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Abstract. Uniaxial compressive strength (UCS) is an important mechanical parameter for stability assess-
ments in rock mass engineering. In practice, obtaining the UCS simply, accurately and economically has
attracted substantial attention. In this paper, studies related to UCS estimation using indirect tests were
reviewed, it was found that regression techniques and soft computing techniques were mainly used to eval-
uate the UCS value, and theses soft computing techniques can accurately and effectively predict the UCS. To
select the proper indirect parameters to predict the UCS, statistical analysis was performed on the relation-
ships between UCS and indirect parameters, and based on the analysis, two indirect parameters (the Schmidt
hammer rebound value (L-type) and ultrasonic P-wave velocity) were deemed adequate to predict UCS. To
establish the UCS predictive model, the random forest algorithm was employed, the predictive model was
verified by data collected from references. To further verify the validity of the predictive model, laboratory
tests were performed, and the predictive results were consistent with the measured results, thus the UCS
value predictive model can be applied to the fields of rock mechanics and engineering geology.
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1. Introduction

Uniaxial compressive strength (UCS) is the parameter most commonly used [1] to assess the
stability in rock mass engineering. In practice, proper determination of the UCS of rock is
of critical importance in the design of geotechnical engineering structures, the UCS is a key
parameter in deformation analysis and gives a good estimation of the rock bearing capacity.
Conversely, inappropriate estimation of the UCS could be catastrophic, as this situation can
lead to underestimation of the ultimate bearing capacity and the loading corresponding to
an allowable settlement for a problem of interest. To accurately, effectively and economically
obtain the UCS value, the UCS testing procedure has been standardized by ASTM International
(formerly known as the American Society for Testing and Materials) [2] and the International
Society for Rock Mechanics (ISRM) [3, 4]. Although, the testing method is simple, performing
a direct test to measure the UCS of rock is relatively expensive and time consuming [5, 6, 7],
furthermore, preparing the required rock core or cubic sample is often difficult, especially for
rocks that are highly fractured, thinly bedded, or block-in-matrix [8, 9, 10]. Due to these reasons,
uniaxial compressive tests have been usually replaced by indirect, simpler, faster and more
economical tests [11, 12], these indirect tests include Schmidt hammer tests, point load strength
tests, etc. These indirect tests are very easy to carry out because they necessitate less or no sample
preparation, and the testing equipment is less sophisticated; furthermore, the use of indirect
methods is inexpensive and flexible [13]. Therefore, many attempts have been made to develop
different kinds of techniques for estimating UCS.

The indirect techniques for the evaluation of UCS can be generally classified into two cate-
gories: the regression techniques (Table A1) and the soft computing techniques (Table A2). Em-
pirical formulas can be determined by using regression techniques because that the empirical
formulas can be easily applied to practice; hence, regression techniques have been commonly
used by researchers, and empirical formulas have been frequently used to predict UCS. With the
development of computer science, different kinds of soft computing techniques have been devel-
oped. Soft computing techniques can accurately and effectively predict UCS. However, different
kinds of soft computing techniques have different characteristics, and selecting the proper soft
computing technique is critical for UCS prediction.

1.1. Regression techniques

In 1964, D’Andrea et al. [14] proposed an empirical expression describing the correlation between
UCS and point load strength (Is(50)), which is the first time that the UCS value was calculated
using the indirect parameters. Subsequently, to more accurately estimate the UCS, the empirical
formula for estimating UCS was revised [15, 16, 17, 18, 19, 20, 21]. Then, many other indirect rock
property parameters were used to estimate the UCS, such as the impact strength index (I SI ) [22]
and Schmidt hammer rebound value (R) [15, 23, 24, 25, 26, 27, 28].

Due to the merits of indirect tests for estimating UCS, the ISRM proposed an empirical formula
to estimate UCS values by using of Is(50) [29], which suggested that the use of indirect tests for
estimating UCS value were officially accepted, greatly promoting the development of indirect
tests for UCS. Many other empirical formulas were developed to estimate UCS [30, 31, 32, 33, 34,
35, 36, 37, 38, 39].

Conventionally, experimental data are collected from a series of experiments. Subsequently,
to quantitively describe the correlations between UCS and other indirect parameters, regression
techniques are used, and empirical formulas can be determined. The regression procedure fits a
curve to the data set, which is computed by minimizing the squared deviations of the measured
data to the curve. The line is defined by the relevant equation, and the fitting coefficient is
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determined. The fitting coefficient is an indicator of how well the empirical formula fits the data.
Due to the simplicity of the application of empirical formulas in engineering practice, empirical
formulas are widely used to depict the correlations of UCS with indirect parameters.

