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Figure 1. Attractor.

1. Introduction

Homogenization in a perforated domain in critical cases leads to the appearance of an additional
potential (“strange term”) in the limit (homogenized) equation (see [1-6]). We discovered the
same phenomenon in the homogenization of attractors (see Figure 1! for example) for the
reaction-diffusion equation.

2. Notation and settings

Let Q be a bounded domain in R”, n=3, with a piecewise smooth boundary 0Q. Let Gy be a
domain in Y = (-1/2,1/2)" such that Gy is a compact set diffeomorphic to a ball.
For § >0 and B, we denote 6 B = {x: ' x € B}. Assume that ¢ is small enough so that

e 2 G cey.
For j € 7", we define
Pl=¢j, Y/ =Pl+ev, Gl=pl+e""2g,.
We define the domain Q, = {x € Q: 0(x,0Q) > v/ne} and the set of admissible indexes as
Ye=1{jez":G/nQ: #a}.
Note that | Y| = de™", where d > 0 is a constant. Consider the following domain:

Q,=Q\G;, whereG,= |J Gl
Jjexe
Denote
Qs =Q¢ x(0,400), Q=Qx(0,+00).
We study the asymptotic behavior of attractors of the problem

Ou,

o =Aue— flu)+g(x), x€Q,

0 . )

% + el (. =0, x€dGl,jeYe, e (0, +00), W
v

u: =0, x€0Q,

ue. = U(x), x€ Qg t=0.

Thttp://docplayer.ru/32107834-Lekciya- 5- haoticheskoe- povedenie- dinamicheskih- sistem- sistema-lorenca.html.
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Here, v is the outward unit vector to the boundary, g(x) € L>(2),

x—Pg)

Ty —
bE(JC) = b(x,m

where b(x, y) € C(Q x R™), such that 0 < by < b(x, y) < By for some constants by and By, b(x, y) is
one-periodic in y, and f(v) € C(R) satisfies the following inequalities:

fw-vzKwP-C, |fwI<C(v/P'+1), p=z2 2)

Note that we do not assume that the nonlinear function f(v) satisfies the Lipschitz condition
with respect to v.

We denote the spaces H := L(Q), H := L(Q,), V:= H}(Q), and V, := H'(Q;0Q)—set of
functions from H'(Q,) with zero trace on 4Q—and Ly := Lp(Q) and Ly ¢ := Ly(Q,). The norms
in these spaces are denoted, respectively, by

||u||2:=f|v(x)|2dx, ||v||§:=f w2 dx, ||v||%:=f|vmx)|2dx,
Q Q. Q

2 . 2 |2 p p . p
||v||15.—f98|wx)| dx, I}, .—fﬂwxn dx, ||v||Lpg.—fQE|v(x)| dx.

Recall that V' := H~!(Q) and L, are the dual spaces of Vand Ly, respectively, where g = p/(p—1).
Moreover, V., is the dual space for V,.
As in [7, 8], we study weak solutions of the initial boundary value problem (1), that is, the
functions
Ue (X, 8) € LY(R4;He) N LY (Ry5Ve) N LY Ry L e),

which satisfy problem (1) in the distributional sense, that is,

—f ugalldxdt+/ VuEVu/dxdt+f flu)wdxde
. Ot Qe Qe

+00 .
+e"Em f f b} ugwdxdt:f gxydxdr 3)
jexJo oG] Qe

for any ¥ € Cj°(R+; He).

If ug(x, 1) € Ly(0,M;Ly,), then it follows from condition (2) that f(u(x, 1)) € Ly(0,M;Lg,e).
At the same time, if u,(x, 1) € L2(0, M;V,), then Au,(x, 1) + g(x) € L»(0, M; V). Therefore, for an
arbitrary weak solution u,(x, s) of problem (1), we have

Oug(x, 1)
ot
The Sobolev embedding theorem implies that

€ Lg(0,M;Lg ) + Lo (0, M; V).

Ly(0, M;Ly,e) + Lo(0, M; V%) © Ly (0, MG H; ),

where the space H;" := H"(Q;) and r = max({l,n(1/2 — 1/p)}. Hence, for any weak solution
ug (x, t) of (1), we have du, (x, £)/0t € Ly (0, MGH.").

