
Comptes Rendus

Mécanique

Ilige S. Hage and Ramsey F. Hamade
Experimentally validated combined stiffness expression for finite
domain containing multiple inclusions
Volume 348, issue 2 (2020), p. 113-135.

<https://doi.org/10.5802/crmeca.11>

© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.

This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mécanique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org

https://doi.org/10.5802/crmeca.11
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mécanique
2020, 348, n 2, p. 113-135
https://doi.org/10.5802/crmeca.11

Experimentally validated combined stiffness

expression for finite domain containing

multiple inclusions

Ilige S. Hage a and Ramsey F. Hamade ∗, b

a Department of Mechanical Engineering, Notre Dame University-Louaize, Zouk
Mosbeh, P.O.Box: 72, Zouk Mikael, Lebanon

b Department of Mechanical Engineering, American University of Beirut, Riad
El-Solh, Beirut 1107 2020, Lebanon.

E-mails: ilige.hage@ndu.edu.lb (I. S. Hage), rh13@aub.edu.lb (R. F. Hamade).

Abstract. Traditional homogenization formulations for finite volume are extended to allow for the considera-
tion of multiple inclusions and their spatial distributions along with their corresponding individual geomet-
ric attributes. For all inclusions present in different states, a combined homogenization formulation (dubbed
generalized stiffness formulation, GSF) is posed for summing the five geometric attributes of volume fraction
(VF), shape or aspect ratio (AR), orientation, location (position within the domain), and number of inclusions
in the domain. For verification, the solutions are compared to two literature-reported calculations of simple
cases of domains containing one inclusion of specific shape and orientation in which only one attribute is
varied. Once verified for simple cases, GSF stiffness solutions were run for 5040 cases of domains containing
multi inclusions with various configuration combinations. These solutions were compared against 36 identi-
cal cases of 3-dimensional (3D) domains printed using acrylonitrile butadiene styrene (ABS) and experimen-
tally tested under mechanical compression. Additionally, finite element method (FEM) simulations are run
of these test structures under compression. For these test cases, effective composite stiffness values are com-
pared for numerical solutions, experimental tests, and FEM. Relative effects on stiffness of the five inclusion
geometric attributes are assessed.

Keywords. Composite homogenization, Stiffness formulation, Multiple inclusions.
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1. Introduction

The presence of porosities in solids punctuates many technical materials both natural and syn-
thetic alike. In most practical cases, porosity presents itself in randomly shaped and distributed
inclusions or voids. Quantifying the combined effect of such inclusions has been at the heart of
mechanics in dealing with how to “homogenize” such materials. Much of the reported work on
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composites containing single and multiple inclusions of various types is based on the original
work to determine the elastic field of ellipsoidal inclusion of Eshelby [1] and on the later work
of Mori and Tanaka [2]. While the interior Eshelby tensor is constant with respect to the inclu-
sion position, the interior Eshelby tensor is function of the matrix Poisson’s ratio, shape, and ori-
entation. The exterior Eshelby tensor is function of the matrix Poisson’s ratio and the inclusion’s
shape, orientation, and position. Reported works (e.g., [3–7], and [8]) have found solutions for
interior and exterior components of the Eshelby tensor for a single (mostly ellipsoidal) inclusion
taking into account the effect of its volume fraction, orientation, and shape based on the work of
Mori–Tanaka [2]. Such works do not account for the effects of the multiple inclusions’ positional
distribution within the medium nor for the number of these inclusions. Rather than consider only
one inclusion’s volume fraction or shape at a time as done in conventional homogenization anal-
yses, this work accounts for the composite stiffness of a finite domain with multiple ellipsoidal
inclusions.

This work is devoted to validating a new homogenization method for linear elastic composite
materials by comparing the resulting estimate of the overall stiffness to estimates produced by
finite element computations and also to strain measurements utilizing 3D-printed microstruc-
tures. This homogenization scheme of multi inclusions is an extension of recent work by the au-
thors (Hage and Hamade, [9]) that calculates the stiffness of a domain containing a single inclu-
sion with its corresponding shape, volume fraction, and orientation. The work is based in part
on the superposition of strain field principle as described by Li et al. [10] that considers one in-
clusion in finite and infinite domains (without accounting for location) and also expands on the
works of Ju and Sun [11–13]. The concept of superposition of strain field was used by Askari et
al. [14] for modeling of inclusions and precipitation hardening in metal matrix composites. This
work advances a combined formulation for the effective stiffness tensor of a finite domain while
considering the combined effects of multiple ellipsoidal inclusion’s attributes: volume fraction,
VF, aspect ratio (accounted for via the Eshelby tensor expression), AR, location (position), r , and
3D orientation (via angles θ, ϕ, γ, where the inclusions are voids. The scheme relies on the av-
erage stress consistency condition introduced by (Li et al. [10]) that does not require a balanced
stress whenever the Eshelby tensor becomes non-uniform on the ellipsoidal inclusion. This situ-
ation occurs as soon as a finite domain is considered in Eshelby’s problem, and this situation is
at the heart of the present study aiming at accounting for boundary effects. Indeed, in the case
of an infinite matrix, the new estimate is perfectly identical to the one of Mori–Tanaka, which
is also observed by comparing the new estimate to the one of Mori–Tanaka on configurations
taken from the literature. Since the formulation of the stiffness tensor in Li et al. [10] takes into
account only one inclusion and only one parameter (i.e., volume fraction), the was further veri-
fied here against similar cases to those of Mori–Tanaka’s and taking only this one parameter. Also
considered in this work the effect of multiple inclusions within the same representative volume
element (RVE) by estimating the combined effect of each individual inclusion on the strain field
for the composite as the summed effect of all inclusions (interior and exterior strains) within the
RVE is calculated. An expression is developed based on a modified Mori–Tanaka method com-
bined with the dual-eigenstrain (interior and exterior eigenstrain) method. From the dual eigen-
strain method, an Eshelby tensor, dependent on the inclusion’s shape and position, is deduced.
Employing the strain field superposition principle, this is applied for multiple inclusions consid-
ering all the above variables into one formulation. A global coordinate system for the composite
is adopted at its center, and the position of each inclusion is formulated and re-oriented using 3D
transformation matrices with respect to this global system. The orientation of each inclusion is
taken into account by multiplying the strain concentration tensors with a transformation tensor
function of the 3D transformation matrices. The resulting formulation yields a compact expres-
sion so that effective composite stiffness may be determined for any number of inclusions with
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combinations of geometric (ellipsoidal) attributes of a composite containing multiple inclusions.
These formulations are reported in Section 2.