In these equations (Table A1), the linear empirical formula is commonly used [14, 16, 17, 18,
19, 20, 27]. On the one hand, the linear equation can be easily memorized and is convenient for
use in engineering practice; hence, linear empirical formulas can be applied in situ due to sim-
plicity. On the other hand, the linear equation is determined by a limited data set and limited
rock types (1 rock type is commonly used); thus, the fitting coefficients of the empirical formu-
las are high. However, with increasing of the numbers of datasets and rock species, the fitting
coefficients may decrease, the empirical formula may not be reliable, and the validity of these
empirical formulas should be further verified. When different kinds of rocks were used, certain
new empirical formulas were proposed [15, 23], for instance, Aufmuth [23] proposed an power
equation type empirical formula, but the relationships between indirect parameters and uniaxial
compressive strength cannot be simply summarized by linear equations any longer. Additionally,
many other types of empirical formulas are listed in Table A1. The empirical formulas were usu-
ally determined for few types of rocks, which limits the application of these empirical formulas.

The empirical formulas were frequently established by using regression techniques based
on the limited numbers of experimental datasets and rock types, which impeded the wide
application of the empirical formulas. In addition, the types of empirical formula used were
subjectively determined in most literature. Conventionally, different types of equations, such as
linear, exponential, power, and logarithmic functions, were used to conduct the least squares fit.
Then, the final empirical formula was determined based on the fitting coefficients; this method
is a typical trial and error method. However, the trial and error method significantly depends
on the experience of the researchers. Moreover, there are complicated nonlinear relationships
between the UCS and indirect parameters, so it is difficult to use one empirical equation to
accurately describe the relationships between UCS and indirect parameters. Although regression
techniques can be easily applied to in situ engineering practice, the deficiencies of this technique
are pronounced.

1.2. Soft computing techniques

In addition to the conventional regression techniques, different kinds of soft computing tech-
niques have been applied to predict UCS (Table A2), such as artificial neural networks (ANNs)
[13, 38, 40, 41, 42, 43, 44, 45, 46] and fuzzy inference systems (FISs) [5, 47, 48, 49, 50], etc. These
soft computing techniques provide new alternatives for predicting UCS.

(1) Artificial neural networks (ANNs)
An ANN is a soft computing technique inspired by the information processing of the human-

brain [51]. In essence, an ANN attempts to find a nonlinear relationship between certain input
and output parameters [43]. An ANN includes at least three layers: an input layer, an output
layer, and an intermediate or hidden layer(s) [13, 52]; each layer comprises one or more nodes
(neurons), and the lines between the nodes indicate the flow of information from one node to
the next node. The ANN algorithm has recently been used to evaluate geotechnical problems
[13, 40, 53, 54, 44, 46, 55, 56, 57, 58].

Although ANN techniques can approximate any complex nonlinear function, this technique
does suffer from certain disadvantages: ANNs can be trapped at local minima value and learn
rather slowly [59]. The performance of an ANN is directly dependent on the architecture of
the layers and the number of neurons, which is the pattern of the connections between the
neurons [60], and numbers of layers and neurons are hard to determine in practice.

(2) Fuzzy inference systems (FISs)
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The fuzzy set theory is the kernel of the FIS, this theory was introduced by Zadeh [61] and
then became an important tool in various engineering modelling, replacing the traditional
methods of designing and modeling of a system. Fuzzy set theory can be used to develop
rule-based models that combine physical insights, expert knowledge, and numeric data in a
transparent way and closely resemble the real world. Generally, fuzzy decision-making processes
are similar to decision-making processes in the human mind which obtains an abundance of
vague information, analyses the information, and make decisions [61].

An interesting and perhaps the most attractive characteristic of FIS compared with other soft
computing techniques, such as neural networks and genetic algorithms, is that these systems are
able to describe complex and nonlinear multivariable problems in a transparent way. Moreover,
fuzzy models can cope with nonprobabilistic (i.e., semantic) uncertainties which are common in
rock engineering. Furthermore, fuzzy rules may be formulated on the basis of expert knowledge
of the system.

However, fuzzy logic and fuzzy inference systems involve too many fuzzy rules, which are
difficult to deal with in practical cases where variability exits; these systems are not convenient
or easily applied in practice.

(3) Hybrid algorithms
Due to the drawbacks of ANNs and FISs, certain new hybrid algorithms were developed

to predict UCS, such as adaptive neuro-fuzzy inference systems (ANFISs) and particle swarm
optimization - artificial neural networks (PSO-ANNs).

ANFIS was developed by Jang [62] based on the Takagi-Sugeno fuzzy inference system (FIS). An
ANFIS is constructed by a set of if-then fuzzy rules with proper membership functions to produce
the required output from the input data. As a universal predictor, ANFIS has the capability of
estimating any real continuous functions [63]. An ANFIS model offers the advantages of both
ANN and FIS principles and has all the benefits of these systems in a single framework; this model
involves numbers of nodes connected by directional links, where each node is designated using
a node function with fixed or changeable parameters. This soft computing technique has been
extensively used in the field of geotechnical engineering [5, 47, 64, 65, 66].