Remark 1. The existence of a weak solution u(x, s) to problem (1) for every U € H, and fixed
€ such that u(x,0) = U(x) can be proved by the standard approach (see for instance [7, 9]). This
solution is not necessarily unique because we do not assume the Lipschitz condition for f(v)
with respect to v.

The following lemma can be proved similarly to Proposition XV.3.1 from [8].

Lemma 2.1. Letu.(x,t) € L12°°(R+;V£) N Ll;,’c(RJr;Lp,g) be a weak solution of problem (1). Then
(i) ueCR+;He);
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(ii) thefunction ||uc(-, 1) IIE is absolutely continuous on R, and, moreover,

1d
——Ilue(-,t)||§+f IVug(x,t)Izdx+f flugu.dx
2dt Qe Qe

yeTn Zf jbglug(x,t)lzdx:f g(x)uedx
JeYe 0G, Q¢

for almost every t e R

In further analysis, we shall omit the index ¢ in the notation of spaces, where it is natural. We
now apply the scheme described in [10] to construct the trajectory attractor for problem (1).

To describe the trajectory space %, for problem (1), we follow the general framework of
Section 3 from [10] and define the Banach spaces for every [, f2] € R,

ov _
gtl,tz ZILp(l'l,tz;Lp)ﬂLz(tl,tg;V)ﬁLoo(fl,tg;H)ﬁ{U EELq(tlrIZJH r)}, 4)
with norm
vl vl +vl +vl 2 )
v =|v . v : v . — .
T Lp(t1,t2;Lp) Ly (1,12;V) Loo(0,M;H) ot Ly (b, tH7)
It is clear that the condition
”Htlvt2f||gt1,t2 = C(tlr tZrTI)TZ)”f”gTIJZv vfegn,‘rgr (6)

where [f1, ©] € [71,72], I, denotes the restriction operator onto the interval [f;, f»], and the
constant C(t1, f,71,72) is independent of f, holds for norm (5) and the translation semigroup
{S(h)} satisfies

IS fl 7y pyn = 1 Tt Vf € Ftr e ()

The space &, ;, consists of functions f(s), s € [f1, f2] such that f(s) € E for almost all s € [#;, 2],
where E is a Banach space.

Setting Dy, 1, = Ly(f1, to;H™"), we have that &, € Dy, 1,, and if u(s) € Fy, 1, then A(u(s)) €
D1,,1,- We can consider a weak solution of problem (1) as a solution of the equation in the general
scheme of Section 3 from [10].

Define the spaces

ov
ot

9
6—’; € LR, H ) }

F°° = LY°Ry;Ly) N LY R V) N LR H) N { v

€ LRy H ") }

FO = LR (Ry;Lpe) N LY (Ry;Ve) N L (R4 He) N { v

We denote by #," the set of all weak solutions of problem (1). Recall that for any U € H, there
exists at least one trajectory u(-) € %" such that u(0) = U(x). Therefore, the trajectory space %"
of problem (1) is not empty and is sufficiently large.

It is clear that #," c ZI°C and the trajectory space %, is translation-invariant; that is, if
u(s) € £;, then u(h+s) € £ for all h = 0. Therefore,

Shx, <, Yh=0.

We now define metrics py, 1, (-, ) on the spaces #;, ;, using the norms of the spaces Ly (f1, t2; H):

M 1/2
po,M(u,V)Z(fO lu(s)—v()I*ds| , Yu(),v() e Foum.

C. R. Mécanique, 2020, 348, n° 5, 351-359
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These metrics generate the topology ©'°° in Z1°¢ (respectively, 6};’& in Z2¢). Recall that a
sequence {vy} gfﬁf’c converges to v € ﬁﬁlroc as k—ooin G)lfc if lve) = v lly0,mm) — 0 (K — 00)
for each M > 0. The topology ©'°° is metrizable using, for example, the Frechet metric

—m Pom(f1,f2)
( » ):= 2 m’—’
p+(fi, f2 mgN 1+ po,m(f1, f2)

and the corresponding metric space is complete. We consider this topology in the trajectory
space ;" of (1). The translation semigroup {S(#)} acting on .#," is continuous in the considered
topology ©'°°.

Following the general scheme, we define bounded sets in %, using the Banach space &. f =
{f(s) e Floc| I fll z» < +o0}. We clearly have

8

ov

FL =L R Ly) NLYR V) N Loo (R H) m{v 5

eLZ(R+;H") } 9

and Z? is a subspace of F1°°,

Consider the translation semigroup {S()} on %", S(1) : £ — #F,t=0.

