

Comptes Rendus

Mécanique

Kuanysh A. Bekmaganbetov, Gregory A. Chechkin and Vladimir V. Chepyzhov

Attractors and a "strange term" in homogenized equation

Volume 348, issue 5 (2020), p. 351-359.
https://doi.org/10.5802/crmeca.1

[^0]

MERSENNE
Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Attractors and a "strange term" in homogenized equation

Attracteurs et un «terme étrange» dans les équations homogénéisées

Kuanysh A. Bekmaganbetov ${ }^{a, b}$, Gregory A. Chechkin ${ }^{*}, \boldsymbol{c}, \boldsymbol{d}$ and Vladimir V. Chepyzhov ${ }^{e, f}$

${ }^{a}$ M. V. Lomonosov Moscow State University, Kazakhstan Branch, Kazhymukan st. 11, Nur-Sultan, 010010, Kazakhstan
${ }^{b}$ Institute of Mathematics and Mathematical Modeling, Pushkin st. 125, Almaty, 050010, Kazakhstan
${ }^{c}$ M. V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, Russia
${ }^{d}$ Institute of Mathematics with Computing Center - Subdivision of the Ufa Federal Research Center of Russian Academy of Sciences, Chernyshevskogo st., 112, Ufa, 450008, Russia
${ }^{e}$ Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127994, Russia
f National Research University Higher School of Economics, Moscow 101000, Russia
E-mails: bekmaganbetov-ka@yandex.kz (K. A. Bekmaganbetov), chechkin@mech.math.msu.su (G. A. Chechkin), chep@iitp.ru (V. V. Chepyzhov)

Abstract

We study the behavior of attractors of the reaction-diffusion equation in a perforated domain as the small parameter characterizing the perforation tends to zero.

Résumé. Nous étudions le comportement des attracteurs de l'équation de réaction-diffusion dans le domaine perforé car le petit paramètre caractérisant la perforation tend vers zéro.

Keywords. Homogenization, Attractors, Reaction-diffusion equation, Boundary value problem, Perforated domain.

Mots-clés. Homogénéisation, Attracteurs, Équation de réaction-diffusion, Problème de valeur limite, Domaine perforé.

2020 Mathematics Subject Classification. 35B30, 35B40, 35B45, 35B60, 35Q35, 76A05, 76D10.

Manuscript received and accepted 3rd February 2020.

[^1]

Figure 1. Attractor.

1. Introduction

Homogenization in a perforated domain in critical cases leads to the appearance of an additional potential ("strange term") in the limit (homogenized) equation (see [1-6]). We discovered the same phenomenon in the homogenization of attractors (see Figure 1^{1} for example) for the reaction-diffusion equation.

2. Notation and settings

Let Ω be a bounded domain in $\mathbb{R}^{n}, n \geq 3$, with a piecewise smooth boundary $\partial \Omega$. Let G_{0} be a domain in $Y=(-1 / 2,1 / 2)^{n}$ such that \bar{G}_{0} is a compact set diffeomorphic to a ball.

For $\delta>0$ and B, we denote $\delta B=\left\{x: \delta^{-1} x \in B\right\}$. Assume that ε is small enough so that

$$
\varepsilon^{n /(n-2)} G_{0} \subset \varepsilon Y
$$

For $j \in \mathbb{Z}^{n}$, we define

$$
P_{\varepsilon}^{j}=\varepsilon j, \quad Y_{\varepsilon}^{j}=P_{\varepsilon}^{j}+\varepsilon Y, \quad G_{\varepsilon}^{j}=P_{\varepsilon}^{j}+\varepsilon^{n /(n-2)} G_{0} .
$$

We define the domain $\widetilde{\Omega}_{\varepsilon}=\{x \in \Omega: \rho(x, \partial \Omega)>\sqrt{n} \varepsilon\}$ and the set of admissible indexes as

$$
\Upsilon_{\varepsilon}=\left\{j \in \mathbb{Z}^{n}: G_{\varepsilon}^{j} \cap \overline{\widetilde{\Omega}}_{\varepsilon} \neq \varnothing\right\} .
$$

Note that $\left|\Upsilon_{\varepsilon}\right| \cong d \varepsilon^{-n}$, where $d>0$ is a constant. Consider the following domain:

$$
\Omega_{\varepsilon}=\Omega \backslash \bar{G}_{\varepsilon}, \quad \text { where } G_{\varepsilon}=\bigcup_{j \in \mathfrak{Y}_{\varepsilon}} G_{\varepsilon}^{j} .
$$

Denote

$$
Q_{\varepsilon}=\Omega_{\varepsilon} \times(0,+\infty), \quad Q=\Omega \times(0,+\infty) .
$$

We study the asymptotic behavior of attractors of the problem

$$
\begin{cases}\frac{\partial u_{\varepsilon}}{\partial t}=\Delta u_{\varepsilon}-f\left(u_{\varepsilon}\right)+g(x), & x \in \Omega_{\varepsilon}, \tag{1}\\ \frac{\partial u_{\varepsilon}}{\partial v}+\varepsilon^{n /(2-n)} b_{\varepsilon}^{j}(x) u_{\varepsilon}=0, & x \in \partial G_{\varepsilon}^{j}, j \in \Upsilon_{\varepsilon}, t \in(0,+\infty), \\ u_{\varepsilon}=0, & x \in \partial \Omega, \\ u_{\varepsilon}=U(x), & x \in \Omega_{\varepsilon}, t=0 .\end{cases}
$$

