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Abstract. It is necessary to make an accurate assessment of uniaxial compressive strength (UCS) for rock
mass classification and rock engineering design. However, there are many shortcomings in the conventional
tests for UCS of rocks. The aim of this study is to present a hybrid model by integrating the genetic algorithm
(GA) into the least-squares support vector machine (LSSVM) to predict the UCS of rock materials. The GA
technique was utilized to improve the forecasting accuracy of the proposed LSSVM. To develop the proposed
hybrid GA–LSSVM model, four main factors including the block punch index, point load strength, Schmidt
rebound hardness and ultrasonic P-wave velocity were considered as input variables, while the UCS of rock
materials was the output. A comparison was conducted among the proposed GA–LSSVM, the adaptive neuro-
fuzzy inference system, the fuzzy inference system, the artificial neural network and the statistical method in
accordance with three statistical indexes. The results of the comparisons show that the developed GA–LSSVM
model has great potential to accurately estimate the UCS of rock materials.

Keywords. Uniaxial compressive strength, Genetic algorithm, Statistical model, Rocks, Least-squares support
vector machine.
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1. Introduction

The accurate assessment of uniaxial compressive strength (UCS) is fundamental to rock mass
classification and rock engineering design [1–5]. The conventional tests for UCS, however, have
some shortcomings in that they are time-consuming and expensive and use restricted sampling.
In addition, it may be difficult to conduct sampling and sample preparations for weak rocks [6,7].
Therefore, an alternative method is needed to provide a better estimation of UCS of rocks.

In recent years, artificial intelligence (AI) methods such as artificial neural networks (ANNs)
and adaptive neuro-fuzzy inference systems (ANFISs) have been widely used in rock engineering
including the prediction of UCS. For example, Singh et al. [8] proposed an ANN model to predict
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the strength properties of some schistose rocks from petrographic properties. Yilmaz and Yuk-
sek [9] studied rock parameters using an ANN model. Canakci et al. [10] investigated the strength
of basalts using ANN and gene expression programming methods. Cevik et al. [11] proposed a
neural network model to predict the UCS of some clay-bearing rocks. It was concluded that the
performance of the proposed neural network model was quite satisfactory. Yagiz et al. [12] stud-
ied the influence of slake durability cycles on the prediction of UCS and modulus of elasticity
of carbonate rocks using ANN and nonlinear regression techniques. Mishra and Basu [13] pre-
dicted the UCS of rock materials including granite, schist and sandstone using regression analy-
sis and the fuzzy inference system (FIS). Yesiloglu-Gultekin et al. [14] estimated the UCS of cer-
tain granitic rocks from their mineral contents using the ANFIS technique. They concluded that
the ANFIS is a suitable method for predicting the UCS of rocks. Yesiloglu-Gultekin et al. [15] pro-
posed some prediction models to estimate the UCS of six different granitic rocks and compared
their prediction performances. They confirmed that the ANFIS model is a better tool for the pre-
diction of UCS. Barzegar et al. [16] evaluated the performance of several AI models to predict the
UCS of travertine rocks. Jalali et al. [17] compared the prediction performance of several soft com-
puting methods for estimating the UCS of some sedimentary rock types from a set of index test
results. They concluded that the ANFIS model provides better predictive results. Saedi et al. [18]
predicted the UCS and elastic modulus of migmatites using the FIS.

As can be seen from the above, the ANN and ANFIS models outperform the existing empirical
models; however, they may encounter some issues such as trapping in local minima [19–21].
Besides the ANN and the ANFIS, at present, the least-squares support vector machine (LSSVM)
is one of the widely used AI techniques. The objective of this study is to present a hybrid model
by integrating the genetic algorithm (GA) into the LSSVM to predict the UCS of rock materials.
To the best of the authors’ knowledge, this research work is the first study to develop a hybrid
model combining the GA with the LSSVM to predict the UCS of rock materials. The novelty of this
work lies in the complete description of the proposed GA–LSSVM model that considers four input
parameters—the block punch index (BPI), point load strength, Schmidt rebound hardness (SRH)
and ultrasonic P-wave velocity (USV )—and one output. A comparison was conducted among the
proposed GA–LSSVM, the ANFIS, the FIS, the ANN and the statistical method in terms of three
statistical indexes.

2. Methodology

2.1. Least-squares support vector machine

A brief description of the LSSVM is as follows [22].
Consider the training dataset {xi , yi }N

i=1, where xi and yi are the input and the output, respec-
tively. N denotes the total sample size. The minimization of the loss function of LSSVM can be
written as

minℑ(w,b,ξ) = 1

2

(
wTw +γ

N∑
i=1

ξi
2

)
. (1a)

This is subject to the equality constraints

yi [wTΦ(xi )+b] = 1−ξi , (1b)

where ξi and γ are the error variable and the regularization parameter, respectively. b is the bias;
w is an adaptive weight vector. Φ(x) is the nonlinear transformation that maps the input data to
a high-dimensional feature space.
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Figure 1. The chromosome comprises two parameters, γ and σ.