A numerical validation section (Section 3) is included as a numerical validation of GSF stiff-
ness solutions as compared with literature solutions. Thus, this work findings are applicable to
combinations of variables that are not covered in other techniques based on Mori–Tanaka. Pre-
vious works are applicable in cases where one should fix one of the variables (position, shape,
volume fraction, orientation, or number of inclusions). However, this work takes into account
the combined effect of all these variables. This formulation’s numerical estimates of stiffness are
compared to simpler cases reported in the literature: cases with specific shapes and orientations
of single inclusion in which one variable (e.g. inclusions position, shape, volume fraction, ori-
entation, and number of inclusions) is fixed. Simple inclusion cases are considered that account
only for one variable at a time and omitting the effect of location and number of inclusions, this
work’s estimates mimic those of the simplified Mori–Tanaka scheme. This accomplishment rep-
resents verification to literature-reported results using Mori–Tanaka scheme. The section con-
tains one verified case of stiffness variation with inclusions volume fraction and another with
shape (aspect ratio).

Furthermore, extensive experimental verification is employed (Section 4) to validate the for-
mulations numerical solutions where a novel method is employed via compression tests of 3D
printed cubes. Numerous cases that present many dramatically representative combinations of
multiple inclusions are considered. Combinations of multiple inclusions with different variables
and levels: volume fraction (0, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1), shapes (as-
pect ratios 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.25), orientations (0◦, 15◦, 30◦, 45◦,
60◦, 75◦, 90◦), locations (Agglomerated (centered) versus dispersed (at the corners)), and number
of inclusions (1, 4, 8, 16, 32, 64) were modeled on CAD according to a DOE test matrix, printed,
and compression tested. In Section 5, finite element method (FEM) simulations of these cases are
also run for further corroboration. Section 6 reviews and compares the numerical stiffness results
to experimentally found values and to FEM results.

To its credit, the scheme accounts for the combined effect of inclusions’ positions, shapes,
volume fractions, orientations, and number. The formulation is also customizable for finite or
infinite domains. In addition, it is able to handle multiple numbers of inclusions with specified
locations, orientations, volume fractions and aspect ratios. This aspect is crucial in the field of
composites where, not only simple cases, but randomly located cases of inclusions with various
aspect ratios must be dealt with.

2. Homogenization formulation for multiple inclusions

In this section, the application of the strain field superposition principle is delineated. To ac-
count for multiple inclusions’ 3D orientations and locations within the RVE, the effect of each in-
dividual inclusion is estimated w.r.t. the RVE Cartesian coordinate using translation and rotation
transformation matrix.

2.1. Transformation from local to global coordinates

In order to account for the effect of multiple inclusions and their orientations, a representative
volume element (RVE) with its corresponding Cartesian coordinate system is shown in Figure 1.
Also shown in the 3D RVE are inclusions distributed with multiple orientations with their corre-
sponding rotation angles identified with respect to the RVE Cartesian coordinate. To move from
each inclusion’s local coordinate system to the global RVE coordinate system, a transformation
matrix is utilized to account for the orientation of each individual inclusion within the RVE (Hage
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Figure 1. Illustration of a finite domain (and its global coordinate system) multiple ellip-
soidal inclusions (with their local coordinate systems).

and Hamade, [9]). The composite is considered as domain Ωu having multiple inclusions Ωi
I

from i = 1, . . . , N (where N is the total number of inclusions). Figure 1 is an illustration of such a
finite domain with multi ellipsoid inclusions. Shown is the composite domain (and its global co-
ordinate system) with mix of multiple inclusions and various attributes (with their local coordi-
nate systems). The origin, Ou, of the coordinate system is set at the center of the domain. The ori-
gin of each inclusion domainΩi

I is noted as Oi
I (x(1) = (x(1)

1 , x(1)
2 , x(1)

3 )) where (1) refers to the con-
sidered inclusion (for the sake of non-confusion “(1)” is used for the considered inclusion and “i ”
is used for the studied point P). The coordinates (x(1)

1 , x(1)
2 , x(1)

3 ) for the origin of each inclusion are
obtained with respect to the origin of the composite domain coordinate system. Using the trans-
formation matrix and considering that r is the distance between point P in the domain and the
origin of the considered inclusion, the coordinate position vector is reoriented to the inclusion
coordinate system and reformulated in the composite domain (Hage and Hamade, [9])

x1

x2

x3

=Qi j


x1

i

x2
i

x3
i

−

x(1)
1

x(1)
2

x(1)
3


 (1)

where

x1
i

x2
i

x3
i

 refers to the coordiantes of any point P in the space

r = 2
√

((x1)2 + (x2)2 + (x3)2) (2)

In addition, Qi j is a transformation matrix is utilized to account for the orientation of the
inclusion within the 3D RVE and is utilized to jump from the inclusion local coordinate system to
the global RVE coordinate system [9].

This reformulated coordinate position distance r is used to determine the exterior Eshelby
tensor and is function of the orientation and coordinates of the center of each inclusion w.r.t. the
origin of the domain, r = f (θ,ϕ,γ,Oi

I ).
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Figure 2. The composite domain of the inclusion inside the exterior cube domain.

2.2. Effective stiffness tensor: generalized stiffness formulation

The effective stiffness tensor of a composite with multiple inclusions is calculated based on the
superposition principle of strain fields (Li et al., [10]). The effect of the boundary conditions on
the inclusion is taken into account by the position factor and the distance between the boundary
and the inclusion, which is added as a variable. The authors examined two cases: one in which
inclusions are located near the center of the RVE and another case where inclusions are closer
to the boundary of the RVE. Although the code allows for ellipsoidal or spherical shaped RVEs,
reported in this work is a finite cube-shaped RVE. Cluster of inclusions is inserted into the finite
RVE. The Matlab® code checks whether inclusions satisfy the condition of being fully contained
within RVE.