[^2]Here, v is the outward unit vector to the boundary, $g(x) \in L_{2}(\Omega)$,

$$
b_{\varepsilon}^{j}(x)=b\left(x, \frac{x-P_{\varepsilon}^{j}}{\varepsilon^{n /(n-2)}}\right)
$$

where $b(x, y) \in C\left(\Omega \times \mathbb{R}^{n}\right)$, such that $0<b_{0} \leq b(x, y) \leq B_{0}$ for some constants b_{0} and $B_{0}, b(x, y)$ is one-periodic in y, and $f(\nu) \in C(\mathbb{R})$ satisfies the following inequalities:

$$
\begin{equation*}
f(v) \cdot v \geq K|v|^{p}-C, \quad|f(\nu)| \leq C_{1}\left(|\nu|^{p-1}+1\right), \quad p \geq 2 . \tag{2}
\end{equation*}
$$

Note that we do not assume that the nonlinear function $f(\nu)$ satisfies the Lipschitz condition with respect to v.

We denote the spaces $\mathbf{H}:=L_{2}(\Omega), \mathbf{H}_{\varepsilon}:=L_{2}\left(\Omega_{\varepsilon}\right), \mathbf{V}:=H_{0}^{1}(\Omega)$, and $\mathbf{V}_{\varepsilon}:=H^{1}\left(\Omega_{\varepsilon} ; \partial \Omega\right) —$ set of functions from $H^{1}\left(\Omega_{\varepsilon}\right)$ with zero trace on $\partial \Omega —$ and $\mathbf{L}_{p}:=L_{p}(\Omega)$ and $\mathbf{L}_{p, \varepsilon}:=L_{p}\left(\Omega_{\varepsilon}\right)$. The norms in these spaces are denoted, respectively, by

$$
\begin{gathered}
\|v\|^{2}:=\int_{\Omega}|v(x)|^{2} \mathrm{~d} x, \quad\|v\|_{\varepsilon}^{2}:=\int_{\Omega_{\varepsilon}}|v(x)|^{2} \mathrm{~d} x, \quad\|v\|_{1}^{2}:=\int_{\Omega}|\nabla v(x)|^{2} \mathrm{~d} x \\
\|v\|_{1 \varepsilon}^{2}:=\int_{\Omega_{\varepsilon}}|\nabla v(x)|^{2} \mathrm{~d} x, \quad\|v\|_{\mathbf{L}_{p}}^{p}:=\int_{\Omega}|v(x)|^{p} \mathrm{~d} x, \quad\|v\|_{\mathbf{L}_{p} \varepsilon}^{p}:=\int_{\Omega_{\varepsilon}}|v(x)|^{p} \mathrm{~d} x .
\end{gathered}
$$

Recall that $\mathbf{V}^{\prime}:=H^{-1}(\Omega)$ and \mathbf{L}_{q} are the dual spaces of \mathbf{V} and \mathbf{L}_{p}, respectively, where $q=p /(p-1)$. Moreover, $\mathbf{V}_{\varepsilon}^{\prime}$ is the dual space for \mathbf{V}_{ε}.

As in $[7,8]$, we study weak solutions of the initial boundary value problem (1), that is, the functions

$$
u_{\varepsilon}(x, s) \in L_{\infty}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}\right) \cap L_{2}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{V}_{\varepsilon}\right) \cap L_{p}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{L}_{p, \varepsilon}\right)
$$

which satisfy problem (1) in the distributional sense, that is,

$$
\begin{align*}
& -\int_{Q_{\varepsilon}} u_{\varepsilon} \frac{\partial \psi}{\partial t} \mathrm{~d} x \mathrm{~d} t+\int_{Q_{\varepsilon}} \nabla u_{\varepsilon} \nabla \psi \mathrm{d} x \mathrm{~d} t+\int_{Q_{\varepsilon}} f\left(u_{\varepsilon}\right) \psi \mathrm{d} x \mathrm{~d} t \\
& \quad+\varepsilon^{n /(2-n)} \sum_{j \in \Upsilon_{\varepsilon}} \int_{0}^{+\infty} \int_{\partial G_{\varepsilon}^{j}} b_{\varepsilon}^{j} u_{\varepsilon} \psi \mathrm{d} x \mathrm{~d} t=\int_{Q_{\varepsilon}} g(x) \psi \mathrm{d} x \mathrm{~d} t \tag{3}
\end{align*}
$$

for any $\psi \in C_{0}^{\infty}\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}\right)$.
If $u_{\varepsilon}(x, t) \in L_{p}\left(0, M ; \mathbf{L}_{p, \varepsilon}\right)$, then it follows from condition (2) that $f(u(x, t)) \in L_{q}\left(0, M ; \mathbf{L}_{q, \varepsilon}\right)$. At the same time, if $u_{\varepsilon}(x, t) \in L_{2}\left(0, M ; \mathbf{V}_{\varepsilon}\right)$, then $\Delta u_{\varepsilon}(x, t)+g(x) \in L_{2}\left(0, M ; \mathbf{V}_{\varepsilon}^{\prime}\right)$. Therefore, for an arbitrary weak solution $u_{\varepsilon}(x, s)$ of problem (1), we have

$$
\frac{\partial u_{\varepsilon}(x, t)}{\partial t} \in L_{q}\left(0, M ; \mathbf{L}_{q, \varepsilon}\right)+L_{2}\left(0, M ; \mathbf{V}_{\varepsilon}^{\prime}\right)
$$

The Sobolev embedding theorem implies that

$$
L_{q}\left(0, M ; \mathbf{L}_{q, \varepsilon}\right)+L_{2}\left(0, M ; \mathbf{V}_{\varepsilon}^{\prime}\right) \subset L_{q}\left(0, M ; \mathbf{H}_{\varepsilon}^{-r}\right)
$$

where the space $\mathbf{H}_{\varepsilon}^{-r}:=H^{-r}\left(\Omega_{\varepsilon}\right)$ and $r=\max \{1, n(1 / 2-1 / p)\}$. Hence, for any weak solution $u_{\varepsilon}(x, t)$ of (1), we have $\partial u_{\varepsilon}(x, t) / \partial t \in L_{q}\left(0, M ; \mathbf{H}_{\varepsilon}^{-r}\right)$.