To resolve the optimization problem of LSSVM, the Lagrangian is introduced and expressed as

L(w,b,ξ,α) =ℑ(w,b,ξ)−
N∑

i=1
αi {yi [wTΦ(xi )+b]−1+ξi }, (2)

where αi is the multiplier.
The conditions for optimality can be written as

∂L

∂w
= 0 → w =

N∑
i=1

αi yiΦ (xi )

∂L

∂b
= 0 →

N∑
i=1

αi yi = 0

∂L

∂ξi
= 0 →αi = γξi

∂L

∂αi
= 0 → yi [wTΦ(xi )+b]−1+ξi = 0.

(3)

According to Mercer’s condition, the output of LSSVM can be written as [23]

y(x) =
N∑

i=1
αi F (x, xi )+b, (4)

where F (x, xi ) denotes the kernel function. Here, the radial basis function is utilized. It is ex-
pressed as [24]

F (x, xi ) = exp

(
− 1

2σ2 ‖x −xi‖2
)

, (5)

where σ is the kernel parameter.

2.2. LSSVM optimized by GA (GA–LSSVM)

2.2.1. Chromosome and genetic operators

In this study, the chromosome of GA was composed of two LSSVM parameters, γ and σ, as
shown in Figure 1. The two genetic operators, crossover and mutation, are illustrated in Figure 2.

2.2.2. GA–LSSVM approach

Step 1: Generate the initial population.
Step 2: Define the fitness function. In this study, the root-mean-square error (RMSE) is adopted

to assess the performance of each chromosome. It is expressed as

RMSE =
√√√√ 1

N

N∑
i=1

(y − ŷ)2, (6)

where y and ŷ represent the actual and predicted values, respectively.
Step 3: Generate a new population by some genetic manipulations.
Step 4: When the termination criteria are satisfied, the procedure of calculation ends; other-

wise, return to Step 3. The main flowchart of GA–LSSVM is presented in Figure 3.
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Figure 2. Genetic crossover and mutation operation.

Figure 3. Flowchart of the GA–LSSVM algorithm.
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Table 1. Statistical analysis of datasets (data from Ref. [4])

Variable Maximum Minimum Average
BPI (MPa) 35.36 2.53 16.04

Is(50) (MPa) 11.73 1.15 5.75
SRH (%) 66.51 25.89 50.23

USV (m/s) 6250 2725 5010.23
UCS (MPa) 182.33 17.55 80.75

2.3. Statistical analysis

In conventional methods, multiple regression is often used to determine the relationships be-
tween different variables. In this study, UCS is considered to be the outcome of four rock param-
eters including BPI, point load strength (Is(50)), SRH and USV. To generate a multivariate rela-
tion based on the main data (44 datasets), a statistical equation is obtained using MS Excel. The
equation is expressed as

UCS =−14.02+2.47 ·BPI +8.06 · Is(50) +0.59 ·SRH −0.004 ·USV . (7)

2.4. Performance evaluation

To assess the performance of five prediction models, that is, the proposed GA–LSSVM, ANN,
ANFIS, FIS and the statistical method (Equation (7)), three statistical indexes including RMSE,
correlation coefficient (R) and coefficient of determination (R2) were utilized in this study. The
definition of R and R2 can be given as follows:

R2 = 1−
∑N

i=1(yi − ŷi )2∑N
i=1(yi − y i )2

(8)

R =
∑n

i=1(yi − y i )(ŷi − ŷ i )√∑n
i=1(yi − y i )2 ∑n

i=1(ŷi − ŷ i )2
. (9)

Here yi and ŷi are the actual and predicted values, respectively; y i and ŷ i are the mean values of
the actual and predicted results, respectively.

3. Case study

3.1. Data collection

In this study, a total of 44 sets of data points were collected from Ref. [4] to develop the proposed
GA–LSSVM model. Among the 44 sets of data points, there are three rock types including granite,
schist and sandstone. The granite is an igneous crystalline rock, and it is virtually isotropic
in nature. The sandstone is a sedimentary rock, and it is porous in nature. The schist is a
metamorphic rock, and it is anisotropic in nature. Four main factors including BPI, Is(50), SRH
and USV were considered as input variables, while the UCS of rocks was the output. Out of 44
data points, 29 were randomly selected for model training while the remaining 15 data points
were utilized for testing. The statistical results of data collected are summarized in Table 1.

3.2. Results and discussion

It should be noted that the selection of GA parameters has an important influence on the
convergence rate and forecasting accuracy. For this purpose, the optimal parameters of GA
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Figure 4. Convergence procedure of GA.