PSO-ANN is a hybrid algorithm that combines an ANN and a particle swarm optimization
(PSO). Although most complex nonlinear functions can be implemented by ANNs, these func-
tions suffer from certain disadvantages: these functions can be trapped at local minima and learn
rather slowly [59]. The PSO algorithm is an evolutionary population-based computation method
for solving optimization problems [67, 68]. Many studies have shown the utility of particle swarm
optimization techniques for improving ANN performance [60, 67, 69].

Many other soft computing techniques have been widely applied to the UCS prediction, these
techniques will not be discussed individually in our paper. The superiority of soft computing
techniques over regression techniques for UCS prediction can be attributed to the ability of soft
computing techniques to capture the non-linear features and generalize the structure of the input
variables and UCS. Soft computing techniques are feasible, quick and promising tools for solving
engineering problems [70, 47, 71, 72, 73, 74].

Compared with regression techniques, soft computing techniques can be accurate and effec-
tive; however, certain limitations should be properly addressed: the hyper parameters in the algo-
rithm are hard to choose, and the predictive results are remarkably influenced by the parameters.
Hence, choosing a proper algorithm to predict UCS is critically important.

1.3. Objectives of this paper

The aim of this paper is an efficient predictive model for the UCS of rock materials. First,
the correlation coefficients between UCS and indirect parameters were calculated, and the
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advantages and disadvantages of indirect tests for estimating UCS were discussed in detail.
According to the correlated coefficients and analysis, the proper indirect parameters to estimate
UCS were determined. To predict UCS accurately, a predictive model based on the random forest
algorithm was established. To verify the validity of the predictive model, the model was confirmed
by data collected from references and laboratory tests. However, certain other topics, such as
the specific mechanisms related to the index effects on the UCS of rocks, were not specifically
discussed in our study.

2. Suggested parameters for predicting UCS values

From the analysis of the characteristics of regression techniques and soft computing techniques,
soft computing techniques outperform the regression techniques in UCS evaluation. Hence, in
this section, a soft computing technique called the random forest algorithm was used to predict
UCS. Before establishing the predictive model, the indirect parameters used for predicting UCS
should be determined.

2.1. Description of collected data

Before the statistical analysis, the related data were collected. In this paper, more than 2000
groups of data were collected from more than 50 references, and a corresponding database was
constructed, which is listed in an attachment (data_collected.xls). Additionally, the experimental
data were obtained from different kinds of rocks, such as granite, tonalite, marble, chalk, basalt
and limestone, which guarantees the validity of the predictive model for different kinds of rocks.
The basic information of the collected data was tabulated in Table A3.

2.2. Suggested indirect parameters

With regard to UCS prediction, the indirect parameters directly influence the precision of UCS.
In this section, proper indirect parameters are determined from correlated coefficients, and the
difficulty of determining the indirect parameters is discussed.

Based on the data collected, the correlated coefficients can be calculated based on (1).

ρ(Xindirect,YUCS) = Cov(Xindirect,YUCS)√
D(Xindirect)D(YUCS)

(1)

where ρ(Xindirect,YUCS) is the correlated coefficient between the UCS and the indirect parameter,
Cov(Xindirect,YUCS) is the covariance coefficient between the UCS and the indirect parameter
Xindirect, D(Xindirect) is the variance of the parameter Xindirect, and D(YUCS) is the variance of
the UCS. Based on (1), the correlation coefficients between the UCS and indirect parameters are
demonstrated in Figure 1.

As illustrated in Figure 1, it is obvious that the absolute values of the correlation coefficients
of UCS with ρ, HA, Id, Vs, I SI are lower than 0.6, indicating that these parameters are relatively
weakly correlated with UCS. Hence, in practice, the predicted UCS would not be very accurate
if these indirect parameters were used. However, in certain references, the predictive models or
empirical formulas can accurately predict UCS with higher fitting coefficients when using these
indirect parameters, which is mainly because the experimental data and rock types were limited.
Through analysis of the correlated coefficients between the UCS and the indirect parameters,
these parameters should be carefully adopted to predict UCS.

Although very strong correlations were found between some indirect parameters (DUW , ne,
n, BT S, BPI , Is(50)) and UCS, these parameters are hard to determine in practice; therefore, these
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Figure 1. Correlation coefficients between the UCS and different kinds of indirect param-
eters (I H I : indentation hardness index, BPI : block punch index, BT S: Brazilian tensile
strength, L: Equotip hardness, RL: Schmidt hammer (L-type) rebound, DUW : dry unit
weight, RN: Schmidt hammer (N-type) rebound, SSH : shore scleroscope hardness, Is(50):
point load strength, Vp: ultrasonic P-wave velocity, ρ: density, HA: abrasion hardness, Id:
slake durability index, Vs: ultrasonic S-wave velocity, I SI : impact strength index, ne: effec-
tive porosity, and n: total porosity).

parameters are not recommended. For example, the correlated coefficient between UCS and
BT S is 0.83; however, to determine the BT S of rock, well-prepared core sample specimens are
required. Compared with uniaxial compressive tests, the implementation procedure of Brazilian
disc tests is not at all easy. From the aspect of obtaining these indirect parameters, the indirect
parameters DUW , ne, n, BT S, BPI and Is(50)are not recommended for predicting the UCS of
rocks.