Remark 1. The existence of a weak solution $u(x, s)$ to problem (1) for every $U \in \mathbf{H}_{\varepsilon}$ and fixed ε such that $u(x, 0)=U(x)$ can be proved by the standard approach (see for instance [7,9]). This solution is not necessarily unique because we do not assume the Lipschitz condition for $f(v)$ with respect to v.

The following lemma can be proved similarly to Proposition XV.3.1 from [8].
Lemma 2.1. Let $u_{\varepsilon}(x, t) \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; \mathbf{V}_{\varepsilon}\right) \cap L_{p}^{\text {loc }}\left(\mathbb{R}_{+} ; \mathbf{L}_{p, \varepsilon}\right)$ be a weak solution of problem (1). Then
(i) $u \in C\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}\right)$;
(ii) the function $\left\|u_{\varepsilon}(\cdot, t)\right\|_{\varepsilon}^{2}$ is absolutely continuous on \mathbb{R}_{+}and, moreover,

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u_{\varepsilon}(\cdot, t)\right\|_{\varepsilon}^{2}+\int_{\Omega_{\varepsilon}}\left|\nabla u_{\varepsilon}(x, t)\right|^{2} \mathrm{~d} x+\int_{\Omega_{\varepsilon}} f\left(u_{\varepsilon}\right) u_{\varepsilon} \mathrm{d} x \\
& \quad+\varepsilon^{\frac{n}{2-n}} \sum_{j \in \Upsilon_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} b_{\varepsilon}^{j}\left|u_{\varepsilon}(x, t)\right|^{2} \mathrm{~d} x=\int_{\Omega_{\varepsilon}} g(x) u_{\varepsilon} \mathrm{d} x
\end{aligned}
$$

for almost every $t \in \mathbb{R}_{+}$.

In further analysis, we shall omit the index ε in the notation of spaces, where it is natural. We now apply the scheme described in [10] to construct the trajectory attractor for problem (1).

To describe the trajectory space $\mathcal{K}_{\varepsilon}^{+}$for problem (1), we follow the general framework of Section 3 from [10] and define the Banach spaces for every $\left[t_{1}, t_{2}\right] \in \mathbb{R}$,

$$
\begin{equation*}
\mathscr{F}_{t_{1}, t_{2}}:=L_{p}\left(t_{1}, t_{2} ; \mathbf{L}_{p}\right) \cap L_{2}\left(t_{1}, t_{2} ; \mathbf{V}\right) \cap L_{\infty}\left(t_{1}, t_{2} ; \mathbf{H}\right) \cap\left\{v \left\lvert\, \frac{\partial v}{\partial t} \in L_{q}\left(t_{1}, t_{2} ; \mathbf{H}^{-r}\right)\right.\right\}, \tag{4}
\end{equation*}
$$

with norm

$$
\begin{equation*}
\|\nu\|_{\mathscr{F}_{t_{1}, t_{2}}}:=\|\nu\|_{L_{p}\left(t_{1}, t_{2} ; \mathbf{L}_{p}\right)}+\|\nu\|_{L_{2}\left(t_{1}, t_{2} ; \mathbf{V}\right)}+\|\nu\|_{L_{\infty}(0, M ; \mathbf{H})}+\left\|\frac{\partial v}{\partial t}\right\|_{L_{q}\left(t_{1}, t_{2} ; \mathbf{H}^{-r}\right)} \tag{5}
\end{equation*}
$$

It is clear that the condition

$$
\begin{equation*}
\left\|\Pi_{t_{1}, t_{2}} f\right\|_{\mathscr{F}_{t_{1}, t_{2}}} \leq C\left(t_{1}, t_{2}, \tau_{1}, \tau_{2}\right)\|f\|_{\mathscr{F}_{\tau_{1}, \tau_{2}}}, \quad \forall f \in \mathscr{F}_{\tau_{1}, \tau_{2}} \tag{6}
\end{equation*}
$$

where $\left[t_{1}, t_{2}\right] \subseteq\left[\tau_{1}, \tau_{2}\right], \Pi_{t_{1}, t_{2}}$ denotes the restriction operator onto the interval $\left[t_{1}, t_{2}\right]$, and the constant $C\left(t_{1}, t_{2}, \tau_{1}, \tau_{2}\right)$ is independent of f, holds for norm (5) and the translation semigroup $\{S(h)\}$ satisfies

$$
\begin{equation*}
\|S(h) f\|_{\mathscr{F}_{t_{1}-h, t_{2}-h}}=\|f\|_{\mathscr{F} t_{1}, t_{2}}, \quad \forall f \in \mathscr{F}_{t_{1}, t_{2}} . \tag{7}
\end{equation*}
$$

The space $\mathscr{F}_{t_{1}, t_{2}}$ consists of functions $f(s), s \in\left[t_{1}, t_{2}\right]$ such that $f(s) \in E$ for almost all $s \in\left[t_{1}, t_{2}\right]$, where E is a Banach space.

