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Abstract. The present paper deals with the consideration of the rate-sensitivity mechanical behavior of
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(rate-sensitive or insensitive materials, static and/or dynamic ranges), the simple power law can be used to
simulate the macroscopic behavior of polycrystalline aggregates in a wide range of strain rate (including both
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1. Introduction

For the modeling of the global and local mechanical behaviors of polycrystalline metals in a wide
range of temperature or strain rate—with polycrystalline models, such as Taylor [1–3] or self-
consistent models [4–6], with Finite Element (FE) codes [7–10], or with multiscale approaches
coupling discrete dislocations dynamic approaches with FE codes [11, 12]—it is quite usual to
use a rate-dependent crystalline constitutive law, which generally takes the form of the following
power law expressed on the slip system s [1]1

γ̇s = γ̇s
0

(
τs

τs
0

)n

. (1)

In this expression, n (or more often 1/n = m) characterizes the material rate sensitivity, γ̇s is the
slip rate, and τs the resolved shear stress. The term τs

0 is the so-called critical (or reference) re-
solved shear stress (which evolves with strain when hardening is considered), while the param-
eter γ̇S

0 is usually called a reference shear rate [7, 8, 12]. If the exponent n is the same for all sys-
tems and for all grains of a polycrystal, it is easy to show that this exponent is also the macro-
scopic rate sensitivity of the polycrystal as a whole [2]. By assuming the rate dependence at the
slip system level, this widely accepted phenomenological law presents the double advantage of
(i) assuming that plastic strain occurs solely by crystallographic slip on well-defined slip systems,
which is generally true for most metals at not too high temperatures and (ii) suppressing the long
standing problem of non-uniqueness in the choice of active slip systems usually encountered in
rate-independent crystalline plasticity [13–15].

Such a viscoplastic (VP) crystalline law has also been shown to be able to provide physically
based large-strain-rate-sensitive constitutive models, in order to interpret experiments on metals
performed up to quite large strain rates (up to 104 s−1, see e.g. [10]), in which localization of
plastic deformation is observed. Although rate sensitivity may be neglected on purpose for many
metallic alloys cold-deformed at low strain rates and strains, this may no longer be valid when
moderate or high strain rates are applied, or when high temperature data are considered. It is
now well known that, in such a case, the resulting localization of plastic flow is indeed strongly
influenced by the strain-rate sensitivity of the material [16–18], and to a lesser extent by the
deformation induced anisotropy [19]. In fact, many authors have observed an increased rate
sensitivity at large applied strain rates, and have postulated that this rate sensitivity increase
is a characteristic of the material [1, 10, 20, 21]. However, how large the strain rate must be to
observe this increased rate sensitivity is still not clear. Indeed, the strain-rate sensitivity depends
in quite a complex way on strain rate, but also on strain, temperature, as well as on the underlying
microstructure and possible deformation mechanisms of the tested materials [6, 22–24]. Thus,
a lot of successful modeling efforts, some of them based on the very same power law as the
one defined in (1), have been made to be able to simulate different strain-rate regimes, either
controlled by the thermally activated interactions between dislocations at rather low strain rates
or by dislocation drag at high strain rates (see, e.g., [25–28]). Conversely, some other authors
claim that accounting for rate sensitivity solely by a single relationship between shear rate and
shear stress is a too simplified approach even for low strain rates, and that this approach should
be replaced or completed by a rate-sensitive hardening law, describing the evolution of τs

0 with
strain and strain rate (e.g., [9, 29, 30]), to account for the right influence of strain-rate sensitivity
on the behavior of polycrystalline materials. Additionally, since this classical power law is still
mostly used with the aim of simplifying the numerical procedures by providing a regularized

1By using only odd values of the exponent n, we avoid in the formulation the use of absolute values. Thus, the more
classically chosen value of 20 will be replaced here by 21, since the resulting difference in the macroscopic behavior is
hardly detectable.
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form (with a unique solution on a given slip system) of the slip criterion, the exponent n is usually
not correctly set up (see below), resulting in an inaccurate coupling between the macroscopic
rate-sensitive response and the rate-sensitive evolution of critical resolved shear stresses of slip
systems. In order to solve this problem for rate-sensitive or rate-insensitive materials, some much
more numerically efficient methods have been recently proposed [29, 31]. The first one [29] aims
at describing properly the behavior of materials in a wide range of rate sensitivity and strain rate,
whereas the second one [29, 31] aims at being able to treat efficiently the case of rate-insensitive
materials. However, according to the authors themselves, these efficient methods are not adapted
either to the treatment of rate-sensitive materials [31] or to their combined use with FE codes [32].

Thus, and especially in the framework of FE simulations, lot of works are still based on the use
of the classical VP crystalline power law (1), partly also rendered popular by the user material
(UMAT) subroutine developed by Huang for the commercial software Abaqus [33]. However,
even in some very recent papers, the exponent of rate sensitivity is set without any justification
(e.g., [12]) or is assumed to be “adequately chosen to neglect the rate sensitivity” (e.g., [8, 16, 34])
at the polycrystal scale. In fact, it is easy to show that it is not the case for many of the reported
simulations, and that the choice made leads precisely to unexpected high strain-rate sensitivity,
as soon as the strain rate varies.