At the inner side of the RVE, the elastic field strain is divided into two fields: one from the
background (external boundary loads) and another due to the presence of the inclusion field [10].
The new average strain in each phase is the sum of the background strain and the disturbance
strain. The averaged interior and exterior Eshelby tensors (being key for determining the elastic
field of an ellipsoidal inclusion interiorly and exteriorly) for each inclusion are summed.

In this work, each inclusion is treated as a subdomain within an infinite domain where a stress-
free eigenstrain is prescribed in the inclusion and vanishes outside. Since multiple inclusions
are considered inside the bounded RVE, the inclusion inside the cube is a finite domain and the
exterior Eshelby is calculated between the inclusion and its boundary as can be shown in Figure 2
where C̃ is the reference solid stiffness tensor and C I

i is the stiffness tensor of each inclusion,ΩE

is the exterior domain of the inclusion used to calculate the strain field outside the inclusion
domain, and the dashed circle corresponds to the shape of the inclusion domain which could be
elliptical (or spherical, a special case).

The Eshelby tensor for one inclusion is calculated using the summation of the interior classical
Eshelby tensor (adapting the formulation by Mura [15]) and exterior Eshelby function of the
position x (using the formulation by Ju et al. [11]). These formulations related to the Eshelby
tensor are based on two components: one is uniform but a function of the matrix Poisson’s ratio,
shape, and orientation and is constant with position and the other is a function of the matrix
Poisson’s ratio, shape, orientation, and the re-oriented coordinate vector position.

Translating the effective stiffness tensor into the global domain, the strain concentration
tensors for each inclusion AE , and AI is calculated in the local domain and equivalent strain
concentration tensors are calculated in the global system using a 4th rank transformation tenor,
Qi j kl (Koay [16], this tensor is function of the transformation matrix Qi j [9] defined in the
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previous section). The “Bond transformation” [17] is a tensor that accounts for the inclusion’s
3-dimensional attributes.

The derived expression for the effective stiffness tensor for multiple inclusions reported by Li
et al. [10] and Hage and Hamade [9] becomes

C =
[

N∑
i=1

fi ∗C I
i : Qi j kl : AE

i +
(

1−
N∑

i=1
fi

)
N∑

i=1
C E : Qi j kl : AI

i

]
:[

N∑
i=1

fi ∗Qi j kl : AE
i +

(
1−

N∑
i=1

fi

)
N∑

i=1
Qi j kl : AI

i

]−1

(3)

where

AE
i = I s − C̃−1

i : (C̃i −C E ) : ∆S∗

= I s − [aC I
i + (1−a)C E ]−1 : (aC I

i + (1−a)C E −C E ) : 〈S I ,∗
i (C̃i , f = fi )〉ΩI

−〈SE ,∗
i (C̃i , f = fi )〉ΩE

AI
i = I s − C̃−1

i : (C̃i −C I
i ) : ∆S∗

= I s − [aC I
i + (1−a)C E ]−1 : (aC I

i + (1−a)C E −C I
i ) : 〈S I ,∗

i (C̃i , f = fi )〉ΩI

−〈SE ,∗
i (C̃i , f = fi )〉ΩE

Note that

〈· · · 〉Ωu = 1

|Ωu |
∫
Ωu

. . .dΩu

where
i inclusion number
C effective stiffness tensor of the composite
fi volume fraction of each inclusion
C I

i stiffness tensor of the each inclusion
C E stiffness tensor of the matrix
AE

i exterior strain concentration tensor for each inclusion (Li et al. [10])
AI

i interior strain concentration tensor for each inclusion (Li et al. [10])
C̃i reference solid stiffness tensor (function of the inclusion and matrix stiffness

tensors) calculated for each inclusion (Li et al. [10]), C̃i = aC I
i +(1−a)C E ,0 ≤ a ≤ 1

I s identity tensor
S I ,∗

i /SE ,∗
i interior and exterior Eshelby tensors calculated for each inclusion (Mura [15]

and Ju and Sun [11])
Qi j kl rotation tensor function of Qi j as defined in [9].

In (3), both AE
i and AI

i as shown are function of averaged interior and exterior Eshelby tensor
S(r ) (these tensors are function of νm is the Poisson ratio of the matrix, α is the aspect ratio
of the inclusion and the position of the inclusions r ) and the stiffness tensors fo the matrix,
C E , and inclusions C I

i and the reference solid stiffness tensor C̃i = aC I
i + (1 − a)C E for each

inclusion thus AE
i and its complex relation with all the aforementioned variables could be

simplified as a function named herein by “g ” as follows AE
i = g (S(r ),C̃i ,C E ,C I

i ) same stands
for AI

i = g ′(S(r ),C̃i ,C E ,C I
i ). Given r = f (θ,ϕ,γ,On

D ), the effective stiffness tensor is function
of all 5 considered inclusions attributes: volume fraction ( f ), aspect ratio (α evaluated in S(r ),
orientation (evaluated in r and using Qi j kl ), locations (r ), and number of inclusions (averaging
over multiple inclusion by using the principle of superposition of strain fields and summing for
i = 1 to N ). As “a” is a parameter used to describe the comparison solid, it has to be chosen either
to yield C̃ =C E or C̃ =C I where the method would degenerate either to interior homogenization
or the exterior homogenization, respectively. In this work, the parameter “a” is set to 0.01 thus
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favoring the exterior finite RVE. This value was chosen in order to take into account the effect of
all the inclusions on each other inside the exterior cubic RVE without neglecting the effect of each
inclusion with respect to its interior domain. It was so chosen to lie in between these two special
cases (exterior and interior).

Using Matlab®, the inverse tensors are calculated. Based on the component’s inverse matrices,
an extension formulation of Li et al. [10] is the aggregate stiffness formulation becomes:

C =
[

N∑
i=1

fi ∗C I
i : g [S( f (θ,ϕ,γ,On

D )),C̃i ,C E ,C I
i ]

+
(

1−
N∑

i=1
fi

)
N∑

i=1
C E : g ′[S( f (θ,ϕ,γ,On

D )r ),C̃i ,C E ,C I
i ]

]
:

[
N∑

i=1
fi ∗ g [S( f (θ,ϕ,γ,On

D )),C̃i ,C E ,C I
i ]

+
(

1−
N∑

i=1
fi

)
N∑

i=1
g ′[S( f (θ,ϕ,γ,On

D )),C̃i ,C E ,C I
i ]

]−1

(4)

Based on strain field superposition (summation) of each inclusion, Equation (4) incorporates
the aggregate effects of multi inclusions including location/distribution within the medium. In
addition to the 3 classical variables of volume fraction, shape, and orientation, this formulation
accounts for the additional effects of 2 additional variables: number count and locations of
inclusions.