Setting $\mathscr{D}_{t_{1}, t_{2}}=L_{q}\left(t_{1}, t_{2} ; \mathbf{H}^{-r}\right)$, we have that $\mathscr{F}_{t_{1}, t_{2}} \subseteq \mathscr{D}_{t_{1}, t_{2}}$, and if $u(s) \in \mathscr{F}_{t_{1}, t_{2}}$, then $A(u(s)) \in$ $\mathscr{D}_{t_{1}, t_{2}}$. We can consider a weak solution of problem (1) as a solution of the equation in the general scheme of Section 3 from [10].

Define the spaces

$$
\begin{gathered}
\mathscr{F}_{+}^{\mathrm{loc}}=L_{p}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{L}_{p}\right) \cap L_{2}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{V}\right) \cap L_{\infty}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}\right) \cap\left\{v \left\lvert\, \frac{\partial v}{\partial t} \in L_{q}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}^{-r}\right)\right.\right\} \\
\mathscr{F}_{\varepsilon,+}^{\mathrm{loc}}=L_{p}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{L}_{p, \varepsilon}\right) \cap L_{2}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{V}_{\varepsilon}\right) \cap L_{\infty}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}\right) \cap\left\{v \left\lvert\, \frac{\partial v}{\partial t} \in L_{q}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}^{-r}\right)\right.\right\} .
\end{gathered}
$$

We denote by $\mathscr{K}_{\varepsilon}^{+}$the set of all weak solutions of problem (1). Recall that for any $U \in \mathbf{H}$, there exists at least one trajectory $u(\cdot) \in \mathcal{K}_{\varepsilon}^{+}$such that $u(0)=U(x)$. Therefore, the trajectory space $\mathscr{K}_{\varepsilon}^{+}$ of problem (1) is not empty and is sufficiently large.

It is clear that $\mathscr{K}_{\varepsilon}^{+} \subset \mathscr{F}_{+}^{\text {loc }}$ and the trajectory space $\mathscr{K}_{\varepsilon}^{+}$is translation-invariant; that is, if $u(s) \in \mathscr{K}_{\varepsilon}^{+}$, then $u(h+s) \in \mathscr{K}_{\varepsilon}^{+}$for all $h \geq 0$. Therefore,

$$
S(h) \mathscr{K}_{\varepsilon}^{+} \subseteq \mathscr{K}_{\varepsilon}^{+}, \quad \forall h \geq 0
$$

We now define metrics $\rho_{t_{1}, t_{2}}(\cdot, \cdot)$ on the spaces $\mathscr{F}_{t_{1}, t_{2}}$ using the norms of the spaces $L_{2}\left(t_{1}, t_{2} ; \mathbf{H}\right)$:

$$
\rho_{0, M}(u, v)=\left(\int_{0}^{M}\|u(s)-v(s)\|^{2} \mathrm{~d} s\right)^{1 / 2}, \quad \forall u(\cdot), v(\cdot) \in \mathscr{F}_{0, M}
$$

These metrics generate the topology $\Theta_{+}^{\text {loc }}$ in $\mathscr{F}_{+}^{\text {loc }}$ (respectively, $\Theta_{\varepsilon,+}^{\text {loc }}$ in $\mathscr{F}_{\varepsilon,+}^{\text {loc }}$). Recall that a sequence $\left\{\nu_{k}\right\} \subset \mathscr{F}_{+}^{\text {loc }}$ converges to $v \in \mathscr{F}_{+}^{\text {loc }}$ as $k \rightarrow \infty$ in $\Theta_{+}^{\text {loc }}$ if $\left\|\nu_{k}(\cdot)-v(\cdot)\right\|_{L_{2}(0, M ; \mathbf{H})} \rightarrow 0(k \rightarrow \infty)$ for each $M>0$. The topology $\Theta_{+}^{\text {loc }}$ is metrizable using, for example, the Frechet metric

$$
\begin{equation*}
\rho_{+}\left(f_{1}, f_{2}\right):=\sum_{m \in \mathbb{N}} 2^{-m} \frac{\rho_{0, m}\left(f_{1}, f_{2}\right)}{1+\rho_{0, m}\left(f_{1}, f_{2}\right)}, \tag{8}
\end{equation*}
$$

and the corresponding metric space is complete. We consider this topology in the trajectory space $\mathscr{K}_{\varepsilon}^{+}$of (1). The translation semigroup $\{S(t)\}$ acting on $\mathscr{K}_{\varepsilon}^{+}$is continuous in the considered topology $\Theta_{+}^{\text {loc }}$.

Following the general scheme, we define bounded sets in $\mathscr{K}_{\varepsilon}^{+}$using the Banach space \mathscr{F}_{+}^{b} := $\left\{f(s) \in \mathscr{F}_{+}^{\text {loc }} \mid\|f\|_{\mathscr{F}_{+}^{b}}<+\infty\right\}$. We clearly have

$$
\begin{equation*}
\mathscr{F}_{+}^{b}=L_{p}^{b}\left(\mathbb{R}_{+} ; \mathbf{L}_{p}\right) \cap L_{2}^{b}\left(\mathbb{R}_{+} ; \mathbf{V}\right) \cap L_{\infty}\left(\mathbb{R}_{+} ; \mathbf{H}\right) \cap\left\{v \left\lvert\, \frac{\partial v}{\partial t} \in L_{q}^{b}\left(\mathbb{R}_{+} ; \mathbf{H}^{-r}\right)\right.\right\} \tag{9}
\end{equation*}
$$

