ψdx dt

+εn/(2−n)
∑

j∈Υε

∫ +∞

0

∫
∂G

j
ε

b j
εuεψdx dt =

∫
Qε

g (x)ψdx dt (3)

for any ψ ∈C∞
0 (R+;Hε).

If uε(x, t ) ∈ Lp (0, M ;Lp,ε), then it follows from condition (2) that f (u(x, t )) ∈ Lq (0, M ;Lq,ε).
At the same time, if uε(x, t ) ∈ L2(0, M ;Vε), then ∆uε(x, t )+ g (x) ∈ L2(0, M ;V′

ε). Therefore, for an
arbitrary weak solution uε(x, s) of problem (1), we have

∂uε(x, t )

∂t
∈ Lq (0, M ;Lq,ε)+L2(0, M ;V′

ε).

The Sobolev embedding theorem implies that

Lq (0, M ;Lq,ε)+L2(0, M ;V′
ε) ⊂ Lq (0, M ;H−r

ε ),

where the space H−r
ε := H−r (Ωε) and r = max{1,n(1/2 − 1/p)}. Hence, for any weak solution

uε(x, t ) of (1), we have ∂uε(x, t )/∂t ∈ Lq (0, M ;H−r
ε ).

Remark 1. The existence of a weak solution u(x, s) to problem (1) for every U ∈ Hε and fixed
ε such that u(x,0) = U (x) can be proved by the standard approach (see for instance [7, 9]). This
solution is not necessarily unique because we do not assume the Lipschitz condition for f (v)
with respect to v .

The following lemma can be proved similarly to Proposition XV.3.1 from [8].

Lemma 2.1. Let uε(x, t ) ∈ Lloc
2 (R+;Vε)∩Lloc

p (R+;Lp,ε) be a weak solution of problem (1). Then

(i) u ∈C (R+;Hε);

C. R. Mécanique, 2020, 348, n 5, 351-359



354 Kuanysh A. Bekmaganbetov et al.

(ii) the function ‖uε(·, t )‖2
ε is absolutely continuous on R+ and, moreover,

1

2

d

dt
‖uε(·, t )‖2

ε+
∫
Ωε

|∇uε(x, t )|2 dx +
∫
Ωε

f (uε)uεdx

+ε n
2−n

∑
j∈Υε

∫
∂G

j
ε

b j
ε |uε(x, t )|2 dx =

∫
Ωε

g (x)uεdx

for almost every t ∈R+.

In further analysis, we shall omit the index ε in the notation of spaces, where it is natural. We
now apply the scheme described in [10] to construct the trajectory attractor for problem (1).

To describe the trajectory space K +
ε for problem (1), we follow the general framework of

Section 3 from [10] and define the Banach spaces for every [t1, t2] ∈R,

Ft1,t2 := Lp (t1, t2;Lp )∩L2(t1, t2;V)∩L∞(t1, t2;H)∩
{

v

∣∣∣∣∂v

∂t
∈ Lq (t1, t2;H−r )

}
, (4)

with norm

‖v‖Ft1,t2
:= ‖v‖Lp (t1,t2;Lp ) +‖v‖L2(t1,t2;V) +‖v‖L∞(0,M ;H) +

∥∥∥∥∂v

∂t

∥∥∥∥
Lq (t1,t2;H−r )

. (5)

It is clear that the condition

‖Πt1,t2 f ‖Ft1,t2
≤C (t1, t2,τ1,τ2)‖ f ‖Fτ1,τ2

, ∀ f ∈Fτ1,τ2 , (6)

where [t1, t2] ⊆ [τ1,τ2], Πt1,t2 denotes the restriction operator onto the interval [t1, t2], and the
constant C (t1, t2,τ1,τ2) is independent of f , holds for norm (5) and the translation semigroup
{S(h)} satisfies

‖S(h) f ‖Ft1−h,t2−h = ‖ f ‖F t1,t2 , ∀ f ∈Ft1,t2 . (7)

The space Ft1,t2 consists of functions f (s), s ∈ [t1, t2] such that f (s) ∈ E for almost all s ∈ [t1, t2],
where E is a Banach space.