Furthermore, certain new indirect parameters such as SSH , I H I , L were used to estimate UCS
in practice. These indirect parameters are highly correlated with UCS and the experimental pro-
cedures for determining these parameters are not difficult; however, the correlated coefficients
of these parameters were calculated based on limited data, and very limited research has been
reported in the literature regarding the application of these parameters for estimation of UCS.
The validity of predicting UCS by these parameters needs to be verified. For example, the corre-
lated coefficient between UCS and L was calculated based on 33 datasets, though the correlated
coefficient is large, the applicability of L to predict UCS should be verified by more physical ex-
periments. For accurately predicting the UCS, the validity of these parameters for predicting UCS
needs to be further confirmed. Hence, in this study, these parameters were not used to evaluate
the UCS.

The correlated coefficients were different when different types of Schmidt hammers type (L-
type and N-type) were used. When the L-type Schmidt hammer type is used, the corresponding
correlated coefficient is larger. Furthermore, the ISRM [75] suggests that the L-type hammer
should be used for the hardness characterization of rocks, and the N-type Schmidt hammer is not
endorsed by the ISRM for rock characterization. Hence, in practice, the L-type Schmidt hammer
type was preferred, and in our paper, L-type Schmidt hammer rebound value was used to predict
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UCS value.
Vp can be easily determined and it is significantly correlated with UCS. Additionally, this

parameter has been commonly used to predict UCS. Hence, the Vp was suggested for prediction
of UCS.

After the comprehensive consideration and analysis above, two parameters were finally se-
lected for prediction of UCS: RL and Vp.

3. UCS values prediction based on random forest algorithm

The hyper parameters of conventional soft computing techniques (such as ANNs, FISs and hybrid
algorithms) are hard to determine; additionally, the predictive accuracy of these techniques is
significantly influenced by the hyper parameters. However, the random forest algorithm (RF) is
very different from conventional soft computing techniques (ANN, FIS, ANFIS, PSO-ANN etc.),
this model is minimally influenced by the hyper parameters and has fast convergence speed. In
addition, RF reportedly has the best prediction ability. Further, compared with ANN and FIS, the
random forest model is more resistant to overfitting and is insensitive to noise in the data [76].
Thus, the random forest was employed to construct the UCS predictive model.

3.1. UCS values prediction model based on random forest algorithm

The random forest algorithm was developed by Breiman [77] to perform regression, classification
and prediction. The RF UCS predictive model proposed in this paper is based on the construction
of a large set of random trees during model training, leading to a single prediction. Additionally,
to increase the diversity of the trees, each tree is constructed using a different bootstrap sample
from the original data. Approximately one-third of the cases are left out of the bootstrap sample
for error estimation, i.e., out of bag (OOB). This method has proven to be unbiased and accurate
in error estimation [77, 78, 79]. The best split of each node of the tree is only searched for among
a randomly selected subset of the total number of predictors, and the final prediction in the
regression case is the average of the individual tree.

As a tree-based model, RF has advantages over linear models such as multinomial logistic re-
gression: RF is able to model nonlinear relationships between predictors and response variables
to handle noise data (observations with missing covariate data) and other situations in which a
small dataset is associated with a large number of covariates [80]. Furthermore, individual deci-
sion trees tend to overfit, while bootstrap-aggregated (bagged) decision trees combine the results
of many decision trees, reducing the effects of overfitting and improving generalization.

Due to the merits of the RF algorithm, this algorithm has already been widely used in the
scientific community for different topics, such as digital mapping [81, 82], ecology [83, 84],
chemistry and biology [77, 85]. However, RF is relatively new for rock mechanics engineering.

For convenient RF implementation, the main procedure of RF is described as follows.

1. The hyper parameters in the RF predictive model are determined: the number of split
points, the depth of the tree, the number of trees, the number of sampling data points
and the number of validating data points.

2. n groups of sampling data are randomly selected to construct a boosting tree.
3. A boosting prediction tree is established.
4. Step 2 and 3 are repeated m times, and m predictive trees are constructed.
5. m trees form the random forest, and the predicted value is the average of the individual

tree predictive values.
6. Stop.
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Table 1. Total of 477 datasets were selected for establishing a boosting tree

Number 1 2 3 4 5 6 7 ...... 477
RL 5.17 11.50 11.67 11.96 13.99 14.13 14.86 ...... 72.00

UC S (MPa) 7.29 5.50 4.70 2.86 4.13 5.70 16.13 ...... 193.33

As stated above, the overfitting problem was overcome by establishing m trees. The RF predic-
tive model consisted of many boosting trees; hence, establishing boosting trees is the key prob-
lem of the RF predictive model. The procedure of establishing a boosting tree can expressed as
follows.