Most homogenization literature report on calculations of stiffness as function of inclusions’
volume fraction and shape considering either uniform orientation or random orientations. To the
best of the author’s knowledge, no other reported work takes into account the combined effects
of all 5 parameters (volume fraction, shape, orientation, location, and number) at the same time
in one formulation with a range of variation for each parameter. This GSF work accomplishes this
by extending the original formulations by Li et al. [10] to include the effects of inclusions’

(1) Orientations: orientations were never taken as a parameter with a level range as in this work
(2) Locations: while formulating the exterior point Eshelby’s tensor of an ellipsoidal inclusion.

To account for this parameter, works in [11] and [15] were combined. Considering the concept
of superposition of strain fields (interior and exterior Eshelby and the interaction with multiple
inclusions) which has never been reported before

(3) Inclusions’ number by taking the interaction of the strain field for multiple inclusions.
Noting that the superposition assumptions was based on calculating the interior and exterior

Eshelby tensors/eigenstrain method where the exterior tensors are function of the position of
the inclusions in the domain and there is no restriction regarding the positions of the inclusions
in calculating the exterior tensors, the tensor could be calculated for any position, thus it was
assumed that the superposition of strain field or in other words overlapping of strain fields is
applicable at any position.

Comparing (3) and (4) with the work done in [10], one can see the added terms of (1) the sum-
mation of strain fields due to the effect of multiple (N ) inclusions in one matrix thus the effect
of location is taken into account in this term inside the new Eshelby tensor dependent on r the
inclusions’ locations, (2) the effect of the inclusion orientation in the Q tensor. One contribution
of this work is to add in one formulation (dubbed GSF) the effect of the inclusions’ number, lo-
cation, orientation, volume fraction and shape, which is a novelty to the field of composites ho-
mogenization. This GSF enhanced formulation, takes into consideration anisotropic composites,
due to the added terms of inclusions’ multiple shapes and orientations which makes the compos-
ite anisotropic in nature, and thus the authors will verify this formulation later on in this paper
to 3D printed ABS plastics which are not isotropic, and prove the validity of GSF to anisotropic
composites.

C. R. Mécanique, 2020, 348, n 2, 113-135
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3. Solutions

In this section, the numerical solution of (3) and (4) are validated for 2 cases reported in the
literature. The homogenization scheme in this work is a generalized method customizable to
finite and infinite domains and may be applied to particular cases with same assumptions as
in Mori–Tanaka. The comparisons below validate the notion that (3) and (4) yield comparable
results to those of Mori–Tanaka in which one of the 5 variables (inclusion position, shape, volume
fraction, orientation, and number) is fixed. While classical homogenization methods can be
applied for cases where the number of inclusions is larger than 10, GSF could be used for any
number of inclusions.

3.1. Volume fraction validation

This case compares GSF calculations of normalized Young’s modulus values versus volume
fraction of porosity values obtained from the homogenization work reported by Dai et al. [18]
for 3-phase composite containing a centered spherical inclusion (Zener anisotropic ratio = 1).
Each constituent is elastic and isotropic.

The spatial locations of the inclusions are arranged in such way that the composite is isotrop-
ically homogeneous (thus E11 = E22 = E33 = E) with material properties:

• Epoxy matrix with E0 = 2.03 GPa and ν0 = 0.40
• First inclusion phase (quartz) with E1 = 73.6 GPa and ν1 = 0.25
• Second inclusion phase (void) with E2 = 0
• The volume fraction c1 of quartz-sand is related to the void volume fraction c2 by

c1 = 0.17(1 − c2). This equation allows to have a variety of composites, for example if
c2 = 0 this means the composite has only the quartz inclusion with a volume fraction
of 0.17. When c2 = 1, this means that the composite is fully a void (not a realistic case),
and when 0 < c2 < 1 this means 0.17 > c1 > 0, and the composite is comprised of both
a void and a quartz inclusion with different volume fractions. (When c2 (the volume
fraction of the void) = 0 this means c1 (the volume fraction of the quartz) = 0.17 thus
the composite is comprised of the Epoxy matrix and one quartz inclusion harder than
the matrix thus the composite will have a modulus higher than that of the matrix which
means that Ecomposite/E0(modulus of the matrix = 2.03) = E/E0 > 1 equal to 1.4 based on
M-T and GSF.)

Figure 3 shows good agreement between the numerical results of the GSF homogenization
method (4) with those reported by Dai et al. [18].

3.2. Shape validation

Rouhi and Rais-Rohani [19] reported on the general framework of modeling the stiffness proper-
ties of carbon nano-fibers enhanced composite materials. A nano-enhanced matrix with CNF as
the reinforcement material and vinyl ester resin as the matrix having the following elastic proper-
ties: E0 = 3.5 GPa, E1 = 450 GPa, and ν0 = ν1 = 0.3. Figure 4 represents the axial Young’s modulus
with respect to the elliptical aspect ratio of the inclusion obtained using the developed homoge-
nization code in comparison with the published results.

4. Validation of the generalized stiffness formulation: experimental compression test-
ing and fem of domain cubes containing multiple inclusions

In Mori–Tanaka, one inclusion variable (e.g., inclusion position, shape, volume fraction, orienta-
tion and number) has to be fixed. The scheme in this work is presented as capable of addressing
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Figure 3. Comparison of the numerical results using this work’s homogenization method
versus results reported in [18].

Figure 4. Comparison of the numerical results using the developed homogenization
method with results reported by Rouhi and Rais-Rohani [19]).

any number and combination of inclusion states. In this Section, the scheme will be validated for
finite domains where novelty is claimed at the expense of relying on the "average stress consis-
tency condition" of Li et al. [10]. Corroboration is performed by comparing against compression
experiments on 3D printed composite specimens containing multiple inclusions and by the finite
element method (FEM). This section reports on the design, details, and results of the performed
experimental compression tests.