and \mathscr{F}_{+}^{b} is a subspace of $\mathscr{F}_{+}^{\text {loc }}$.
Consider the translation semigroup $\{S(t)\}$ on $\mathscr{K}_{\varepsilon}^{+}, S(t): \mathscr{K}_{\varepsilon}^{+} \rightarrow \mathscr{K}_{\varepsilon}^{+}, t \geq 0$.
Let $\mathscr{K}_{\varepsilon}$ be the kernel of problem (1), which consists of all weak complete solutions $u(s), s \in \mathbb{R}$, of the equation bounded in the space

$$
\mathscr{F}^{b}=L_{p}^{b}\left(\mathbb{R} ; \mathbf{L}_{p}\right) \cap L_{2}^{b}(\mathbb{R} ; \mathbf{V}) \cap L_{\infty}(\mathbb{R} ; \mathbf{H}) \cap\left\{v \left\lvert\, \frac{\partial v}{\partial t} \in L_{q}^{b}\left(\mathbb{R} ; \mathbf{H}^{-r}\right)\right.\right\}
$$

Definition 2.1 ([8]). A set $\mathfrak{A} \subseteq \mathcal{K}^{+}$is called the TRAJECTORY attractor of the translation semigroup $\{S(t)\}$ on \mathscr{K}^{+}in the topology $\Theta_{+}^{\text {loc }}$ if (i) \mathfrak{A} is bounded in \mathscr{F}_{+}^{b} and compact in $\Theta_{+}^{\text {loc }}$, (ii) the set \mathfrak{A} is strictly invariant with respect to the semigroup $S(t) \mathfrak{A}=\mathfrak{A}$ for all $t \geq 0$, and (iii) \mathfrak{A} is an attracting set for $\{S(t)\}$ on \mathbb{K}^{+}in the topology $\Theta_{+}^{\text {loc }}$; that is, for each $M>0$,

$$
\operatorname{dist}_{\Theta_{0, M}}\left(\Pi_{0, M} S(t) \mathscr{B}, \Pi_{0, M} \mathfrak{A}\right) \rightarrow 0 \quad(t \rightarrow+\infty)
$$

Here, we assume that $\Theta_{0, M}=L_{2}(0, M ; \mathbf{H})$.
Proposition 2.2. Under hypotheses (2), problem (1) has the trajectory attractors $\mathfrak{A}_{\varepsilon}$ in the topological space $\Theta_{+}^{\text {loc }}$. The set $\mathfrak{A}_{\varepsilon}$ is uniformly (w.r.t. $\varepsilon \in(0,1)$) bounded in \mathscr{F}_{+}^{b} and compact in $\Theta_{+}^{\text {loc }}$. Moreover,

$$
\mathfrak{A}_{\varepsilon}=\Pi_{+} \mathscr{K}_{\varepsilon}
$$

where the kernel $\mathcal{K}_{\varepsilon}$ is non-empty and is uniformly (w.r.t. $\varepsilon \in(0,1)$) bounded in \mathscr{F}^{b}. Recall that the spaces \mathscr{F}_{+}^{b} and $\Theta_{+}^{\text {loc }}$ depend on ε.

The proof of this proposition almost coincides with the proof given in [8] for a particular case. The existence of an absorbing set that is bounded in \mathscr{F}_{+}^{b} and compact in $\Theta_{+}^{\text {loc }}$ is proved using Lemma 2.1 similarly to [8].

We note that

$$
\mathfrak{A}_{\varepsilon} \subset \mathscr{B}_{0}(R), \quad \forall \varepsilon \in(0,1)
$$

where $\mathscr{B}_{0}(R)$ is a ball in \mathscr{F}_{+}^{b} with a sufficiently large radius R. The Aubin-Lions-Simon lemma (see [11]) implies that

$$
\begin{equation*}
\mathscr{B}_{0}(R) \Subset L_{2}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}^{1-\delta}\right), \quad \mathscr{B}_{0}(R) \Subset C^{\mathrm{loc}}\left(\mathbb{R}_{+} ; \mathbf{H}^{-\delta}\right), \quad 0<\delta \leq 1 \tag{10}
\end{equation*}
$$

Using compact inclusions (10), we strengthen the attraction to the constructed trajectory attractor.

Corollary 2.2. For any set $\mathscr{B} \subset \mathscr{K}_{\varepsilon}^{+}$bounded in \mathscr{F}_{+}^{b}, we have

$$
\begin{aligned}
\operatorname{dist}_{L_{2}\left(0, M ; H^{1-\delta}\right)}\left(\Pi_{0, M} S(t) \mathscr{B}, \Pi_{0, M} \mathscr{K}_{\varepsilon}\right) \rightarrow 0(t \rightarrow \infty) \\
\operatorname{dist}_{C\left([0, M] ; H^{-\delta}\right)}\left(\Pi_{0, M} S(t) \mathscr{B}, \Pi_{0, M} \mathscr{K}_{\varepsilon}\right) \rightarrow 0(t \rightarrow \infty),
\end{aligned}
$$

where M is an arbitrary positive number.

3. Homogenization of attractors to a problem for reaction-diffusion equations in perforated domain

In this section, we study the limit behavior of trajectory attractors $\mathfrak{A}_{\varepsilon}$ of reaction-diffusion equations (1) as $\varepsilon \rightarrow 0+$ and their relation to the trajectory attractor of the corresponding homogenized equation.