1. The training data set T = {(x1, y1), (x2, y2), ..., (xN , yN )}, xi ∈ X ⊆ Rn , yi ∈ Y ⊆ Rn is
determined. The initiation boosting tree can be expressed as f0(x) = 0.

2. The residual of the boosting tree is calculated, based on the following equation.

rmi = yi − fm−1(xi ), i = 1,2, ..., N (2)

The boosting tree can be expressed as:

fm(x) = fm−1(x)+T (x;Θm) (3)

fm−1(x) is the current boosting tree, and Θm is the parameter of the boosting tree,
which is determined by next boosting tree fm(x) when the best value is obtained for the
following equation.

Θ̂= argmin
Θm

N∑
i=1

L(yi , fm−1(xi )+T (xi ;Θm)) (4)

3. The boosting tree fm(x) = fm−1(x)+T (x;Θm) is updated, and the residual value of fm(x)
is calculated.

4. The procedure is repeated for M times.
5. The boosting tree fM (x) =∑M

m=1 T (x;Θm) is obtained.
6. Stop.

From analysis of the procedure of the random forest algorithm, the theory of the RF algorithm
is relatively simple. Furthermore, the convergence of the algorithm is not greatly influenced by
the hyperparameters, and the hyperparameters do not influence the accuracy of the predictions,
hence, this algorithm is quite easily applied in practice [86, 87, 88, 89, 90].

To illustrate the implementation of the RF predictive model more clearly, the use of the
Schmidt rebound value (L-type) RL to predict UCS is taken as an example.

1. The hyperparameters of the RF prediction model were determined. The number of split
points was 50, the depth of the trees was 20, the percentage of training data was 66.7%,
the percentage of testing data was 33.3%, and the number of trees was 25. In this stage,
the dataset of (RL, UC S) was collected from the attachment data_collected.xls; a total
of 716 datasets were collected. The minimum and maximum of RL were determined to
be 5.17 and 72.00, respectively. The split number of the dataset was 50. Thus, 50 split
points of RL were linearly generated: 5.1700, 6.5338, 7.8977, 9.2616, 10.6255, ......, 72.0000;
the distances between any two neighbouring split points were same. In every boosting
tree, 477 datasets were randomly selected for constructing the predictive model, and the
remaining 239 groups were used for testing purposes.

2. A total of 477 (RL, UC S) datasets were randomly selected from the (RL, UC S) datasets to
establish a boosting tree; the random selected data are listed in Table 1.
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Table 2. Residual value for the predictive tree f1(RL)

Number 1 2 3 4 5 6 7 ...... 477
RL 5.17 11.50 11.67 11.96 13.99 14.13 14.86 ...... 72.00

UC S (MPa) 7.29 5.50 4.70 2.86 4.13 5.70 16.13 ...... 193.33
Residual value of −49.66 −51.45 −52.25 −54.09 −52.82 −51.25 −40.82 ...... 53.74

UC S (MPa)

3. A boosting tree was constructed by using 477 datasets and 50 split points. The tree depth
of the boosting tree was 20, and the initial boosting tree was f0(RL) = 0.

Hence, the initial residual could be calculated based on the following equation.

ri =UC Si − f0(RLi ) (5)

In the initial step, because f0(RL) = 0, ri =UC Si .
Subsequently, a best split point s was found when the following equation reached a minimum.

m(s) = min
s

[min
c1

∑
RLi∈RL1

(ri − c1)2 +min
c2

∑
RLi∈RL2

(ri − c2)2] (6)

where RL1 = {RL|RL ≤ s} and RL2 = {RL|RL > s}. Additionally, it can be easily obtained that
c1 = 1/N1(

∑
RLi∈RL1

ri ) and c2 = 1/N2(
∑

RLi∈RL2 ri ). Based on (6), the best split s was determined
to be 59.9295. Then, the regression tree T1(RL) could be expressed as:

T1(RL) =
{

56.9598, (RL ≤ 51.9295)
139.5877, (RL > 51.9295)

(7)

Next, the boosting tree f1(RL) could be determined.

f1(RL) = f0(RL)+T1(RL) (8)

Hence, the boosting tree f1(RL) could be expressed as follows.

f1(RL) =
{

56.9598, (RL ≤ 51.9295)
139.5877, (RL > 51.9295)

(9)

Based on the boosting tree f1(RL), the residual could be calculated based on the following
equation.

ri =UC Si − f1(RLi ) (10)

Finally, we obtained the residual value, which is listed in Table 2.
Based on the residual value in Table 2, the dataset (RL, ri ) was used to obtain the next

regression tree T2(RL) and the best split point s based on (6). The corresponding residual value
was also calculated. This procedure was repeated a total of 20 times (depth of tree) in total. Then,
the boosting tree could be expressed as follows.

f20(RL) =



12.72, RL ≤ 21.02
26.99, 21.02 < RL ≤ 30.85
51.01, 30.85 < RL ≤ 35.07
54.63, 35.07 < RL ≤ 37.88
......
175.61, RL > 70.19

(11)

Based on the boosting tree (11) and RL value, the predicted UCS value could be easily deter-
mined. For example, when RL is 23, the UCS predicted UCS was 26.99 MPa.