The aim of this paper is thus to re-address the question, and the use, of the applied strain-
rate sensitivity in computations using a power-law-based crystal plasticity model, for both rate-
insensitive and rate-sensitive materials. We will first recall the procedure to use adequately such
a simple formulation for rate-insensitive materials. With the addition of the phenomenological
saturating hardening law used in [33], we will then propose a methodology to accelerate the
identification of the parameters describing the constitutive law of the material, with an FE code,
for rate-sensitive materials at rather low strain rates (i.e., within the static regime). We will finally
show that this identification can be extended to the case of high strain rates (dynamic regime),
provided that the n value is identified differently in both regimes. This will be illustrated by
some simulations of a tensile test performed using two different modeling approaches, that is,
a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE
computation (using Abaqus software and dedicated user subroutines [33]), both approaches
using the very same single-crystal rate-dependent constitutive law and allowing strain-rate
fluctuations within the polycrystalline material.

The outline of the present paper is thus the following: the classical single-crystal VP flow rule
and associated hardening law are presented in Section 2, its implementation into the Taylor
model and FE Abaqus code are briefly described in Section 3, the results of the performed
simulations are then analyzed in Section 4 and some conclusions are drawn in Section 5.

2. The classical single-crystal viscoplastic flow rule and associated hardening law

As already mentioned, when a grain g of a polycrystalline sample is subjected to a stress state σ,
plastic strain takes place by slip on several slip systems, each labeled by index s. At the level of the
slip systems, the rate-dependent slip criterion is given by (1). The resolved shear stress on system
s is equal to τs = σi j R s

i j = Si j R s
i j , S being the (symmetrical) deviatoric stress tensor and R s the

orientation tensor of system s.2 The components of this last tensor read

R s
i j = 1

2 (ns
i bs

i +bs
i ns

i ), (2)

2In the following, tensors are written in bold, and the subscript “M” denotes macroscopic values.
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with ~ns and ~bs characterizing respectively the slip plane normal and the slip direction for the
system s. The strain-rate tensor ε̇ in grain g is then defined as a summation of individual shear-
rate components on all systems s:

ε̇i j =
∑

s
γ̇s

0

(
τs

τs
0

)n

R s
i j =

∑
s
γ̇s

0

(Skl R s
kl

τs
0

)n

R s
i j . (3)

As long as the parameters τs
0, γ̇s

0, and the exponent of rate sensitivity n are constant, this equation
represents a unique relationship between strain rate and deviatoric stress tensors at the level of
grain g , which allows to determine both tensors from the boundary conditions imposed to the
considered grain (more precisely five independent components for each tensor). The existence
of a unique solution has the direct consequence that the current stress state vary with strain rate
and vice versa. This constitutive law is classically accompanied by a hardening law, which can be
expressed—again at the level of the slip systems—as

τ̇s
0 =

∑
l

Hsl γ̇
l , (4)

with Hsl the components of the so-called hardening matrix. As in the UMAT subroutine devel-
oped for Abaqus, a saturating expression—which has proven its efficiency to reproduce experi-
mental data concerning several metallic alloys [35, 36]—can be adopted which reads

Hss = h0 sech2
∣∣∣∣ h0γ

τsat −τini

∣∣∣∣
Hsl ,s 6=l = qh0 sech2

∣∣∣∣ h0γ

τsat −τini

∣∣∣∣ , (5)

where γ is the cumulated shear strain on system s so that

γ=
∫ t

0

∑
s
|γ̇s |dt . (6)

In order to characterize completely these laws (Equations (5) and (3)), four material parameters
are thus needed, namely τini, τsat, q , and h0, together with two other sets of material parameters,
τs

0ini (initial values) and γ̇S
0 —which can be reduced to two parameters τ0ini and γ̇0, if they are

assumed equal for all systems in all grains—and finally the exponent of rate sensitivity n. If one
single value τ0ini is imposed for all systems, then it is trivial to set it equal to τini. In that case,
the τini and τsat values are directly linked to the initial and final values of both microscopic (at
the level of the grain) and macroscopic stress values (see Figure 1 below). As for the h0 hardening
coefficient, it affects the hardening rate all along the stress–strain curve before the saturation level
is reached (see again Figure 1).

Now, in order to demonstrate the usefulness of the proposed crystalline law, we are going
to use two different simulations approaches (i.e., mean and full field ones) to calculate the
macroscopic response of a polycrystalline aggregate in uniaxial tension. For both approaches,
by construction, the local strain rate is allowed to differ from one grain to another and thus may
be quite different from the macroscopic imposed one.

3. Simulation framework

3.1. The Taylor model (with full or relaxed constraints)

In the framework of the Taylor model (FC—Full Constraint or RC—Relaxed Constraint), several
options are possible to simulate a tensile test along, for example, the axis 3 of the macroscopic
reference system:

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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Figure 1. Simulated tensile curves using the RC Taylor model, with γ̇s
0 = γ̇0 = ĖVM =

0.0005 s−1, q = 1.1, and n = 21. The 3 hardening parameters h0, τini, τsat are varied and
their values (in MPa) are given in the figure legend.

(i) The Taylor model in the FC mode, which implies that all components of the strain-rate
tensor within each grain are assumed to be the same than the imposed macroscopic
ones, that is, ε̇ = Ė M. For a general anisotropic material, the combined boundary con-
ditions in terms of stress and strain rate then read at the level of the grain

ε̇= Ė33imp

∣∣∣∣∣∣
−α 0 0
0 1−α 0
0 0 1

∣∣∣∣∣∣ and σ=
∣∣∣∣∣∣

0 ? ?
? 0 ?
? ? ?

∣∣∣∣∣∣ (7)

in which Ė33imp is the imposed macroscopic strain rate along the tensile axis andα the so-
called contraction ratio, which has to be calculated, for each calculation step, by minimiz-
ing the macroscopic plastic work rate with respect to α [37]. If the material is isotropic,
this factor is set to be equal to 0.5 and no extra minimization procedure is necessary in
this case. This case is known to represent an upper bound for the macroscopic behavior
of the material.