C. R. Mécanique, 2020, 348, n 2, 113-135
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Table 1. DOE Multi inclusion test matrix: variables and levels

Variable Levels
1. Volume fraction 14 0, 0.05, 0.1, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

2. Shape (aspect ratio) 13 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.25
3. Orientation 7 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦

4. Location 2 Agglomerated (centered), Dispersed (at the corners)
5. Number of inclusions 6 1, 4, 8, 16, 32, 64

Table 2. Multi inclusion cases with prescribed levels for the 4 quantitative variables tested
analytically

Number of
inclusions

Size (volume
fraction)

Shape (aspect ratio) Orientation

1, 4, 8, 16,
32, 64

(420∗6)

0.05 0.1, 0.2, 0.3, 0.4, 0.5, 0.55,
0.65, 0.7, 0.75, 0.8, 0.9, 1, 1.25

0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.1 0.2, 0.3, 0.4, 0.5, 0.55, 0.65,
0.7, 0.75, 0.8, 0.9, 1, 1.25

0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.2 0.4, 0.5, 0.55, 0.65, 0.7,
0.75, 0.8, 0.9, 1, 1.25

0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.25 0.5, 0.55, 0.65, 0.7, 0.75,
0.8, 0.9, 1, 1.25

0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.3 0.65, 0.7, 0.75, 0.8, 0.9, 1,
1.25

0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.35 0.7, 0.75, 0.8, 0.9, 1 0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.4 0.8, 0.9, 1 0◦, 15◦, 30◦, 45◦, 60◦,
75◦, 90◦

0.5 1 0◦, 15◦, 30◦, 45◦,
60◦, 75◦, 90◦

4.1. Design of experiments of finite domain with multiple inclusions

Several composites are designed using design of experiment (DOE) SAS/JMP® software to deter-
mine the effect on the effective Young’s modulus of the composite of inclusions’ volume fractions,
shapes, orientations, numbers, and locations within the matrix. Full factorial DOE is utilized with
5 considered variables and their value ranges as listed in Table 1.

“Agglomerated” locations refer to inclusions are positioned near the center of the cube while
and “dispersed” represents inclusions that are far away from the center and nearby the walls of
the cube. These positions are chosen to cover 2 extreme cases of inclusions locations within the
cubical RVE to reveal whether there is an effect of locations.

In full-factorial experiments, the number of experiments required is 13∗6∗14∗7∗2 = 15288
cases. Excluding cases where inclusions protrude outside the composite domain of the cube or
overlap with other inclusions reduces this number. The cases that satisfy this condition are listed
in Table 2. These cases are tested for two schemes for inclusion distribution: 2520 agglomerated
inclusions case and 2520 evenly dispersed inclusions cases for a total number of 5040 cases.
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Table 3. Experimental cases printed on the 3D printed cubes

Experiment
total number

Number of
inclusions
and shapes

Orientation Location VF

5 8 spheres 0◦ agglomerated 0.05–0.1–0.2–0.25–0.3
5 8 ellipses 0◦ agglomerated 0.05–0.1–0.15–0.2–0.25
5 8 spheres 0◦ dispersed 0.05–0.1–0.2–0.25–0.3
5 8 ellipses 0◦ dispersed 0.05–0.1–0.15–0.2–0.25
2 8 ellipses 90◦ agglomerated 0.1–0.2
2 8 ellipses 90◦ dispersed 0.1–0.2
2 8 ellipses random agglomerated 0.1–0.2
2 8 ellipses random dispersed 0.1–0.2
1 1 sphere 0◦ centered 0.2
1 16 spheres 0◦ dispersed 0.2
2 2 spheres–6 ellipses 0◦ dispersed 0.1–0.2
2 4 spheres–4 ellipses 0◦ dispersed 0.1–0.2
2 6 spheres–2 ellipses 0◦ dispersed 0.1–0.2

4.2. 3D printing of domain cubes containing multiple inclusions

In order to generate test specimens with predefined inclusion’s volume fraction, aspect ratio,
orientation, number, and location, 3D printing technology has been adopted using a second-
generation cube 3D printer (Cubify, Cube 3D Printer 2nd Generation: printer model number:
381000) and using ABS plastic filament (product number CC3D2 GEN-ABS). A subset of the
cases listed in Table 2 are 3D-printed, experimentally tested, and modeled using FEM. Taguchi’s
orthogonal arrays full factorial is utilized with 5 variables:

• Shape variable with 2 levels: spheres (AR = 1) and elliptical inclusions (AR = 1.25).
• Position variable with 2 levels: dispersed and agglomerated inclusions.
• Volume fraction variable with 3 levels: 0.05, 0.1, 0.2, 0.25, 0.3 for the spheres; and 0.05,

0.1, 0.15, 0.2, 0.25 for the ellipses.
• Orientation variable with 3 levels: 0◦, 90◦ and random orientation.
• Number of inclusions variable with 3 levels: 1, 8, 16 spheres.

The number of experiments was reduced due to the deletion of repeated or redundant cases.
Additional reductions were required due to practical (printing) reasons where the aspect ratios of
interest were limited to a range of 1–1.25. Therefore, the scheme is currently limited to spherical
and elliptical inclusions but remains untested in the case of flat and elongated inclusions.
Consequently, the number of test cases was reduced to the 36 cases listed in Table 3.

The effect of number of inclusions is taken into account via 3 experiments all at VF = 0.1: (1) 2
spheres and 6 ellipses with dispersed positions, (2) 4 spheres and 4 ellipses with dispersed posi-
tions, and (3) 6 spheres and 2 ellipses with dispersed positions, with ellipses at 0◦ orientation. The
effect of inclusions shape (calculated as % circular or % elliptical inclusions) is also considered.

For all cases, the finite domain is taken as uniform with cubic dimensions of 16∗16∗16 mm3.
The composite has a matrix composed of ABS plastic shaped by fusing filament wire in a
3D printing apparatus. Using Cubify Design® software, the cases listed above are designed to
generate *.stl files with dimensional tolerance of 0.001 mm. The dimensions of the spheres and
ellipses inclusions are designed to have the predefined volume fractions and aspect ratios for all
36 cases.
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Figure 5 summarizes the designed composites along with photographs of sectioned cubes
showing horizontal sections in (x, y) plane: 8 spheres dispersed, 8 spheres agglomerated, 8
ellipses dispersed at 0◦ with z-axis, 8 ellipses agglomerated at 0◦ with z-axis, 8 ellipses dispersed
at 90◦ with z-axis, 8 ellipses agglomerated at 90◦ with z-axis, 8 ellipses dispersed at random
orientation with z-axis, 8 ellipses agglomerated at random orientation with z-axis, 2 spheres and
6 ellipses, 4 spheres and 4 ellipses, 6 spheres and 2 ellipses, 1 sphere at VF = 0.2, 8 spheres at VF =
0.2 with random positions, 16 spheres at VF = 0.2 with random positions. The dimensions of the
spheres and ellipse inclusions are so chosen as to yield predefined volume fraction as follows:

For the 8 spheres the diameter of the spheres D = 4.6 mm at VF = 0.1, D = 5.8 mm at VF = 0.2
and D = 6.6 mm at VF = 0.3.