To define the "strange term" (the potential in the limit equation), we consider the following problem:

$$
\begin{cases}-\Delta_{y} v=0, & y \in \mathbb{R}^{n} \backslash G_{0} \\ \frac{\partial v}{\partial v_{y}}+b(x, y) v=b(x, y), & y \in \partial G_{0} \\ v \rightarrow 0, & |y| \rightarrow \infty\end{cases}
$$

In this problem, the variable x plays the role of slow parameter. The limit potential $V(x)$ can be determined by the formula

$$
\begin{equation*}
V(x)=\int_{\partial G_{0}} \frac{\partial}{\partial v_{y}} v(x, y) \mathrm{d} \sigma_{y} \tag{11}
\end{equation*}
$$

The homogenized (limit) problem reads as follows:

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta u-f(u)-V(x) u+g(x), & x \in \Omega \tag{12}\\ u=0, & x \in \partial \Omega \\ u=U(x), & t=0\end{cases}
$$

Clearly, problem (12) also has a trajectory attractor $\overline{\mathfrak{A}}$ in the trajectory space $\overline{\mathscr{K}}^{+}$corresponding to problem (12), and

$$
\overline{\mathfrak{A}}=\Pi_{+} \overline{\mathscr{K}}
$$

where $\overline{\mathscr{K}}$ is the kernel of problem (12) in \mathscr{F}^{b}.
Let us formulate the main theorem regarding the initial boundary value problem for a reaction-diffusion system.

Theorem 3.1. The following limit holds in the topological space $\Theta_{+}^{\mathrm{loc}}$:

$$
\begin{equation*}
\mathfrak{A}_{\varepsilon} \rightarrow \overline{\mathfrak{A}} \quad \text { as } \varepsilon \rightarrow 0+ \tag{13}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\mathscr{K}_{\varepsilon} \rightarrow \overline{\mathscr{K}} \quad \text { as } \varepsilon \rightarrow 0+\text { in } \Theta^{\mathrm{loc}} \tag{14}
\end{equation*}
$$

Remark 2. Recall that the spaces in the theorem depend on ε. All the functions can be continued inside the holes keeping the respective norms (see details in [12]).

The proof is based on the following. It is clear that (14) implies (13). Therefore, it is sufficient to prove (14); that is, for every neighborhood $\mathscr{O}(\overline{\mathscr{K}})$ in $\Theta^{\text {loc }}$, there exists $\varepsilon_{1}=\varepsilon_{1}(\mathscr{O})>0$ such that

$$
\begin{equation*}
\mathscr{K}_{\varepsilon} \subset \mathscr{O}(\overline{\mathscr{K}}) \quad \text { for } \varepsilon<\varepsilon_{1} \tag{15}
\end{equation*}
$$

Suppose that (15) is not true. Then there exist a neighborhood $\mathscr{O}^{\prime}(\overline{\mathcal{K}})$ in $\Theta^{\text {loc }}$, a sequence $\varepsilon_{k} \rightarrow$ $0+(k \rightarrow \infty)$, and a sequence $u_{\varepsilon_{k}}(\cdot)=u_{\varepsilon_{k}}(s) \in \mathscr{K}_{\varepsilon_{k}}$ such that

$$
\begin{equation*}
u_{\varepsilon_{k}} \notin \mathscr{O}^{\prime}(\overline{\mathscr{K}}) \quad \text { for all } k \in \mathbb{N} \tag{16}
\end{equation*}
$$

The function $u_{\mathcal{E}_{k}}(s), s \in \mathbb{R}$ is the solution to the problem

$$
\begin{cases}\frac{\partial u_{\varepsilon_{k}}}{\partial t}=\Delta u_{\varepsilon_{k}}-f\left(u_{\varepsilon_{k}}\right)+g(x), & x \in \Omega_{\varepsilon_{k}}, \tag{17}\\ \frac{\partial u_{\varepsilon_{k}}}{\partial v}+\varepsilon_{k}^{n /(2-n)} b_{\varepsilon_{k}}^{j}(x) u_{\varepsilon_{k}}=0, & x \in \partial G_{\varepsilon_{k}}^{j}, j \in \Upsilon_{\varepsilon_{k}}, \\ u_{\varepsilon_{k}}=0, & x \in \partial \Omega,\end{cases}
$$

on the whole time axis $t \in \mathbb{R}$. Now we prove the uniform estimate of the family of solutions (see [13] for such estimates). The ε-uniform estimate of the solution follows from the results in [14, Ch. III, §5] and [6]. More precisely, the sequence $\left\{u_{\varepsilon_{k}}(s)\right\}$ is bounded in \mathscr{F}^{b}, that is,

$$
\begin{align*}
& \left\|u_{\varepsilon_{k}}\right\|_{\mathscr{F} b}=\sup _{t \in \mathbb{R}}\left\|u_{\varepsilon_{k}}(t)\right\| \\
& \quad+\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|u_{\varepsilon_{k}}(s)\right\|_{1}^{2} \mathrm{~d} s\right)^{1 / 2}+\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|u_{\varepsilon_{k}}(s)\right\|_{\mathbf{L}_{p}}^{p} \mathrm{~d} s\right)^{1 / p} \\
& \quad+\sup _{t \in \mathbb{R}}\left(\int_{t}^{t+1}\left\|\frac{\partial u_{\varepsilon_{k}}}{\partial t}(s)\right\|_{\mathbf{H}^{-r}}^{q} \mathrm{~d} s\right)^{1 / q} \leq C \quad \text { for all } k \in \mathbb{N} . \tag{18}
\end{align*}
$$