(ii) The Taylor model in its most relaxed version, often called the Sachs–Köchendorfer
model [38, 39]. In this case, a uniaxial stress state is applied to each grain, and only the
macroscopic strain rate along the tensile axis Ė33 is imposed in each grain. The boundary
conditions are then

ε̇= Ė33imp

∣∣∣∣∣∣
? ? ?
? ? ?
? ? 1

∣∣∣∣∣∣ and σ=
∣∣∣∣∣∣

0 0 0
0 0 0
0 0 ?

∣∣∣∣∣∣ . (8)

This option is usually applied for small strains, but it is considered to be far from the re-
ality for moderate or large ones. It is worth mentioning that, as one of the five indepen-
dent components of the strain-rate tensor is still imposed to each grain, this model does
not corresponds to the so-called static model which constitutes the lower bound for the
macroscopic behavior and for which the total stress tensor is the same for all grains.

(iii) an “intermediate” approach (which will be called RC Taylor model in the following),
which is thought to be better for anisotropic materials although quite simplified, which

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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consists in allowing the contraction ratio α to be different within each grain, which
implies the following boundary conditions:

ε̇= Ė33imp

∣∣∣∣∣∣
? 0 0
0 ? 0
0 0 1

∣∣∣∣∣∣ and σ=
∣∣∣∣∣∣

0 ? 0
? 0 ?
? ? ?

∣∣∣∣∣∣ . (9)

It is easy to prove that, if the sample is isotropic, we will get ĖM22 = ĖM11 = 0.5 at the level
of the polycrystal and the resulting macroscopic stress state will also be purely uniaxial
(like in the FC mode). Apart from being simpler and more rapid than the FC one, this
version is thought to be especially well adapted to the simulation of a tensile test applied
on anisotropic materials (as well as in isotropic ones of course) [40], and is consequently
used in the present work.

For all these cases, it is readily seen that, among the ten independent components of ε̇ and σ
which need to be determined, five are imposed and the five remaining are deduced from (3). The
associated macroscopic quantities Ė M and ΣM are then obtained by averaging on all grains.

Once the boundary conditions have been selected, an iterative calculation can be performed
to simulate a tensile test, and, from the boundary conditions expressed by (9) and the resolution
of (3), the tensile deviatoric stress S33 and strain rate ε̇33 = Ė33imp can be extracted at each step of
the calculation (characterized by a time increment ∆t ). Then, at a given time t of the simulation,
the total tensile strain can be obtained:

∆E33 = Ė33imp∆t ⇒ E33(t +∆t ) = E33(t )+ Ė33imp∆t . (10)

At each step, the reference shear stress of each system, within each grain, is also updated

τs
0(t +∆t ) = τs

0(t )+∑
l

Hsl γ̇
l (t )∆t , (11)

noting that, at time t = 0,τs
0 = τini and

∑
l Hsl γ̇

l (t ) = 0.
In order to calculate the macroscopic tensile curve, the deviatoric stress is averaged on all

grains at each step to get SM and the macroscopic true tensile stress ΣM33. As

SMi i = 〈Si i 〉 and ΣMi i = SMi i + P

3
, (12)

where P is the hydrostatic pressure, and since the macroscopic boundary conditions also impose
that

ΣM11 =ΣM22 = 0 (13)

then, we simply get

ΣM33 = 3
2 SM33. (14)

Equations (10) and (14) allow then to plot the macroscopic tensile stress–strain curve. Since Ė33imp

is imposed and constant along the test, the final strain can be written as

E33final = Ė33imp Nstep∆t , (15)

with Nstep being the total number of calculated steps. It is thus readily seen that if Ė33imp is
modified, the product Nstep∆t has to be modified as well to keep the first term of (15) constant.
In many of the papers quoted above, which deal with the influence of strain-rate sensitivity, the
macroscopic strain rate is rarely varied and only the influence of the exponent n is studied. For
example, it is mentioned by Canova and co-workers [1] that “all the results are normalized by
the von Mises (VM) equivalent strain rate and are thus independent of the applied strain rate”.
In the present case, the grain VM equivalent strain rate indeed varies from grain to grain, for
the selected boundary conditions (it would not be the case of course for the FC assumption).

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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The same expression is also valid at the macroscopic level, but if the material is macroscopically
isotropic, it simply becomes equal to

ĖVM = Ė33imp. (16)

In the simulations performed below, we will thus have ε̇VM 6= ĖVM in most of the grains. Also, as in
many publications listed above, using either an homogenization model or an FE code, a reference
case will be defined as the one performed by defining the reference shear rate equal to the
macroscopic one, that is γ̇0 = Ė33imp, which means Ė33imp/γ̇0 = ĖVM/γ̇0 = 1. As a consequence, if
the macroscopic strain rate ĖVM is multiplied or divided by a factor of say 10, without modifying
the value of the reference shear rate γ̇0, Nstep will have to be divided or multiplied by 10, if E33final

and ∆t are kept constant. The exponent n will be varied in a wide range associated classically
with room temperature deformation, that is, between 10 and 200. This model will be used below
to reproduce the mechanical behavior of several face centered cubic (FCC) materials (stainless
steel and aluminum alloy) extracted from the literature. As in the selected examples, the texture
is not documented or assumed to be isotropic, it is considered in the following as only isotropic
aggregates, represented by a set of 2016 orientations, uniformly distributed within the Euler
space. For all treated examples, the 12 111〈110〉 systems will be considered. It is worth to point
out that the aim of the present work is not to demonstrate the relevance of the RC Taylor model,
but to be able to study the influence of the simple rate-sensitivity power law in a model allowing
a strain-rate gradient within the aggregate. Some tensile curves have been simulated with this
approach to illustrate the influence of the various hardening parameters on the global response.
These are shown in Figure 1, where it can be clearly seen that, for a given modeling approach,
the initial value (resp. final value) of the macroscopic tensile stress is directly proportional to the
value of τ0 = τini (resp. τsat). This proportionality is even independent of the selected hardening
law for the yield stress value.