4. Steps 2 and 3 were repeated m = 25 times; then, 25 trees were constructed.
5. A total of 25 trees formed the random forest, and the predictive value was the average of

25 individual tree predictive values.

C. R. Mécanique, 2020, 348, n 1, 3-32



12 Min Wang and Wen Wan and Yanlin Zhao

6. Stop.

In this paper, the R2 was used to describe how well the RF predictive model predicts UCS.

R2 = 1−

n∑
i=1

(UC Si − f (RLi))2

n∑
i=1

(UC Si −UC Smean)2
(12)

where UC Si is the measured UC S values, UC Smean is the average of the measured UC S, f (RLi)
is the predicted UCS using the RF predictive model, and n is the number of groups of validation
data. Based on (12) and the RF predictive model, the R2 was calculated to be 0.62, which indicated
that the RF predictive model could satisfactorily predict the UCS.

3.2. Suggested input variables

Through the different combinations of two indirect input variables RL and Vp, 3 kinds of input
variable combinations can be formed. Similarly, based on the RF predictive model, the UCS can
be predicted when the input variables are different. The calculation results are listed in Figure 2.

Based on the calculation results, the predictive accuracy varied when the indirect variables
input differed. Hence, choosing proper indirect parameters as input variables is important. Based
on the calculation results, when the input variables are (RL) and (RL, Vp), the predictive results are
acceptably accurate. Hence, these kinds of input variables are suggested for engineering practice
and can precisely predict the UCS. For further verification of the accuracy of the RF predictive
model, we verified the predictive model in laboratory tests.

3.3. Verification of the predictive model by laboratory tests

To verify the capability of the RF predictive model, 8 types of rock (granite, yellow rust granite,
red sandstone, Maokou limestone, skarn, marble, dunite, and amphibolite) were selected. A
total of 5 rock specimens were prepared for each rock type, and the corresponding point load
tests, ultrasonic pulse tests, Schmidt hammer rebound tests and uniaxial compressive tests were
conducted.

Since ultrasonic pulse tests and Schmidt hammer tests are nondestructive, the specimens
could be reused in our experiments. First, the ultrasonic pulse tests were performed firstly, then
the Schmidt hammer tests and finally the uniaxial compressive tests. By using the experimental
procedures, the specimens could be fully used.

3.3.1. Ultrasonic pulse (P-wave) tests

The dimensions of the test specimens’ dimensions were Φ50 mm×100 mm. Both faces of the
core samples were trimmed and smoothed so the receiver and emitter could adhere to the core
faces, and the direct transmission method was used to determine the P-wave velocity. A HS-YS4A
test device was used to conduct the test. This device has one transmitter and one receiver that are
50 mm in diameter and have a maximum resonant frequency of 100 KHz. The wave velocity (Vp)
was determined from the measured travel time and the distance between the transmitter and
receiver in accordance with ASTM test designations [91]. The average of the 50 measurements
was used.
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Figure 2. Predictive results for different kinds of input variables.

3.3.2. Schmidt hammer rebound tests

The HT-225B Schmidt hammer (L-type) was applied to obtain the Schmidt hammer rebound
values, The Schmidt hammer tests were repeated 50 times for each specimen. The ISRM recom-
mendations were applied to the tests for each specimen. The Schmidt hammer rebound values
were recorded, and the average values were obtained.

To adequately secure the samples against vibration and movement during the tests, the rock
cores were clamped. All the tests were implemented with the hammer held vertically downwards.

3.3.3. Uniaxial compressive tests

A New Sans Testing Machine was used to perform the uniaxial compressive tests. The loading
rate was 100 N/s. The uniaxial compressive strength tests were performed according to the ISRM
suggested methods [92].