Hence, there exists a subsequence $\left\{u_{\varepsilon_{k}^{\prime}}(s)\right\} \subset\left\{u_{\varepsilon_{k}}(s)\right\}$, which we label the same, such that

$$
\begin{equation*}
u_{\varepsilon_{k}}(s) \rightarrow \bar{u}(s) \quad \text { as } n \rightarrow \infty \quad \text { in } \Theta^{\mathrm{loc}} \tag{19}
\end{equation*}
$$

where $\bar{u}(s) \in \mathscr{F}^{b}$ and $\bar{u}(s)$ satisfies (18) with the same constant C. Due to (18), we have $u_{\varepsilon_{k}}(s)-$ $\bar{u}(s)(n \rightarrow \infty)$ weakly in $L_{2}^{\text {loc }}\left(\mathbb{R} ; \mathbf{V}_{\varepsilon}\right)$, weakly in $L_{p}^{\text {loc }}\left(\mathbb{R} ; \mathbf{L}_{p, \varepsilon}\right)$, and $*$-weakly in $L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; \mathbf{H}_{\varepsilon}\right)$ and $\partial u_{\varepsilon_{k}}(s) / \partial t \rightarrow \partial \bar{u}(s) / \partial t(k \rightarrow \infty)$ weakly in $L_{q, w}^{\text {loc }}\left(\mathbb{R} ; \mathbf{H}_{\varepsilon}^{-r}\right)$. We claim that $\bar{u}(s) \in \overline{\mathcal{K}}$. We have already proved that $\|\bar{u}\|_{\mathscr{F} b} \leq C$. Therefore, we have to establish that $\bar{u}(s)$ is a weak solution to (12). Using (18), we obtain that

$$
\begin{equation*}
\frac{\partial u_{\varepsilon_{k}}}{\partial t}-\Delta u_{\varepsilon_{k}}-g(x) \longrightarrow \frac{\partial \bar{u}}{\partial t}-\Delta \bar{u}-g(x) \quad \text { as } k \rightarrow \infty \tag{20}
\end{equation*}
$$

in the space $D^{\prime}\left(\mathbb{R} ; \mathbf{H}_{\varepsilon}^{-r}\right)$ because the derivative operators are continuous in the space of distributions.

Since the function $f(\nu)$ is continuous with respect to $v \in \mathbb{R}$, we conclude that

$$
\begin{equation*}
f\left(u_{\varepsilon_{k}}(x, s)\right) \rightarrow f(\bar{u}(x, s)) \quad \text { as } k \rightarrow \infty \quad \text { a.e. in }(x, s) \in \Omega \times(-M, M) \tag{21}
\end{equation*}
$$

Following [5, 15], we can prove the following statement.
Lemma 3.2. We have

$$
\begin{equation*}
\left|\varepsilon^{\frac{n}{n-2}} \sum_{j \in Y_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} b_{\varepsilon}^{j}(x) \varphi \mathrm{d} s-\int_{\Omega} V(x) \bar{\varphi} \mathrm{d} x\right| \leq M \varepsilon\|\varphi\|_{\mathbf{H}_{\varepsilon}} \tag{22}
\end{equation*}
$$

for $\varphi \in \mathbf{H}_{\varepsilon}$, and for all \boldsymbol{t},

$$
\begin{equation*}
\varepsilon^{\frac{n}{n-2}} \sum_{j \in Y_{\varepsilon}} \int_{\partial G_{\varepsilon}^{j}} b_{\varepsilon}^{j}(x) u_{\varepsilon} \psi \mathrm{d} s \longrightarrow \int_{\Omega} V(x) \bar{u} \psi \mathrm{~d} x \tag{23}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$ for any $\psi \in \mathscr{F}^{b}$, where $V(x)$ is defined in (11) and the constant M is independent of ε.
Using (20), (21), and (23) and passing to the limit in the equation of problem (17) as $k \rightarrow \infty$ in the space $D^{\prime}\left(\mathbb{R}_{+} ; \mathbf{H}^{-r}\right)$, we obtain that the function $\bar{u}(x, s)$ satisfies the problem

$$
\begin{cases}\frac{\partial \bar{u}}{\partial t}=\Delta \bar{u}-f(\bar{u})-V(x) \bar{u}+g(x), & x \in \Omega \tag{24}\\ \bar{u}=0, & x \in \partial \Omega\end{cases}
$$

Consequently, $\bar{u} \in \overline{\mathcal{K}}$. We have proved above that $u_{\varepsilon_{k}}(s) \rightarrow \bar{u}(s)$ as $k \rightarrow \infty$ in $\Theta^{\text {loc }}$. The hypothesis $u_{\varepsilon_{k}}(s) \notin \mathscr{O}^{\prime}(\overline{\mathcal{K}})$ implies that $\bar{u} \notin \mathscr{O}^{\prime}(\overline{\mathcal{K}})$; moreover, $\bar{u} \notin \overline{\mathcal{K}}$. We arrive at a contradiction. The theorem is proved.

Using compact inclusions (10), we can strengthen convergence (13).
Corollary 3.3. For every $0<\delta \leq 1$ and for any $M>0$,

$$
\begin{gather*}
\operatorname{dist}_{\left.L_{2}(0, M] ; \mathbf{H}^{1-\delta}\right)}\left(\Pi_{0, M} \mathfrak{A}_{\varepsilon}, \Pi_{0, M} \overline{\mathfrak{A}}\right) \rightarrow 0, \tag{25}\\
\operatorname{dist}_{C\left([0, M] ; \mathbf{H}^{-\delta}\right)}\left(\Pi_{0, M} \mathfrak{A}_{\varepsilon}, \Pi_{0, M} \overline{\mathfrak{A})} \rightarrow 0 \quad(\varepsilon \rightarrow 0+) .\right. \tag{26}
\end{gather*}
$$

To prove (25) and (26), we just repeat the proof of Theorem 3.1, replacing the topology $\Theta^{\text {loc }}$ with $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; \mathbf{H}^{1-\delta}\right)$ or $C^{\text {loc }}\left(\mathbb{R}_{+} ; \mathbf{H}^{-\delta}\right)$.