3.2. The FE Abaqus code

As the objective is to deal with strain-rate sensitivity in the framework of FE codes, some sim-
ulations have also been performed with the FE code Abaqus, which is increasingly used for the
simulation of the VP behavior of polycrystalline materials, with the very same description of the
single-crystal constitutive law. Again isotropic materials are considered. The simulation of a ten-
sile test with such a code, however, is usually not performed with exactly the same boundary con-
ditions as the ones imposed in the RC Taylor model, since displacements, instead of strain rates,
are generally applied in FE simulations. Furthermore, the description of the initial microstruc-
ture of the material is also somewhat different, since it accounts for both orientations and posi-
tions of the grains within polycrystalline aggregates, whereas only the orientation distribution is
accounted for in the Taylor model.

In the present case, the considered isotropic material will be represented by a cubic polycrys-
talline aggregate of 200 grains, made of a Voronoï tessellation obtained from Neper program [41]
and imported in Abaqus CAE using python scripts [42] (see Figure 2a). The grain boundaries are
simply defined as the boundaries between zones of different orientations. The choice of a re-
duced number of orientations compared to the previous case appears here to be a good com-
promise to obtain both reasonable calculation times and a macroscopic uniaxial tensile stress,
as with the RC Taylor model. The polycrystal is submitted to both symmetry boundary condi-
tions and imposed displacement on the upper and lower faces, while on the lateral ones, uniform
mixed-orthogonal (or block) conditions have been defined to account for periodicity [43,44] (Fig-
ure 2b).

The crystal plasticity mechanical behavior, as defined in (1) to (6), is introduced into Abaqus
using a UMAT subroutine, which is extensively described in [33], and the Euler angle set

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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Figure 2. (a) Example of a Voronoï tessellation made of 200 grains and (b) applied bound-
ary conditions.

(ϕ1,Φ,ϕ2) of each Voronoï cell is randomly determined in an ORIENT subroutine, describing
thus an isotropic angle set.

4. Numerical results

4.1. Case study 1: the case of a rate-insensitive material

The first example treated with the simple rate-sensitive (RS) constitutive law described above
is the often encountered case of a material with a very low strain-rate sensitivity (represented by
1/n). This in turns means a very high value of the n exponent. This exponent is usually established
experimentally from flow stresses obtained at different strain rates but same microstructural state
(e.g., dislocation density and thus same stress level), from the slope of the ln–ln stress–strain rate
curve [45]:

n = ∂ ln ĖM

∂ lnΣ

∣∣∣∣
Σ

. (17)

When doing so, values as high as 100–400 have been reported in the literature for various
materials (copper, brass, many steels, . . . .) and this is why some regularized versions of the
present VP formulation have been proposed since calculations performed with very high values
of n (above 200) are practically impossible to achieve, whatever the model used [29, 31]. Another
way of solving this problem is to embed the norm of the applied strain rate into the reference
shear rate γ̇s

0 [30], by imposing it to be equal to the applied macroscopic strain rate, that is,
γ̇s

0 = Ė33imp in the present case. It is then easy to show that in this case, the macroscopic response
does not depend on the selected n value, and that the magnitude of the grain stress is affected
only by the ratio of the grain strain-rate magnitude and the macroscopic strain-rate magnitude,
which is not so large for FCC materials. This procedure is frequently used, especially when
simulations are performed for one single macroscopic strain-rate value.

Let us reproduce in this way, an experimental curve obtained at room temperature for a 304L
stainless steel, whose texture is assumed to be isotropic [46]. In order to identify the hardening
parameters for this case, the reference shear stress has been set equal to the actual strain rate, that
is, 0.001 s−1, and the n exponent to 21, that is, one of the value most often found in the literature

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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Figure 3. Tensile curves obtained with the RC Taylor model for the reference case
(Ė33imp/γ̇0 = ĖVM/γ̇0 = 1) and various n values. Comparison with the experimental curve
obtained by Chavez et al. [46] on a 304L stainless steel at room temperature.

Table 1. Imposed and adjusted parameters for the identification of the 304L experimental
curve with the RC Taylor model

Imposed test conditions
(reference case)

ĖVM = Ė33imp = 0.001 s−1

E33max = 0.35

Imposed parameters
γ̇s

0 = γ̇0 = 0.001 s−1

n = 21

Material adjusted
parameters

τs
0 = 100 MPa

h0 = 260 MPa, q = 1.1
τsat = 300 MPa, τini = 100 MPa

“to reproduce negligible viscous behavior” [47] or for material which “possesses a certain rate-
dependency at medium to high temperatures” [14,34,48–51]. The other material parameters have
been manually identified on the experimental curve (see Figure 3); they are listed in Table 1.

It is seen that, for the selected parameters, the agreement, although not 100% perfect, is quite
satisfactory. An automatic identification procedure or the selection of a more physically based
hardening law would probably allow for a better fit over the whole strain range, but this is out of
the scope of the present paper. Much more important, for it is the focus of the present study, it is
seen that when γ̇0 = ĖVM, the influence of the exponent n is indeed very limited and negligible
for n ≥ 21, as reported in many studies using the same law.