The UCS can be calculated based on the following formula:

σc = F

A
(13)
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Table 3. Experimental results of laboratory tests for verifying the validity of the RF predic-
tive model when the input variables are (RL) and (RL, Vp)

Specimen RL Vp (m/s) UCS (MPa)
Granite-1 66.5 6534.6 189.4
Granite-2 64.3 6341.0 177.8
Grainte-3 64.8 6667.1 184.6
Granite-4 66.0 6780.9 199.2
Granite-5 62.0 7556.7 197.4
Yellow rust granite-1 55.4 5055.1 123.6
Yellow rust granite-2 56.6 5961.0 137.8
Yellow rust granite-3 62.4 5523.0 149.8
Yellow rust granite-4 57.1 5108.6 141.3
Yellow rust granite-5 58.0 5566.7 134.6
Red sandstone-1 19.5 4268.6 24.6
Red sandstone-2 39.4 3693.0 53.0
Red sandstone-3 29.1 3413.7 39.5
Red sandstone-4 20.2 4234.1 23.2
Red sandstone-5 30.4 3079.2 37.3
Maokou limestone-1 50.2 4031.5 92.3
Maokou limestone-2 45.1 3363.2 67.6
Maokou limestone-3 49.1 4146.2 86.7
Maokou limestone-4 50.8 4865.9 97.2
Maokou limestone-5 48.7 4087.1 78.4
Skarn-1 51.5 4694.4 99.0
Skarn-2 52.7 4346.1 101.3
Skarn-3 45.5 4426.1 84.2
Skarn-4 53.9 5034.1 110.0
Skarn-5 47.5 4316.4 89.9
Mable-1 54.4 4505.5 111.8
Mable-2 46.9 5100.2 97.5
Mable-3 54.2 4254.4 99.1
Mable-4 45.2 5295.7 100.7
Marble-5 50.7 4883.7 102.7
Dunite-1 20.8 4347.4 30.2
Dunite-2 24.4 3190.4 26.2
Dunite-3 27.2 2652.2 27.2
Dunite-4 21.1 4755.5 29.9
Dunite-5 22.5 4474.8 29.7
Amphibolite-1 48.8 3321.1 70.1
Amphibolite-3 42.3 4638.8 76.1
Amphibolite-4 37.4 5094.9 75.2
Amphibolite-5 34.8 5444.0 72.1
Amphibolite-5 40.6 4856.7 79.9

whereσc is the uniaxial compressive strength, F is the maximum failure load, and A is the section
area of the specimens.
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Table 4. Predictive results of the RF predictive model

Input parameters RL RL, Vp

R2 0.89 0.90

3.3.4. Laboratory test verification of the predictive models

After conducting the experimental tests, the experimental results were obtained, which are
listed in Table 3. In Table 3, the Schmidt hammer rebound (L-type), P-wave velocity and UCS
are summarized, and these values were used to verifying the predictive model when the input
variables are (RL) and (RL, Vp). Meanwhile, R2 was used to describe how well the predictive
model evaluated the experimental data. The calculation results are presented in Table 4. In the
predictive model, the data collected from the references were taken as the training data, whereas
the experimental data from laboratory tests were used for validation.

The model is excellent if R2 is one. As listed in Table 4, the calculation results of R2 indicated
that the predictive UCS value appeared to be consistent with the measured UCS. Hence, the
random forest predictive model can be applied to predict UCS. Based on the calculation results,
the predictive accuracy is satisfactory for use in engineering practice use. Additionally, R and Vp

should be within certain ranges, which are 5 < R < 70 and 1000 <Vp < 9000, respectively, because
the datasets of R and Vp used in the predictive model are within these ranges. Additionally, the
experimental data (R and Vp) for verifying the validity of the proposed RF predictive model are
also within these ranges. When values of R and Vp are not within these ranges, the validity of RF
predictive model needs to be further verified.

In summary, the RF predictive model can predict UCS in our tests with an appreciable degree
of accuracy, and the RF predictive model provides high performance prediction capacity for the
indirect determination of UCS. The RF UCS predictive model can be applied to practice when
values of R and Vp are within the designated ranges.

4. Discussion

The UCS of rock is a critically important parameter for rock mass engineering stability analysis
and rock mass design, particularly when the rocks are subjected to compressive stresses with low
confining pressure [47]. Therefore, accurately and simply obtaining the UCS is of critical impor-
tance. There are generally two methods for the determination of the UCS: (a) direct laboratory
tests on rock samples and (b) indirect estimations based on certain correlated parameters that
can be obtained much more easily than the UCS itself. The direct laboratory tests require very
strict conditions for preparing the rock specimens, which are difficult and sometimes even im-
possible to realize for cracked rocks. Moreover, direct measurement of UCS is expensive, time-
consuming, and even infeasible in certain circumstances due to the difficulty involved in obtain-
ing core samples [5, 93, 45, 54]. Subsequently, indirect estimation methods for UCS have been
widely discussed for simplicity, and the estimation of UCS from simple tests has been investi-
gated as an alternative of standardized UCS laboratory tests [28, 35, 94, 95].