For the 8 ellipses the major axis length a = 5.36 mm, minor axis length b = 4.288 mm, the
third axis is considered to be equal to the minor axis c = b = 4.288 mm at VF = 0.1; a = 6.12 mm,
b = c = 4.896 mm at VF = 0.15; and a = 6.7 mm, b = c = 5.36 mm at VF = 0.2.

For 1 sphere at VF = 0.2, D = 11.62 mm; 16 spheres at VF = 0.2, D = 4.61 mm.
For the case of spheres and ellipses at VF = 0.1: D = 4.6 mm/a = 5.36 b = c = 4.288 mm.

4.3. Compression testing of cubes with multiple inclusions

Compression testing was performed on the cases listed in Table 3 in accordance with ASTM D695-
10 Standard Test Method for Compressive Properties of Rigid Plastics. This test method covers
the determination of the mechanical properties of unreinforced and reinforced rigid plastics
when loaded in compression at relatively low uniform rates of straining or loading and when
test specimens of standard shape are employed. Utilized was a Tinius Olsen Universal testing
machine (UTM) using load cell of 10 KN with speed of testing of 1 mm/min. Compressive
modulus of elasticity values were arrived at from the linear portion of the stress-strain curves.
Figure 6 shows such load-stroke (left) and stress-strain (right) curves. This was done by selecting
a point along the straight-line portions and dividing the compressive stress by the corresponding
strain value. Young’s modulus values are obtained experimentally from results reported for all 36
cases and were calculated for all points after 1000 N at the linear part of the curve since before
1000 N recordings correspond to aligning the upper plate grip with the horizontal surface of the
cubes this is why those points were disregarded and after 1000 N the alignment of both surfaces
was perfect and this is where the modulus of elasticity was calculated. Each experiment was
repeated 3 times by printing and testing these 3 different case cubes. Test results obtained from
compression tests were almost identical for the same test case and the values reported below are
the corresponding average values.

5. FEM of domain cubes containing multiple inclusions

This section reports on the details and results of the FEM simulations that are run along with the
experimental cases tested in the previous Section. Discussed first is finite element simulations
description followed by results of the FEM.

5.1. FEM model

All cases listed in Table 3 are modeled with FEM. The same *.stl files generated using Cubify
Design® software used for 3D printing are used as computer-aided design (CAD) input files
imported into the FEM software. The mechanical properties assigned to the defined cube are
elastic and isotropic. For the matrix, the strength was tested in compression mode for multiple
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Figure 5. Continued on next page.

solid cubes (no inclusions) along the principal directions 1, 2, and 3. The results varied within a
range of ±5% which suggests that the matrix is isotropic. An average of the measured modulus
values in the three directions has been considered and the ABS printed compressive modulus
was found to be 0.398 GPa and its Poisson’s ratio of 0.35. This modulus value is significantly
lower than reported moduli of solid ABS (typically 2.2 GPa) or that reported for other printed
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Figure 5 (cont.). Composites cases with different inclusion’s orientation, distribution in
the matrix, number and shape: 8 spheres dispersed, 8 spheres agglomerated, 8 ellipses dis-
persed at 0◦ with z-axis, 8 ellipses agglomerated at 0◦ with z-axis, 8 ellipses dispersed at 90◦

with z-axis, 8 ellipses agglomerated at 90◦ with z-axis, 8 ellipses dispersed at random orien-
tation with z-axis, 8 ellipses agglomerated at random orientation with z-axis, 2 spheres and
6 ellipses, 4 spheres and 4 ellipses, 6 spheres and 2 ellipses, 1 sphere at VF = 0.2, 8 spheres at
VF = 0.2 with random positions, 16 spheres at VF = 0.2 with random positions. Photographs
of cross sections of the 3D printed cases are shown under each case.

ABS (of 1.5 GPa in Weiss, [20]). No apparent reason for this obvious disparity but given the wide
variation in printer vendors and materials, it is possible that the proprietary filament was an ABS
blend with lower stiffness or that the fusion process has negatively affected the final mechanical
properties. Inclusions are set as voids thus Ei = 0 GPa and νi = 0.
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Figure 6. Compression tests: (left) force (N) versus stroke (mm) and (right) stress (MPa)
versus strain curves of compression tests for 36 domain cubes (and 1 solid cube).

5.2. Meshing, simulation control, and boundary conditions

The commercially available DEFORM® 3D version 11 software package (from SFTC) was used.
Tetrahedral elements are used to mesh the cube. Finer mesh is set at the top surface resulting
in 130,000 elements. Active re-meshing is considered with relative interference ratio of 0.7. The
time step is set at 0.001 s/step based on the smallest element size and the displacement rate
as recommended by the software guidelines. Boundary conditions (BCs) are set so that −z(−1)
surface of the cube has displacement uz = 0; +z(+1) surface has velocity displacement BC of
1.3 mm/min to mimic the upper rigid plate motion during uniaxial compression test. A heat
transfer condition for all surfaces with the environment is set.

5.3. FEM results

Load versus stroke curves are used in FEM to determine the elastic Young’s modulus for all cases
considered. Figure 7 plots the results for the following 4 representative cases:

(a) solid cube,
(b) case 1: cube with dispersed 8 spheres at VF = 0.1, AR = 1, angle = 0◦,
(c) case 2: cube with dispersed 8 ellipses at VF = 0.1, AR = 1.25, angle = 0◦,
(d) case 3: cube with dispersed 8 ellipses at VF = 0.1, AR = 1.25, angle = 90◦.