Setting Dt1,t2 = Lq (t1, t2;H−r ), we have that Ft1,t2 ⊆ Dt1,t2 , and if u(s) ∈ Ft1,t2 , then A(u(s)) ∈
Dt1,t2 . We can consider a weak solution of problem (1) as a solution of the equation in the general
scheme of Section 3 from [10].

Define the spaces

F loc
+ = Lloc

p (R+;Lp )∩Lloc
2 (R+;V)∩Lloc

∞ (R+;H)∩
{

v

∣∣∣∣∂v

∂t
∈ Lloc

q (R+;H−r )

}
,

F loc
ε,+ = Lloc

p (R+;Lp,ε)∩Lloc
2 (R+;Vε)∩Lloc

∞ (R+;Hε)∩
{

v

∣∣∣∣∂v

∂t
∈ Lloc

q (R+;H−r
ε )

}
.

We denote by K +
ε the set of all weak solutions of problem (1). Recall that for any U ∈ H, there

exists at least one trajectory u(·) ∈K +
ε such that u(0) =U (x). Therefore, the trajectory space K +

ε

of problem (1) is not empty and is sufficiently large.
It is clear that K +

ε ⊂ F loc+ and the trajectory space K +
ε is translation-invariant; that is, if

u(s) ∈K +
ε , then u(h + s) ∈K +

ε for all h ≥ 0. Therefore,

S(h)K +
ε ⊆K +

ε , ∀h ≥ 0.

We now define metrics ρt1,t2 (·, ·) on the spaces Ft1,t2 using the norms of the spaces L2(t1, t2;H):

ρ0,M (u, v) =
(∫ M

0
‖u(s)− v(s)‖2 ds

)1/2

, ∀u(·), v(·) ∈F0,M .

C. R. Mécanique, 2020, 348, n 5, 351-359
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These metrics generate the topology Θloc+ in F loc+ (respectively, Θloc
ε,+ in F loc

ε,+). Recall that a
sequence {vk } ⊂F loc+ converges to v ∈F loc+ as k →∞ in Θloc+ if ‖vk (·)− v(·)‖L2(0,M ;H) → 0 (k →∞)
for each M > 0. The topology Θloc+ is metrizable using, for example, the Frechet metric

ρ+( f1, f2) := ∑
m∈N

2−m ρ0,m( f1, f2)

1+ρ0,m( f1, f2)
, (8)

and the corresponding metric space is complete. We consider this topology in the trajectory
space K +

ε of (1). The translation semigroup {S(t )} acting on K +
ε is continuous in the considered

topology Θloc+ .
Following the general scheme, we define bounded sets in K +

ε using the Banach space F b+ :=
{ f (s) ∈F loc+ | ‖ f ‖F b+

<+∞}. We clearly have

F b
+ = Lb

p (R+;Lp )∩Lb
2 (R+;V)∩L∞(R+;H)∩

{
v

∣∣∣∣∂v

∂t
∈ Lb

q (R+;H−r )

}
, (9)

and F b+ is a subspace of F loc+ .
Consider the translation semigroup {S(t )} on K +

ε , S(t ) : K +
ε →K +

ε , t ≥ 0.
Let Kε be the kernel of problem (1), which consists of all weak complete solutions u(s), s ∈ R,

of the equation bounded in the space

F b = Lb
p (R;Lp )∩Lb

2 (R;V)∩L∞(R;H)∩
{

v

∣∣∣∣∂v

∂t
∈ Lb

q (R;H−r )

}
.

Definition 2.1 ([8]). A setA⊆K + is called the trajectory attractor of the translation semigroup
{S(t )} on K + in the topology Θloc+ if (i) A is bounded in F b+ and compact in Θloc+ , (ii) the set A is
strictly invariant with respect to the semigroup S(t )A =A for all t ≥ 0, and (iii) A is an attracting
set for {S(t )} on K + in the topology Θloc+ ; that is, for each M > 0,

distΘ0,M (Π0,M S(t )B,Π0,MA) → 0 (t →+∞).

Here, we assume thatΘ0,M = L2(0, M ;H).

Proposition 2.2. Under hypotheses (2), problem (1) has the trajectory attractors Aε in the topo-
logical space Θloc+ . The set Aε is uniformly (w.r.t. ε ∈ (0,1)) bounded in F b+ and compact in Θloc+ .
Moreover,

Aε =Π+Kε,

where the kernel Kε is non-empty and is uniformly (w.r.t. ε ∈ (0,1)) bounded in F b . Recall that the
spaces F b+ and Θloc+ depend on ε.