Finally, we consider the reaction-diffusion equations for which the uniqueness theorem of the Cauchy problem is formulated. It is sufficient to assume that the nonlinear term $f(u)$ in (1) satisfies the condition

$$
\begin{equation*}
\left(f\left(v_{1}\right)-f\left(v_{2}\right), v_{1}-v_{2}\right) \geq-C\left|v_{1}-v_{2}\right|^{2} \text { for } v_{1}, v_{2} \in \mathbb{R} \tag{27}
\end{equation*}
$$

(see [7, 8]). In [7], it was proved that if (27) holds, then (1) and (12) generate the dynamical semigroups in \mathbf{H}, which have the global attractors $\mathscr{A}_{\varepsilon}$ and $\overline{\mathscr{A}}$ bounded in the space $\mathbf{V}=H_{0}^{1}(\Omega)$ (see also [9, 16]). We have

$$
\mathscr{A}_{\varepsilon}=\left\{u(0) \mid u \in \mathfrak{A}_{\varepsilon}\right\}, \quad \overline{\mathscr{A}}=\{u(0) \mid u \in \overline{\mathfrak{A}}\} .
$$

Convergence (26) implies the following corollary.
Corollary 3.4. Under the assumptions of Theorem 3.1, the following limit holds:

$$
\operatorname{dist}_{\mathbf{H}^{-\delta}}\left(\mathscr{A}_{\varepsilon}, \overline{\mathscr{A}}\right) \rightarrow 0(\varepsilon \rightarrow 0+) .
$$

Acknowledgments

The work of GAC and VVC was partially supported by the Russian Foundation for Basic Research (projects 18-01-00046 and 17-01-00515) and the Russian Science Foundation (project 20-1120272). The work of KAB was supported in part by the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan (project AP05132071).

References

[1] V. A. Marchenko, E. Y. Khruslov, Boundary Value Problems in Domains with Fine-Grain Boundary, Naukova Dumka, Kiev, 1974, Russian.
[2] V. A. Marchenko, E. Y. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser, Boston (MA), 2006.
[3] D. Cioranescu, F. Murat, "Un terme étrange venu d'ailleurs I \& II", in Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Volume II \& III (H. Berzis, J. L. Lions, eds.), Research Notes in Mathematics, vol. 60 \& 70, Pitman, London, 1982, 98-138 \& 154-178.
[4] A. G. Belyaev, A. L. Piatnitski, G. A. Chechkin, "Asymptotic behavior of a solution to a boundary value problem in a perforated domain with oscillating boundary", Sib. Math. J. 39 (1998), no. 4, p. 621-644, Translated from Sib. Mat. Z. 39 (1998) no. 4, p. 730-754).
[5] G. A. Chechkin, A. L. Piatnitski, "Homogenization of boundary-value problem in a locally periodic perforated domain", Appl. Anal. 71 (1999), no. 1-4, p. 215-235.
[6] A. G. Belyaev, A. L. Piatnitski, G. A. Chechkin, "Averaging in a perforated domain with an oscillating third boundary condition", Russ. Acad. Sci. Sb. Math. 192 (2001), no. 7, p. 933-949, Translated from Mat. Sb. 192 (2001) no. 7, p. 3-20).
[7] V. V. Chepyzhov, M. I. Vishik, "Trajectory attractors for reaction-diffusion systems", Top. Meth. Nonlin. Anal. J. Julius Schauder Center 7 (1996), no. 1, p. 49-76.
[8] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence (RI), 2002.
[9] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam, 1992 (Moscow: Nauka; 1989).
[10] K. A. Bekmaganbetov, G. A. Chechkin, V. V. Chepyzhov, "Weak convergence of attractors of reaction-diffusion systems with randomly oscillating coefficients", Appl. Anal. 98 (2019), no. 1-2, p. 256-271.
[11] F. Boyer, P. Fabrie, "Mathematical tools for the study of the incompressible Navier-Stokes equations and related models", in Applied Mathematical Sciences, vol. 183, Springer, New York (NY), 2013.
[12] V. V. Jikov, S. M. Kozlov, O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer Verlag, Berlin-New York, 1994.
[13] É. Sanchez-Palencia, Homogenization Techniques for Composite Media, Springer-Verlag, Berlin, 1987.
[14] V. P. Mikhailov, Partial Differential Equations, Mir, Moscow, 1978
[15] J. I. Diaz, D. Gomez-Castro, T. A. Shaposhnikova, M. N. Zubova, "Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles", Appl. Anal. 98 (2018), no. 1-2, p. 232-255.
[16] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematics Series, vol. 68, Springer-Verlag, New York (NY), 1988.

[^0]: © Académie des sciences, Paris and the authors, 2020.
 Some rights reserved.
 (a) Er This article is licensed under the

 Creative Commons Attribution 4.0 International License.
 http://creativecommons.org/licenses/by/4.0/

[^1]: * Corresponding author.

[^2]: ${ }^{1}$ http://docplayer.ru/32107834-Lekciya-5-haoticheskoe-povedenie-dinamicheskih-sistem-sistema-lorenca.html.