6. Results and discussion

The effective stiffness tensors are determined numerically for all cases using the developed
homogenization methodology. The Young’s modulus values normalized with respect to that of
the matrix (E11/Em) from (4) are plotted versus volume fraction (VF) and location, average aspect
ratio (AR), orientation, and number of inclusions. Overlaid when available, are experimentally
and FEM-obtained stiffness values for those cases.

6.1. Normalized longitudinal Young’s modulus versus volume fraction (and location/
agglomeration)

Figure 8 shows the normalized axial Young’s modulus (with respect to that of the matrix)
E11/Em plotted versus volume fraction for several and different methods and techniques, FEM:
DEFORM® results, EXP: experimental results, NUM: numerical results using the developed
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a) Full cube b) Case 1

c) Case 2 d) Case 3

Figure 7. Load versus stroke obtained using FEM for (a) the solid cube, (b) case 1: cube
with dispersed 8 spheres at VF = 0.1, AR = 1, angle = 0◦, (c) case 2: cube with dispersed 8
ellipses at VF = 0.1, AR = 1.25, angle = 0◦, (d) case 3: cube with dispersed 8 ellipses at VF =
0.1, AR = 1.25, angle = 90◦.

homogenization work in this work, VUL: Voigt upper limit (Voigt [21]), and HSLL: Hashin-
Shtrikman lower limit (Hashin and Shtrikman [22]). Figure 8 contains data points and fit lines
corresponding to these 4 cases:

• 8 spheres dispersed
• 8 spheres agglomerated
• 8 ellipses dispersed at 0◦

• 8 ellipses agglomerated at 0◦

Results suggest that the stiffness calculated values from this homogenization methodology
yield good agreement between numerical, experimental, and FEM results. The effective stiffness
values of the composite depend strongly on the inclusions’ volume fraction. Results of the
normalized Young’s modulus shows that E11/Em decreased with increased volume fraction for
all cases considered. These results are in congruence with results reported by Xu et al. [23] where
the predicted elastic moduli of particulate cementitious composite decreased with the fraction of
voids of microencapsulated phase change materials (MPCMs) and increased with the fraction of
quartz grains (hard inclusions). As the fraction of hard inclusions increase, the effective moduli
would increase. Chen et al. [24] found that the elasticity of shale rock decreases with increasing
volume fraction of multi-inclusions (as voids have a null modulus compared to the matrix similar
to the case studied in this work) that is similar to the results found herein. However, their results
are the inverse of those found in Xu et al. [25] since the inclusions are now harder than the
matrix. The normalized effective Young’s moduli of polymer nanocomposites increased with hard
interfaces having modulus of elasticity larger than that of the matrix by 12 times.

C. R. Mécanique, 2020, 348, n 2, 113-135



Ilige S. Hage and Ramsey F. Hamade 129

8 spheres

8 ellipses

Figure 8. Normalized axial Young’s modulus versus volume fraction for cases of 8 spheres
dispersed and agglomerated, as well as 8 ellipses dispersed and agglomerated at 0◦ (EXP:
experimental results, FEM: DEFORM® results, NUM: numerical results using the homog-
enization developed in this work, VUL: Voigt upper limit, HSLL: Hashin-Shtrikman lower
limit).

Results also suggest that clustering of inclusions versus them being dispersed have little effect
on the axial Young’s modulus E11/Em . The difference between stiffness of spherical or elliptical
inclusions whether dispersed or agglomerated is relatively insignificant and is estimated at about
2% only.

6.2. Normalized longitudinal Young’s modulus versus Aspect ratio

Figure 9 shows the normalized axial Young’s modulus E11/Em versus (a) percentage of spherical
inclusions and (b) average aspect ratio for the below listed cases (EXP: experimental results,
NUM: numerical results of this work, FEM: finite element) where all are at volume fractions =
0.1 and 0.2:
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VF=0.1a) VF=0.2

VF=0.1b) VF=0.2

Figure 9. Plots of (a) normalized axial Young’s modulus versus percentage spherical inclu-
sions at VF = 0.1 and 0.2, (b) normalized axial Young’s modulus versus average aspect ratio,
AR at VF = 0.1 and 0.2 (EXP: experimental compression data, NUM: numerical solutions of
the homogenization developed in this work, FEM: finite element).

• 0 spherical inclusions and 8 elliptical inclusions (0% percentage circular, average
AR = 1.25)

• 2 spherical inclusions and 6 elliptical inclusions (25% percentage circular, average
AR = 1.1875)

• 4 spherical inclusions and 4 elliptical inclusions (50% percentage circular, average
AR = 1.125)

• 6 spherical inclusions and 2 elliptical inclusions (75% percentage circular, average
AR = 1.0625)

• 8 spherical inclusions and 0 elliptical inclusions (100% percentage circular, average
AR = 1).

Given the anemic trends in Figures 9(a) and 7(b), no solid conclusions can be drawn from
within the range of the investigated aspect ratios to derive affirmative trends on the effect of
the inclusions’ average aspect ratio on stiffness or inversely versus % spherical inclusions (note
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a) VF=0.1 b) VF=0.2

Figure 10. Normalized axial Young’s modulus versus orientation for 0◦, 90◦, and random
orientations at VF = 0.1 and 0.2 (EXP: experimental results, NUM: numerical results from
this work, FEM: finite element method).

that higher AR values imply rounder or more spherical inclusions). It could also be inferred that
normalized modulus exhibits slightly decreasing trend the more the inclusions are circular by
1.676% (at VF = 0.1) and 3.3084% (at VF = 0.2).

6.3. Normalized longitudinal Young’s modulus versus orientation (and location/
agglomeration)

As orientation is redundant in the case of spherical inclusions, the orientation of other shapes
(here elliptical) is investigated as for their effect on the stiffness of the composite. Figure 10 shows
results for the normalized axial Young’s modulus E11/Em versus orientation for ellipses having
AR = 1.25 at orientations of 0◦, 90◦ and random, RAND VF = 0.1 and VF = 0.2. At such a value
of aspect ratio, the effect of orientation is noticeable. Plotted, for all orientations, are results for
experimental results, EXP, finite element FEM and numerical solution from (4), NUM. For the
experimental results, shown in Figure 10 are error bars with respect to the arithmetic mean of the
tests done for each case using the t-student distribution at a 95% confidence interval.