Let #Z; be the kernel of problem (1), which consists of all weak complete solutions u(s), s € R,
of the equation bounded in the space
ov
at
Definition 2.1 ([8]). Aset?d < & " is called the TRAJECTORY ATTRACTOR of the translation semigroup
{S()} on K" in the topology ©'°° if (i) A is bounded in F? and compact in %, (ii) the set 2 is
strictly invariant with respect to the semigroup S(t)2 = for all t = 0, and (iii) 2 is an attracting
set for {S(t)} on & * in the topology ©'°°; that is, for each M >0,

diSt@O‘M (HO,MS(I')@,HO,MQ[) -0 (t— +00).

FP = L) (R;Lp) 0 LY (R; V) N Loo (R H) m{v

eLg(R;H") }

Here, we assume that ©¢ s = L2 (0, M; H).

Proposition 2.2. Under hypotheses (2), problem (1) has the trajectory attractors 2, in the topo-
logical space ©'°°. The set 2 is uniformly (w.rt. € € (0,1)) bounded in F? and compact in ©'°°.
Moreover,

Ae =T, A,
where the kernel X, is non-empty and is uniformly (w.r.t. € € (0,1)) bounded in F". Recall that the
spaces F2 and ©'°° depend one.

The proof of this proposition almost coincides with the proof given in [8] for a particular case.
The existence of an absorbing set that is bounded in & and compact in ©'°° is proved using
Lemma 2.1 similarly to [8].

We note that

A < PBy(R), Vee(0,1),

where % (R) is a ball in & f with a sufficiently large radius R. The Aubin-Lions-Simon lemma
(see [11]) implies that

PBy(R) € LY°R,;H' %), By(R) € C°°(R.;H?), 0<d<1. (10)

Using compact inclusions (10), we strengthen the attraction to the constructed trajectory
attractor.

Corollary 2.2. For any set B c %" bounded in Z?, we have
disty, o, vz 1-6) (Mo, S(D B, Tlo, ) — 0 (£ — 00),
diStC([O,M];Hﬂs) (HO,MS(t)gB) HO,MJZ/E) -0 (t - OO),

where M is an arbitrary positive number.

C. R. Mécanique, 2020, 348, n° 5, 351-359
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3. Homogenization of attractors to a problem for reaction-diffusion equations in
perforated domain

In this section, we study the limit behavior of trajectory attractors 2l of reaction—diffusion
equations (1) as € — 0+ and their relation to the trajectory attractor of the corresponding
homogenized equation.

To define the “strange term” (the potential in the limit equation), we consider the following
problem:

-A,v=0, yeR™\ Gy,
ov

— +b(x,y)v=">b(x,y), y€eGy,
ovy

v—0, Y] — oo.

In this problem, the variable x plays the role of slow parameter. The limit potential V' (x) can be
determined by the formula

0
V(x):f —v(x,y)do,. (11)

8Gy Ovy VI€9y
The homogenized (limit) problem reads as follows:

ou
— =Au—fW)-Vx)u+gx), xeQ,

ot (12)
u=0, x€0Q,
u=U(x), t=0.

Clearly, problem (12) also has a trajectory attractor 2{ in the trajectory space " corresponding
to problem (12), and

ﬁ = H+7,

where % is the kernel of problem (12) in & b,
Let us formulate the main theorem regarding the initial boundary value problem for a
reaction-diffusion system.

Theorem 3.1. The following limit holds in the topological space ®1fc:

A — A ase—0+. (13)

Moreover,

He— K ase—0+ in©®°°, (14)

Remark 2. Recall that the spaces in the theorem depend on €. All the functions can be continued
inside the holes keeping the respective norms (see details in [12]).