The proof of this proposition almost coincides with the proof given in [8] for a particular case.
The existence of an absorbing set that is bounded in F b+ and compact in Θloc+ is proved using
Lemma 2.1 similarly to [8].

We note that
Aε ⊂B0(R), ∀ε ∈ (0,1),

where B0(R) is a ball in F b+ with a sufficiently large radius R. The Aubin–Lions–Simon lemma
(see [11]) implies that

B0(R)b Lloc
2 (R+;H1−δ), B0(R)bC loc(R+;H−δ), 0 < δ≤ 1. (10)

Using compact inclusions (10), we strengthen the attraction to the constructed trajectory
attractor.

Corollary 2.2. For any set B ⊂K +
ε bounded in F b+ , we have

distL2(0,M ;H 1−δ)(Π0,M S(t )B,Π0,M Kε) → 0 (t →∞),

distC ([0,M ];H−δ)(Π0,M S(t )B,Π0,M Kε) → 0 (t →∞),

where M is an arbitrary positive number.

C. R. Mécanique, 2020, 348, n 5, 351-359
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3. Homogenization of attractors to a problem for reaction–diffusion equations in
perforated domain

In this section, we study the limit behavior of trajectory attractors Aε of reaction–diffusion
equations (1) as ε → 0+ and their relation to the trajectory attractor of the corresponding
homogenized equation.

To define the “strange term” (the potential in the limit equation), we consider the following
problem: 

−∆y v = 0, y ∈Rn \G0,

∂v

∂νy
+b(x, y)v = b(x, y), y ∈ ∂G0,

v → 0, |y |→∞.

In this problem, the variable x plays the role of slow parameter. The limit potential V (x) can be
determined by the formula

V (x) =
∫
∂G0

∂

∂νy
v(x, y)dσy . (11)

The homogenized (limit) problem reads as follows:
∂u

∂t
=∆u − f (u)−V (x)u + g (x), x ∈Ω,

u = 0, x ∈ ∂Ω,
u =U (x), t = 0.

(12)

Clearly, problem (12) also has a trajectory attractor A in the trajectory space K
+

corresponding
to problem (12), and

A=Π+K ,

where K is the kernel of problem (12) in F b .
Let us formulate the main theorem regarding the initial boundary value problem for a

reaction–diffusion system.

Theorem 3.1. The following limit holds in the topological space Θloc+ :

Aε→A as ε→ 0+ . (13)

Moreover,

Kε→K as ε→ 0+ in Θloc. (14)

Remark 2. Recall that the spaces in the theorem depend on ε. All the functions can be continued
inside the holes keeping the respective norms (see details in [12]).

The proof is based on the following. It is clear that (14) implies (13). Therefore, it is sufficient
to prove (14); that is, for every neighborhood O (K ) in Θloc, there exists ε1 = ε1(O ) > 0 such that

Kε ⊂O (K ) for ε< ε1. (15)

Suppose that (15) is not true. Then there exist a neighborhood O ′(K ) in Θloc, a sequence εk →
0+ (k →∞), and a sequence uεk (·) = uεk (s) ∈Kεk such that

uεk ∉O ′(K ) for all k ∈N. (16)

C. R. Mécanique, 2020, 348, n 5, 351-359
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The function uεk (s), s ∈R is the solution to the problem

∂uεk

∂t
=∆uεk − f (uεk )+ g (x), x ∈Ωεk ,

∂uεk

∂ν
+εn/(2−n)

k b j
εk

(x)uεk = 0, x ∈ ∂G j
εk

, j ∈Υεk ,

uεk = 0, x ∈ ∂Ω,

(17)

on the whole time axis t ∈ R. Now we prove the uniform estimate of the family of solutions
(see [13] for such estimates). The ε-uniform estimate of the solution follows from the results
in [14, Ch. III, §5] and [6]. More precisely, the sequence {uεk (s)} is bounded in F b , that is,

‖uεk ‖F b = sup
t∈R

‖uεk (t )‖

+ sup
t∈R

(∫ t+1

t
‖uεk (s)‖2

1 ds

)1/2

+ sup
t∈R

(∫ t+1

t
‖uεk (s)‖p

Lp
ds

)1/p

+ sup
t∈R

(∫ t+1

t

∥∥∥∥∂uεk

∂t
(s)