Table 2. Performance comparison among different models

R R2 RMSE
Training Testing Total Training Testing Total Training Testing Total

GA–LSSVM 0.9920 0.9795 0.9918 0.9841 0.9595 0.9837 6.73 6.58 6.68
ANN 0.9666 0.9036 0.9611 0.9343 0.8165 0.9238 13.88 15.35 14.40

ANFIS 0.9918 0.9668 0.9904 0.9837 0.9347 0.9808 7.07 8.73 7.67
FIS 0.9841 0.9453 0.9826 0.9685 0.8936 0.9655 9.66 9.95 9.76

Equation (7) 0.9640 0.9397 0.9622 0.9293 0.88295 0.9259 14.17 14.27 14.20

were determined by the trial and error approach. They are as follows: the maximum iterations
nmax = 50, the size of the population Np = 20, the probability of crossover Pc = 0.8 and the
probability of mutation Pm = 0.05. After procedures of GA–LSSVM, the optimal parameters of
LSSVM were selected, i.e. σ= 5.5309 and γ= 100. Figure 4 shows the convergence curves of GA.

To assess the performance of the proposed GA–LSSVM model, a comparison between the
experimental results and the predictions by the ANN [4], ANFIS [4], FIS [4] and the statistical
method (Equation (7)) is made. The results of the comparison are shown in Figures 5 and 6 and
Table 2, respectively.

From Figures 5 and 6 and Table 2, it can be seen that the RMSE values of GA–LSSVM, ANN,
ANFIS, FIS and the statistical method (Equation (7)) for training, testing and total samples
are 6.73, 6.58 and 6.68; 13.88, 15.35 and 14.40; 7.07, 8.73 and 7.67; 9.66, 9.95 and 9.76; 14.17,
14.27 and 14.20, respectively. The R values of GA–LSSVM, ANN, ANFIS, FIS and the statistical
method (Equation (7)) for training, testing and total samples are 0.9920, 0.9795 and 0.9918;
0.9666, 0.9036 and 0.9611; 0.9918, 0.9668 and 0.9904; 0.9841, 0.9453 and 0.9826; 0.9640, 0.9397
and 0.9622, respectively. The R2 values of GA–LSSVM, ANN, ANFIS, FIS and the statistical method
(Equation (7)) for training, testing and total samples are 0.9841, 0.9595 and 0.9837; 0.9343, 0.8165
and 0.9238; 0.9837, 0.9347 and 0.9808; 0.9685, 0.8936 and 0.9655; 0.9293, 0.8829 and 0.9259,
respectively. Irrespective of the training, testing or all the datasets, we can see from above that
the R and R2 values of the developed GA–LSSVM are the highest while the values of the RMSE
of the developed GA–LSSVM are the lowest among these five models. Obviously, the forecasting
performance of the developed GA–LSSVM model surpasses the other four models. In addition,
we can see that the forecasting performance of the traditional ANFIS model surpasses the FIS,
the statistical method (Equation (7)) and the ANN model. On the whole, the results show that the
forecasting performance rank is in the following order: GA–LSSVM > ANFIS > FIS > the statistical
method (Equation (7)) > ANN model. It should be noted that the ANFIS model is also a suitable
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(b)(a)

(d)

(e)

(c)

Figure 5. Estimated UCS plotted against measured UCS: (a) GA–LSSVM, (b) ANN, (c)
ANFIS, (d) FIS and (e) statistical model.

method for predicting the UCS of rocks, and the findings of Yesiloglu-Gultekin et al. [14, 15] also
verify this point. In addition, the predictive ability of the ANN model is slightly weaker than the
statistical method (Equation (7)) in the present study. This shows that the ANN model needs to
be further optimized to achieve better results.

4. Conclusions

In this study, a hybrid GA–LSSVM model is developed for the prediction of UCS of rock materials.
To establish the hybrid GA–LSSVM model, four input parameters including the BPI, point load
strength, SRH and USV are considered as the input variables, and the UCS of rock materials is the
output. By comparing the results derived from the developed GA–LSSVM, ANN, ANFIS, FIS and
the statistical model, it can be concluded that the R and R2 values of the developed GA–LSSVM

C. R. Mécanique, 2020, 348, n 3, 235-243



242 Xinhua Xue and Yufeng Wei

(a) Training samples

(b) Testing samples

Figure 6. Comparison of the predicted and experimental results.

are the highest while the values of RMSE of the developed GA–LSSVM are the lowest among
these five models. In other words, the forecasting performance rank is in the following order: GA–
LSSVM > ANFIS > FIS > the statistical method (Equation (7)) > ANN model in the present study.
Therefore, the proposed GA–LSSVM model has great potential to accurately estimate the UCS of
rock materials. In addition, the results show that ANFIS is also a suitable method for predicting
the UCS of rocks and that the ANN model needs to be further optimized to achieve better results.
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