But, once this reference case is satisfactorily treated, we may want to see what would happen
if we change now the applied strain rate without changing the value of the reference shear
stress γ̇0. This is illustrated in Figure 4, where simulations have been made using the parameters
listed in Table 1, except for the applied normalized strain rate ĖVM/γ̇0 which has multiplied
or divided by ten, and the exponent n which has been varied from 21 to 111. It is seen that,
when the normalized strain rate is set to ĖVM/γ̇0 = 1/10, there is an influence of the strain rate
on the macroscopic response, and that the curves are almost superimposed only for n ≥ 91.
It is interesting to note that the best agreement with the experimental curve is now found for
n = 41, which means that both reference strain rate γ̇0 and exponent n should be considered
simultaneously for the identification of the hardening parameters, as done in other works, see

C. R. Mécanique, 2020, 348, n 10-11, 807-826
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Figure 4. Tensile curves obtained with the RC Taylor model for 2 test parameter sets
different from the reference case, and various n values. Comparison with the experimental
curve obtained by Chavez et al. [46] on a 304L stainless steel at room temperature.

Figure 5. Tensile curves obtained with the RC Taylor model and the Abaqus code for five
different applied normalized strain-rate values (from 0.0001 up to 1 s−1) and n = 21 or 111.

for example [9]: for the identification of the selected 304L tensile curve, taking γ̇0 = 10× ĖVM with
n = 41 indeed provides a slightly better fit than γ̇0 = ĖVM with n = 21. It is also seen in Figure 4a
that the overall stress level is increasing with n, when ĖVM < γ̇0, as a consequence of the used
power law.

If the normalized strain rate is set to ĖVM/γ̇0 = 10, there is again a clear influence of the
strain rate on the macroscopic response, and the curves are again almost superimposed only
for n ≥ 91. The overall stress level is now decreasing when n increases, which better correspond
to the expected influence of rate sensitivity and has already been observed in some other works.
For example, these calculations are in full agreement with the ones performed by Khan et al. [9]
with a similar power law.

Some curves obtained for two different values of n, namely 21 and 111 and various values
of Ė33imp/γ̇0 between 1 and 10−4 (that is 4 orders of magnitude) are now presented in Figure 5.
These curves have been obtained with the RC Taylor model as well as with Abaqus, with the same
material parameters. For the FE simulation, as the elastic part of the curve is also simulated,
the following elastic constants have been considered for 304L steel: C11 = 197,500 MPa, C22 =
125,000 MPa, and C44 = 122,000 MPa. As the boundary conditions imposed to simulate a simple
tensile test are not exactly expressed in the same way for the two approaches, before performing
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Figure 6. Evolution of the macroscopic yield stress as a function of strain rate and strain-
rate sensitivity exponent for all performed simulations.

comparisons of the two sets of calculations, it has been checked that the macroscopic tensile
test was indeed uniaxial in both cases (this would not have been necessarily the case for an
anisotropic material). For comparison purposes, the elastic part of the curves has been taken out
from the Abaqus simulations. It is interesting to note that the Abaqus curves are systematically
below the RC Taylor curves, even though the Taylor model is not used in the pure FC mode (which
would actually correspond to an upper bound). This means that the interactions between grains
are softer in Abaqus than with the selected RC Taylor model. However, it is clear that the influence
of the strain rate for given values of γ̇0 and n are similar for both approaches. It is also worth
noting that n ≥ 111, the convergence is very difficult to achieve with Abaqus, depending on the
material description and imposed strain rate.

The influence of the normalized strain rate ĖVM/γ̇0 and strain-rate sensitivity exponent n on
the overall yield stress is now presented in Figure 6 for all performed situations. This yield stress is
extracted at the first calculation step for the RC Taylor simulations and evaluated at 0.02% plastic
strain for the Abaqus simulations. Clearly this stress value does not vary much with the exponent
for ĖVM/γ̇0 = 1 in both cases, but when this value is changed, the stress can strongly vary. For
example, for n = 21, the stress varies from about 180 to 310 MPa when ĖVM/γ̇0 varies from 0.0001
to 10 with the RC Taylor model. Similarly, with Abaqus, the stress varies from 170 to about 263 MPa
when ĖVM/γ̇0 varies from 0.0001 to 1. The response of the material is thus clearly rate sensitive
for n = 21. The absence of strict linearity observed in the Abaqus simulations can be attributed
to numerical reasons and to the local fluctuations of strain rate and stress, more significant than
with the RC Taylor model, associated with weaker interactions between grains.

Now, by calculating the normalized ratio of this tensile yield stress by the reference shear
stress (taken here equal to 100 MPa), the RC Taylor and Abaqus responses can be compared
to the upper and lower bounds rate-insensitive approaches. It is indeed well known that, for
an isotropic FCC metal in the rate-insensitive limit, this normalized stress is equal to 3.06 for
the upper bound (Taylor model), 2 for the lower bound (static model) and 2.2 for the Sachs–
Kochendorfer model [52]. It is also clear from Figure 6, that this rate-insensitive value can be
estimated for the VP RC Taylor and Abaqus models from the yield stress obtained for ĖVM = γ̇0 and
the highest possible value for the exponent n. The so-obtained values are 2.78 for the RC Taylor
model and about 2.62 for Abaqus. This confirms that the RC Taylor approximation is closer to the
upper bound than to the lower one and that the interactions between grains are slightly softer
with Abaqus. This also affects the hardening capacity as seen in Figure 5.
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Figure 7. Relationship between strain rate and yield stress extracted from experimental
tensile curves obtained on pure aluminum at room temperature [54].

This first study has highlighted the fact that the only way to really neglect rate sensitivity with
the power law is to set γ̇0 = ĖVM, and to keep the macroscopic strain-rate constant; this is indeed
well known from experienced users of VP mean field or full field methods, but much less from
new FE code users, if we look at the recent bibliography on the subject.