∥∥∥∥q

H−r
ds

)1/q

≤C for all k ∈N. (18)

Hence, there exists a subsequence {uε′k
(s)} ⊂ {uεk (s)}, which we label the same, such that

uεk (s) → ū(s) as n →∞ in Θloc, (19)

where ū(s) ∈ F b and ū(s) satisfies (18) with the same constant C . Due to (18), we have uεk (s)*
ū(s) (n → ∞) weakly in Lloc

2 (R;Vε), weakly in Lloc
p (R;Lp,ε), and ∗-weakly in Lloc∞ (R+;Hε) and

∂uεk (s)/∂t * ∂ū(s)/∂t (k →∞) weakly in Lloc
q,w (R;H−r

ε ). We claim that ū(s) ∈K . We have already
proved that ‖ū‖F b ≤C . Therefore, we have to establish that ū(s) is a weak solution to (12). Using
(18), we obtain that

∂uεk

∂t
−∆uεk − g (x) −→ ∂ū

∂t
−∆ū − g (x) as k →∞ (20)

in the space D ′(R;H−r
ε ) because the derivative operators are continuous in the space of distribu-

tions.
Since the function f (v) is continuous with respect to v ∈R, we conclude that

f (uεk (x, s)) → f (ū(x, s)) as k →∞ a.e. in (x, s) ∈Ω× (−M , M). (21)

Following [5, 15], we can prove the following statement.

Lemma 3.2. We have ∣∣∣∣∣ε n
n−2

∑
j∈Υε

∫
∂G

j
ε

b j
ε(x)ϕds −

∫
Ω

V (x)ϕ̄dx

∣∣∣∣∣≤ Mε‖ϕ‖Hε (22)

for ϕ ∈ Hε, and for all t ,

ε
n

n−2
∑

j∈Υε

∫
∂G

j
ε

b j
ε(x)uεψds −→

∫
Ω

V (x)ūψdx (23)

as ε→ 0 for any ψ ∈F b , where V (x) is defined in (11) and the constant M is independent of ε.

Using (20), (21), and (23) and passing to the limit in the equation of problem (17) as k →∞ in
the space D ′(R+;H−r ), we obtain that the function ū(x, s) satisfies the problem

∂ū

∂t
=∆ū − f (ū)−V (x) ū + g (x), x ∈Ω,

ū = 0, x ∈ ∂Ω.
(24)

C. R. Mécanique, 2020, 348, n 5, 351-359
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Consequently, ū ∈K . We have proved above that uεk (s) → ū(s) as k →∞ in Θloc. The hypothesis
uεk (s) ∉ O ′(K ) implies that ū ∉ O ′(K ); moreover, ū ∉ K . We arrive at a contradiction. The
theorem is proved.

Using compact inclusions (10), we can strengthen convergence (13).

Corollary 3.3. For every 0 < δ≤ 1 and for any M > 0,

distL2([0,M ];H1−δ)(Π0,MAε,Π0,MA) → 0, (25)

distC ([0,M ];H−δ)(Π0,MAε,Π0,MA) → 0 (ε→ 0+). (26)

To prove (25) and (26), we just repeat the proof of Theorem 3.1, replacing the topology Θloc

with Lloc
2 (R+;H1−δ) or C loc(R+;H−δ).

Finally, we consider the reaction–diffusion equations for which the uniqueness theorem of
the Cauchy problem is formulated. It is sufficient to assume that the nonlinear term f (u) in (1)
satisfies the condition

( f (v1)− f (v2), v1 − v2) ≥−C |v1 − v2|2 for v1, v2 ∈R (27)

(see [7, 8]). In [7], it was proved that if (27) holds, then (1) and (12) generate the dynamical
semigroups in H, which have the global attractors Aε and A bounded in the space V = H 1

0 (Ω)
(see also [9, 16]). We have

Aε = {u(0) | u ∈Aε}, A = {u(0) | u ∈A}.

Convergence (26) implies the following corollary.

Corollary 3.4. Under the assumptions of Theorem 3.1, the following limit holds:

distH−δ (Aε,A ) → 0 (ε→ 0+).
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