The proof is based on the following. It is clear that (14) implies (13). Therefore, it is sufficient
to prove (14); that is, for every neighborhood @ (%) in @l°c, there exists €1 = €1(0) > 0 such that

K. cOK) fore<e;. (15)

Suppose that (15) is not true. Then there exist a neighborhood @' (%) in ©'°°, a sequence &} —
0+ (k — 00), and a sequence u;, () = ug, (s) € A, such that

U, ¢ 0'(&) forall keN. (16)

C. R. Mécanique, 2020, 348, n° 5, 351-359
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The function u,, (s), s € R is the solution to the problem

ou,
aik = Autg, — fUg,) +8(0),  x€Q,
Otk 12-n) j o a7
0—V+£Z ”bek(x)ugkzo, x€0G;,,j €Yy,
U, =0, x€0Q,

on the whole time axis ¢ € R. Now we prove the uniform estimate of the family of solutions
(see [13] for such estimates). The e-uniform estimate of the solution follows from the results
in [14, Ch. I1I, §5] and [6]. More precisely, the sequence {u,, (s)} is bounded in & b that is,

lte, Nl o = sup llug, (O
teR

t+1 ) 1/2 t+1 1/p
+ sup (f IIuEk(s)Illds) +sup (f IIuSk(s)Ilf ds
teR \Jr teR \J¢t P
t+1 aue q I/q
+sup (f £(s) ds) <C forallkeN. (18)
teR \Jt ot HT

Hence, there exists a subsequence {uE;C (9} < {ug, ()}, which we label the same, such that

Ug, (s) — 1i(s) asnm—oo in e, (19)

where ii(s) € F? and i(s) satisfies (18) with the same constant C. Due to (18), we have Ue, (8) —
i(s) (n — oo) weakly in LIZOC(IR;VE), weakly in LII[‘,)C(R;L,,,E), and *-weakly in LIO%C(R+;H8) and
Oug, (s)/0t — 01i(s) /0t (k — oo) weakly in quoﬁy (R;H."). We claim that #(s) € . We have already
proved that || %]l z» < C. Therefore, we have to establish that ii(s) is a weak solution to (12). Using
(18), we obtain that

Oute, - Aug, —g(x) — on
e & ot
in the space D'(R;H, ") because the derivative operators are continuous in the space of distribu-
tions.
Since the function f(v) is continuous with respect to v € R, we conclude that

—Ati—g(x) ask—oo (20)

flug, (x,98) — f(i(x,s8) ask—oo ae.in(x,s)eQx(-=M,M). (21)
Following [5, 15], we can prove the following statement.

Lemma 3.2. We have

e 3 | pleopds— [ vopdx| = Melpin, (22)
JjeY, 3
forp eH,, and forall t,
= Zf ,bg(x)ugwds—»f V(x) ity dx (23)
jEYe oG} Q

ase — 0 for anyy € FP, where V (x) is defined in (11) and the constant M is independent of €.

Using (20), (21), and (23) and passing to the limit in the equation of problem (17) as k — co in
the space D' (R.;H™"), we obtain that the function i(x, s) satisfies the problem

ou _ _ _
{E_Au—f(u)—V(x)u+g(x), xeQ, 24)

=0, X €0Q.

C. R. Mécanique, 2020, 348, n° 5, 351-359
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Consequently, it € % . We have proved above that 1, . (8) — di(s) as k — ooin ©'°¢, The hypothesis
Ug, (s) ¢ O'(X) implies that i ¢ 0'(X); moreover, it ¢ % . We arrive at a contradiction. The
theorem is proved.

Using compact inclusions (10), we can strengthen convergence (13).

Corollary 3.3. Forevery0<6 <1 and forany M >0,
dist, o, p.1-9) (o, m2Ae, To, 1 20) — 0, (25)
disteo a:1-5) Mo, v e, o) — 0 (€ — 0+). 26)

To prove (25) and (26), we just repeat the proof of Theorem 3.1, replacing the topology ©'°
with LY¢(R,; H'7?) or C°°(R,;H™9).

Finally, we consider the reaction—diffusion equations for which the uniqueness theorem of
the Cauchy problem is formulated. It is sufficient to assume that the nonlinear term f(u) in (1)
satisfies the condition

(f(v1) = f(2), v1 — v2) = —Clvy — v2]* for vy, v2 €R 27

(see [7, 8]). In [7], it was proved that if (27) holds, then (1) and (12) generate the dynamical
semigroups in H, which have the global attractors </ and < bounded in the space V = H& Q)
(see also [9, 16]). We have

e ={u0) | ueAe}, o =(u0) | ue.
Convergence (26) implies the following corollary.

Corollary 3.4. Under the assumptions of Theorem 3.1, the following limit holds:
disty—s (e, /) — 0 (€ — 0+).
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