4.2. Case study 2: the case of a rate-sensitive material

Furthermore, if some alternatives exist to treat efficiently the case of the rate-insensitive materi-
als, the simple power law (1) is still largely used to treat the case of rate-sensitive materials within
the static regime (typically for strain rates staying below 1.0 s−1). Of course, as already said, it can-
not alone account for the complex rate-sensitivity influence of a real material and the rate sen-
sitivity of the hardening rate should also be considered [9, 32], especially if the treated problems
involve strong flow localization [53, 54]. But, if it is not the case, that is, for moderate strains and
strain rates, Christodoulou and Jonas [54] have shown that the use of the so-called continuous
strain-rate sensitivity as defined by (17), that is, determined at constant structural state, instead
of a more instantaneous one, determined during strain rate change tests, compensates to some
extent for the neglect of the rate sensitivity of hardening. Thus, even with a rather simple harden-
ing law, by paying attention to the identification procedure, it can still reproduce quite precisely
the observed behavior of materials tested at different strain rates and be useful for simulations
for which strong localization is not expected. Let us take the example of pure aluminum (99.99%),
which is more rate sensitive than the previously studied steel. Some experimental data have been
extracted from [53, 54] and the rate sensitivity of the material has been estimated using (17) (Fig-
ure 7). The resulting estimated n value is found to be equal to 15 for an explored strain-rate range
of 0.05 to 0.0005 s−1.

Then, as in the previous example, the identification of the hardening parameters have been
made for a reference case, corresponding to γ̇0 = ĖVM, arbitrarily selected equal to 0.0005 s−1.
We have also fixed the value of q to 1.1, classically selected for aluminum. Therefore, three
parameters remain to be determined, which are h0,τini, and τsat. These three parameters have
been manually adjusted to reproduce the curve corresponding to ĖVM = 0.0005 s−1, and validated
then by simulating the other curves corresponding to ĖVM = 0.005 s−1 and ĖVM = 0.05 s−1. The
result of this first identification is presented in Table 2 and Figure 8a, in which the elastic parts of
the experimental curves have been suppressed. In the validation process, the parameters may be
slightly re-adjusted. In that case, they have to be validated again on the reference case.
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Figure 8. Stress–strain curves obtained for pure aluminum deformed in tension at various
strain rates. The experimental curves are taken from [54] and the simulated ones are
obtained with the RC Taylor model, using two sets of parameters (see Table 2): (a) γ̇0 =
0.0005 s−1 and (b) γ̇0 = 0.05 s−1.

Table 2. Imposed and adjusted parameters for the identification of the aluminum experi-
mental curves with the RC Taylor model

ĖVM (s−1) for the
identified curve

Imposed parameters Adjusted parameters
n γ̇0 (s−1) q h0 (MPa) τini (MPa) τsat (MPa)

0.0005 15 0.0005 1.1 4 15 35
0.05 15 0.05 1.1 5.7 20 47

Once the parameters have been selected for the whole explored strain-rate range, it may be
desirable to modify the reference case, and thus the value of the associated reference strain rate
γ̇0. In that case, it is not necessary to perform the whole identification and validation process. It
can simply be noticed that for a given model, the results of a 2nd identification procedure should
coincide with the result of the 1st one, since the curves to be identified are precisely the same. In
other words, if the material parameters are changed, the predicted stress and strain-rate tensors
at the level of the grains as well as at the level of the sample should coincide at each step of the
calculation and especially at the very beginning and at the saturation level (although this level
may be not reached experimentally). From (3) and the definition of τini and τsat, this implies that

γ̇0

τini
n = constant and

γ̇0

τsat
n = constant (18)

from which the new values of τini and τsat associated with the new selected value of γ̇0 can
be extracted. There remains then one single parameter to be identified, namely the hardening
coefficient h0. The results of this procedure applied to the new reference case γ̇0 = ĖVM = 0.05 s−1

are also presented in Table 2 and Figure 8b. It is seen that the identified curves are very close
to the ones obtained previously for the other set of parameters. Of course, for such a simple
model, simulations are quite rapid (typically less than one minute for the calculation of one single
curve in the presented examples), and thus the total identification procedure, whether performed
manually as in the present case, or through an optimized identification procedure is also quite
fast.

Contrary, for FE simulations, the identification of one set of parameters on one reference curve
and the validation on the other two would take much longer times (depending on the computer).
We can however accelerate the procedure if we first base our identification procedure for FE

C. R. Mécanique, 2020, 348, n 10-11, 807-826



820 Yann Charles et al.

Table 3. Imposed and adjusted parameters for the identification of the aluminum experi-
mental curves with the Abaqus FE code

Simulation Fixed parameters n = 15, ĖVM = γ̇0 = 0.0005 s−1, q = 1.1
Parameters to be identified h0 (MPa) τini (MPa) τsat (MPa)

sim1 (up to σ0)
h01, τini1, τsat1 issued from the
RC Taylor identification

4 15 35

sim2 (up to σsat)
τini corrected by (19) h01,
τsat1 issued from the
RC Taylor identification

4 14 35

sim3 (up to σexpfinal)
τsat corrected by (20)
Identification of h0 with Abaqus

5 14 45

simulations on a preliminary identification step performed with a simpler model like the Taylor
one as explained below.