Analytical, finite element method, and experimental stiffness results show the difference
between elliptical inclusions oriented at 0◦ with respect to the axial axis x1 and inclusions
oriented at 90◦ with respect to the axial axis x1 is relatively significant with about 4.5% max
relative difference recorded at AR = 1.25 (VF = 0.1) and 9.022% (VF = 0.2). Very good matches
between experimental and numerical/FEM results are recorded. Observed variations (error bars)
in the experimental results may be related to 3D printing of the tested cubes, UTM results, or
human factors may affect the accuracy of experimental data. For the case of 8 ellipses dispersed,
normalized Young’s modulus values decreased by 2.17% in going from 8 ellipses oriented at 0◦ to
random orientations (VF = 0.1), 4.14% (VF = 0.2), 1.53% for the case of 8 agglomerated ellipses
(VF = 0.1) and by 6.96% (VF = 0.2). It can be inferred that the difference in orientations is more
apparent at higher volume fractions.

6.4. Normalized Young’s modulus versus number of inclusions (and location/
agglomeration)

Figure 11 shows the normalized axial Young’s modulus E11/Em versus number of spherical
inclusions for the below listed cases (EXP: experimental results, NUM: numerical results of (4),
FEM: finite element method):

• 1 spherical inclusion D = 11.62 mm at VF = 0.2 (analytical and experimental)
• 4 spherical inclusions D = 7.3 mm at VF = 0.2 (analytical)
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Figure 11. Normalized axial Young’s modulus versus number of spherical inclusions (EXP:
experimental results, NUM: numerical results using the homogenization developed in this
work, FEM: finite element).

• 8 spherical inclusions D = 5.8 mm at VF = 0.2 (analytical and experimental)
• 16 spherical inclusions D = 4.61 mm at VF = 0.2 (analytical and experimental)

It can be inferred that E11/Em values increase with respect to number of spherical inclusions up
to N of about 10. From N = 1 to N = 1, E11/Em values increased by 8.46%. For larger number of
pores, this effect dwindles significantly. This is in agreement with Ju and Sun [12] and with Xu
et al. [26] when the number of particles is greater than 49, the average value of elastic moduli of
particle-reinforced composites PRCs particles tend to be stable) containing nonspherical. As the
number of inclusions increases, their size would decrease for the same volume fraction. To ensure
that all of the inclusions are bound within the RVE, investigated only is the case of clustered
inclusions (agglomerated) near the RVE center.

6.5. Normalized Young’s modulus versus dispersion/agglomeration

Some of the data reported in Figure 8 is re-examined here with focus on agglomeration and
plotted as bar charts. For the below listed cases, Figure 12 (VF = 0 and VF = 1 not shown) shows
the normalized axial Young’s modulus E11/Em numerical values found from (4) for both dispersed
and agglomerated cases:

• 8 spheres dispersed (Figure 12a)
• 8 spheres agglomerated (Figure 12a)
• 8 ellipses dispersed oriented at 0◦ (Figure 12b)
• 8 ellipses agglomerated oriented at 0◦ (Figure 12b).

It can be inferred that location has little effect on the modulus where maximum percentage
difference recorded is about 2% for the range of volume fractions examined. This may be due
to the small size of the RVE considered where the location of the inclusions does not appear to
significantly affect the elastic properties of the composite.
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a)

b)

Figure 12. Normalized axial Young’s modulus dispersed versus agglomerated for the nu-
merical results (a) for 8 spheres and (b) for 8 ellipses oriented a 0◦.

6.6. Significance of the findings

For all 36 cases tested experimentally, the normalized stiffness values determined from the nu-
merical solution of (4) are plotted in Figure 13 against the experimentally measured normalized
values. These Young’s modulus values are determined at identical states of volume fractions, ori-
entations, aspect ratios, locations, and numbers of inclusions. The figure shows a cloud of points,
segregated by volume fraction values of 0.1, 0.15, 0.2, and 0.3, located close to the y = x line
which shows that experimental and numerical results are quite comparable. This is indicative of
the quality of the formulations advanced in this work.

7. Conclusions

The generalized stiffness formulation (GSF) scheme is a combined expression (4) for the effective
stiffness tensor of a multiple-inclusion composite. Inclusions states have five geometric and
other attributes of volume fraction (size), shape, orientation, location, and number within the
solid matrix. The formulation is first validated by comparing its numerical solutions with two
literature-reported stiffness values of relatively simple configurations. With a DOE-developed
test matrix accounting for wide-ranging values of these attributes, this formulation is further
validated for a wide range of multiple inclusions composites using experimental compression
tests and FEM simulations.

Examining the values of normalized axial modulus E11/Em versus the 5 inclusions’ attributes,
the following conclusions are drawn:
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Figure 13. Plot of the numerical estimate of the Young’s Modulus values produced in this
work versus experimentally measured Young’s Modulus values from compression tests.

• Volume fraction of inclusions in matrix (porosity, %) is very significant. E11/Em values
decrease (increase) significantly for increasing (decreasing) porosity.

• Average aspect ratio, AR (circularity) of the inclusions. Trends of E11/Em with % circular
inclusions (average aspect ratio) are inconclusive to make a definitive determination on
their effect on composite stiffness. A slight decreasing trend of the modulus is shown with
increasing number of spherical inclusions.

• Orientation of the inclusions is fairly significant in its effect on E11/Em . For the case of
8 ellipses dispersed, normalized Young’s modulus values decreased by 2.17% in going
from 8 ellipses oriented at 0◦ to random orientations and by 1.53% for the case of 8
agglomerated ellipses at VF = 0.1, 4.14% at VF = 0.2, 1.53% for the case of 8 agglomerated
ellipses at VF = 0.1, and 6.96% at VF = 0.2. It can be inferred as well that the difference in
orientations is more pronounce at higher volume fractions.

• Number of inclusions is significant (up to a point). The normalized axial effective Young’s
modulus E11/Em increases with the number of circular inclusions up to N = about
10 after which the effect is minimal. For the same volume fraction, as the number of
inclusions increases their size would decrease. Therefore, in order to ensure that all of
the inclusions are bound within the RVE, the case of the inclusions clustered near the
center of the RVE is investigated.

• Location of the inclusions in the matrix (agglomerated versus dispersed) appears to have
little effect (4.306%) on the normalized axial modulus E11/Em .
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