In order to perform the identification of the three presented Al curves with Abaqus, it is first
set again n = 15 and q = 1.1. The following elastic constants are also considered for aluminum:
C11 = 108,240 MPa, C12 = 62,160 MPa, and C44 = 28,410 MPa. Then one reference case is
selected, for example, the same as previous, γ̇0 = ĖVM = 0.0005 s−1 and a first calculation is
performed with Abaqus (sim1) with the three hardening parameters issued from the RC Taylor
identification, called in the present case h01, τini1, and τsat1. As the two approaches do not lead
to the same response (see Figure 5), it is expected that the predicted curve will not perfectly
fit the experimental one. One first correction can be made on τini by using the proportionality
relationship between initial stress σ0 and τini, illustrated in Figure 1, that is,

σ0sim1

τini1
= σ0exp

τini

∼= σ0Tay

τini
. (19)

In this expression, σ0Tay represents the value of the yield stress estimated by the RC Taylor
model. This equation allows us to immediately correct the value of τini without any identification
procedure. Once the beginning of the curve has been correctly adjusted, we can repeat the
procedure for the saturation stress, by considering that, if this level is not reached on the
experimental curves, it can be again correctly identified by the RC Taylor model, which means
(σsat)Tay

∼= (σsat)exp. The result of a 2nd Abaqus simulation (sim2) performed with h01, τini, and
τsat1 allows us to write

(σsat)Tay

τsat
= (σsat)sim2

τsat1
, (20)

and to obtain the correct value of τsat again without any identification procedure. It is worth
noting, that this step implies to be able to perform one simulation with RC Taylor and one
simulation with Abaqus up to the saturation level. This may involve convergence problems
with Abaqus (especially if the saturation level has reached at very high strains). In this case, a
classical identification procedure will have to be applied. In any case, there remains then one
single parameter to be identified, which is again the hardening coefficient h0. The procedure
is summarized in Table 3 and illustrated in Figure 9. It is seen that the agreement between
experimental and predicted curves is again quite satisfactory. Again, like for the RC Taylor model,
some other materials parameters can be recalculated if we change the value of γ̇0 without being
obliged to perform the simultaneous identification of all parameters.
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Figure 9. Stress–strain curves obtained for pure aluminum deformed in tension at various
strain rates. The experimental curves are taken from [53] and the simulated ones are
obtained with the RC Taylor model (parameters in Table 2) and with the Abaqus FE code,
with the hardening parameters listed in Table 3, evaluated with the proposed identification
method.

4.3. Case study 3: the transition between static and dynamic regimes

The previous cases have illustrated clearly the fact that the macroscopic response of a polycrys-
talline aggregate strongly depends on both normalized strain rate (ratio of imposed over refer-
ence strain rates) and strain-rate sensitivity exponent; especially, the only configuration where a
strain-rate-independent limit can be reached is for ĖVM = γ̇0, with n greater than 20. This is true
when using simple mean field models such as the RC Taylor one (used here) as well as more com-
plex full field tools such as FE codes. However, when FE simulations are performed, the strain rate,
and thus the strain-rate sensitivity, can significantly vary from one point to another, as recently
underlined by Shahba and Gosh [10] who studied the behavior of strongly anisotropic Ti alloys.
In that case, the choice of the VP parameters γ̇0 and n is not so trivial if we want, for example,
to neglect the influence of strain rate in the whole sample. If one single macroscopic strain rate
is investigated (and if the fluctuations within the simulated structure are expected to be moder-
ate enough), then taking ĖVM = γ̇0 allows to neglect the strain-rate sensitivity as much as possible
and to select an n exponent as small as possible to reduce the computation time, without going to
extensive multiple slip due to overestimated viscosity. Typically, a value around 20 satisfies these
constraints and the hardening parameters can then be simply identified on one experimental
curve (as done in the present case for the 304L material). But if several values of macroscopic or
microscopic strain rate need to be considered, then the selection of the two parameters can be
made according to several procedures:

(i) As suggested by Khan et al. [9], it is possible to arbitrarily select for γ̇0 one of the investi-
gated values of strain rate and to identify the hardening parameters on the correspond-
ing curve and then, to identify the n exponent on the curves obtained for the other strain
rates. According to these authors however, this option is not completely satisfactory if the
associated hardening law is too simplified, as the one used in the present work, since they
argue that it is not possible in this case to reproduce all experimental curves obtained, for
example, on aluminum single crystals over a wide range of strain rate with one single n
parameter. They then propose to select a more complex hardening law, which comprises
an additional strain-rate sensitivity parameter. It is worth mentioning though that the
behavior of the tested Al single crystals observed at varying strain rates is somewhat in
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contradiction with the conclusions drawn recently by Shahba and Gosh [10] who claimed
that in general (and not only for the Ti alloys), the classical phenomenological power law
is valid up to larger strain rates (up to 104 s−1) than the ones investigated by Khan et al. [8],
which do not exceed 103 s−1.

(ii) Alternatively, it can be recognized, as suggested by Canova et al. already in 1988 [1] and
more recently by Uenishi and Teodosiu [55] or by Shahba and Gosh [10], that one single
n parameter cannot reproduce all observed behaviors and that there are indeed three
different regimes:

1. the quasi-static regime associated with strain rates below 1 s−1,
2. the dynamic regime associated with strain rates typically above 100 or even

1000 s−1—depending on the authors—these two regimes being associated either
with significantly different values of n or with different VP flow rules and even dif-
ferent hardening mechanisms [10, 55],

3. the transition regime between the two, within which the n value may vary more or
less smoothly.

To describe this evolution from quasi-static to dynamic regime, Canova et al. [1] proposed
a bilinear expression for the evolution of the true stress as a function of the strain rate, whereas
Uenishi and Teodosiu [55] proposed a parabolic expression, taking into account the effect of tem-
perature within the dynamic regime. As for Shahba and Gosh [10], they propose a so-called uni-
fied flow rule, applicable to a very wide range of applied strain rates and temperatures, “uniquely
capable of seamlessly accounting for the effects of location-dependent thermally activated (at
low strain rates) and drag-dominated (at high strain rates) mechanisms of dislocation glide with-
out any user intervention”. Their law is thus especially well adapted to FE simulations performed
for very high strain rates, for which strain rates at different locations in a heterogeneous polycrys-
talline microstructure are expected to vary significantly even for a uniformly applied macroscopic
strain rate.

If the existence of two different regimes (and possibly of a smooth transition between the two)
is thus well recognized, it is then easy to conclude that the use of the classical VP flow rule with
one single set of parameters (describing both flow and hardening rules) should be allowed within
one of these two regimes only. As long as the influence of temperature is not explicitly included,
as, for example, in the phenomenological hardening law selected in the present work, it is also
easy to recognize that the present formulation is thus more adapted to the quasi-static regime
than to the dynamic one (for which additional microscopic deformation mechanisms are ex-
pected to occur). In this case, the value of γ̇0 should also be selected within the quasi-static
regime, which means typically below 1 s−1. If the parameters are identified as previously ex-
plained, it is then possible to reproduce the behavior of a material within the whole quasi-static
regime with one single set of parameters, as already illustrated for polycrystalline aluminum in
Section 4.2 but also for Al single crystals, as illustrated in Figure 10. The experimental curves ob-
tained on Al single crystals deformed in compression by Khan et al. [9] have been reproduced
with the RC Taylor model (see parameters in Table 4). It is seen that the three curves correspond-
ing to the quasi-static regime are well reproduced (even better than in the original paper with a
different, although also phenomenological hardening law), whereas the one associated with the
dynamic regime (strain rate equal to 1000 s−1) is not with the quasi-static parameters. If now
the n exponent is allowed to be modified for the dynamic regime, then the curve can also be re-
produced with the simple RC Taylor model and saturating hardening law. It is worth mentioning
though, that the strain-rate sensitivity (1/n) is observed here to decrease at high strain rate, in
contradiction with most of the other observations performed in metals [1, 10, 20, 33, 55, 56]. The
reason for this quite unusual dynamic behavior of the tested Al single crystals is not explained in
Ref. [8].
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Figure 10. Experimental (dotted lines from [9]) and simulated (full lines, RC Taylor model)
curves for Al single crystals deformed in compression.

Table 4. Imposed and adjusted parameters for the identification of the Al single crystals
compression curves of Khan et al. [9] with the RC Taylor model

Imposed test conditions
ĖVM = Ė33imp = 1 to 0.001 s−1 (quasi-static)

ĖVM = Ė33imp = 1000 s−1 (dynamic)

Reference case for identification
of the material parameters

Ė33imp = 1

Imposed parameters
γ̇s

0 = γ̇0 = 1 s−1

n = 21 (quasi-static), n = 41 (dynamic)

Adjusted parameters
τs

0 = 5 MPa
h0 = 40 MPa, q = 1.1

τsat = 35 MPa,τini = 5 MPa

5. Conclusions

The aim of the present study was to rationalize the use of the simple VP power law, still widely
used for its simplicity with mean field and full field approaches, to model the behavior of
polycrystalline samples in a wide range of strain rates or temperatures. For this purpose, one
mean field (RC Taylor model) and one full field (Abaqus FE code) approaches have been selected,
with the very same description of the single-crystal behavior (FCC in the present case). These
two approaches have been selected since they can predict heterogeneities of strain, stress, and
strain rate within a polycrystalline sample, as experimentally observed. As a consequence, the
conclusions drawn below are thought to be also applicable to other modeling choices. Through
the simulation of simple tensile tests and the comparison of some simulated and experimental
curves, we have shown that:

(i) with such a rate-sensitive single-crystal constitutive law, it is possible to simulate the
behavior of rate-sensitive or rate-insensitive materials, in the framework of both mean
field or full field approaches, provided that it is remembered that the macroscopic
response of a polycrystalline aggregate will depend on both values selected for the
reference strain rate γ̇0 with respect to the imposed one and the strain-rate sensitivity
exponent n;
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(ii) for rate-insensitive materials, the strain-rate exponent value which allows to approximate
the rate-insensitive limit with sufficient precision depends on the macroscopic strain
rate, as long as the γ̇0 parameter has been selected. If n = 21 is high enough for a strain
rate equal to γ̇0, much higher values must be selected, as soon as the strain rate is
modified. As a consequence, even for n = 21 and ĖVM = γ̇0, some strain-rate sensitivity
can be observed within individual grains, as long as the deformation is not prescribed
to be uniform within the whole polycrystalline sample and that strain-rate variations are
thus observed. Today, this is well known only by a limited part of the FE code users;

(iii) the VP formulation with one single exponent and associated with a simple hardening law
neglecting the temperature effects, is quite adequate to describe the quasi-static regime,
that is, typically for strain rates below 1/s (or below γ̇0), for rate-sensitive materials. Once
all parameters have been identified for one reference case, it is then easy to modify them
to treat another reference case. It has been shown that the identification procedure can
be considerably simplified in this case, since two of the three hardening parameters can
simply be corrected without any identification procedure;

(iv) the identification of all parameters of the constitutive law with an FE code can be greatly
accelerated by relying on the identification previously carried out with a simpler model,
such as the RC Taylor model.

(v) The simple VP formulation studied here can also be used to describe the behavior of
rate-sensitive material in an extended range of strain rate (i.e., including both static and
dynamic regimes), provided that the exponent n is identified separately in both regimes.

Finally, it is worth recalling that this widely used VP formulation is phenomenological. It is thus
not adequate to describe completely all the microscopic mechanisms. If this is desired, this
simple formulation should be enriched to account for a more precise description and more
detailed understanding of strain rate and temperature effects.
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