In this paper, the references related to UCS prediction using indirect parameters were re-
viewed. Through analysis of the techniques predicting UCS. UCS estimation techniques can be
generally divided into two categories: regression techniques and soft computing techniques. Pre-
viously, regression methods were adopted to establish empirical formulas, which are convenient
for estimating UCS using indirect parameters. To obtain more accurate UCS, considerable efforts
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have been devoted to the empirical formulas to predict UCS for various rock types by linear re-
gression analysis [96, 97, 50, 98, 99], multiple regression analysis [40, 45] and nonlinear regres-
sion models [39, 100, 101, 102, 103]. Conventionally, the empirical formulas were frequently de-
termined by the experience of researchers. In the process of determining the empirical formu-
las, certain types of formulas were frequently used, such as linear, exponential, power, and loga-
rithmic functions. Subsequently, the types of empirical formulas were determined according to
the fitting coefficients; obviously, this process is not scientific. The empirical formulas were fre-
quently determined with a limited number of types of rock and limited amounts of experimental
data. As a result, the reliability and applicability of these empirical formulas are questionable.

Additionally, with the development of soft computing techniques, certain artificial algorithms
have been applied to UCS values prediction. Analysis of the soft computing techniques shows
that these soft computing techniques suitably predict UCS; however, the hyperparameters in soft
computing techniques are hard to determine. Hence, selecting a proper computing algorithm
for predicting UCS is important. In our paper, the RF algorithm was employed to predict UCS be-
cause this algorithm is able to model nonlinear relationships between predictors and is minmally
influenced by the hyperparameters. Additionally, the predictive model requires shorter runtimes
than other techniques because commonly used soft computing tools such as ANN and FIS rely
on trial and error to optimize the model, which is a time-consuming.

For selecting proper indirect parameters to predict UCS, correlation analysis was conducted
on the indirect parameters that were applied to UCS prediction; the difficulty in obtaining
indirect parameters was also analyzed. Based on the analysis, two indirect parameters were
selected to evaluate UCS values, i.e., the ultrasonic P-wave velocity and Schmidt hammer (L-type)
rebound value. Subsequently, the RF algorithm was used to predict UCS, through the validation
of collected data and laboratory tests; it was found that the RF predictive model is reliable and can
be applied to practice, R and Vp should be within certain ranges when the proposed predictive
model is applied to practice because the data for establishing the predictive model and the
verification data are within the certain ranges.

Nevertheless, many other factors influencing UCS were not researched, such as the rock size
and weathering effects. The RF predictive model is robust but difficult to physically explain and
is incapable of revealing the mechanisms of the influences of the input variables on the UCS of
rocks in this paper. These issues will be addressed in future work.

5. Conclusions

The UCS of rock is the most widely used design parameter in the general field of rock engineer-
ing. Based on the difficulty in obtaining the indirect parameters and the correlations of these
parameters with the UCS, two indirect parameters were selected. The RF algorithm was used to
predict the UCS. To verify the proposed predictive model, corresponding laboratory tests were
performed. The prominent outcomes of this paper are summarized below.

(1) Through analysis of the correlations of different kinds of indirect parameters and the dif-
ficulty in determining the indirect parameters, two parameters, i.e., the Schmidt hammer
(L-type) rebound and ultrasonic P-wave velocity, were recommended to predict UCS.

(2) Based on the RF algorithm, a UCS predictive model was established. The RF predic-
tive model was verified by collected data. To further confirm the validity of the predic-
tive model, laboratory tests were performed. The predicted UCS is consistent with the
measured UCS. The predictive model is reliable when R and Vp are within the ranges of
5 < R < 70 and 1000 <Vp < 9000, respectively. The RF predictive model can be applied to
UCS prediction in engineering practice.
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Appendix
Table A1. Empirical formulas for estimating UCS value

Researchers Rock types Empirical equations R2

D’Andrea et al., 1964 [14] - UC S = 15.3Is(50) +16.3 -
Hobbs, 1964 [22] - UC S = 53I SI −2509 -

Deere and Miller, 1966 [15]
Basalt, diabase, dolomite,
gneiss, granite, limestone,
marble, quartzite,
rock salt, sandstone,
schist, silt stone, tuff

UC S = 20.7Is(50) +29.6 0.92

UC S = 6.9×10(0.16+0.0087(Rρ)) -
UC S = 1246R −34890 0.88

Broch et al., 1972 [16] - UC S = 23.7Is(50) -

Aufmuth, 1973 [23] 25 different lithologies UC S = 6.9×10(1.348log(Rρ)−1.325) -

UC S = 0.33(Rρ)1.35 -
Bieniawski, 1975 [17] - UC S = 23Is(50) -

Dearman and Irfan,
1978 [24]

Granite UC S = 0.0016R3.47 -

Beverly et al., 1979 [25] - UC S = 12.74e0.0185Rρ -
Hassani et al., 1980 [18] Sedimentary UC S = 16Is(50) -

Read et al., 1980 [19] Sedimentary rocks, basalts
UC S = 16Is(50) (sedimentary
rocks)

-

UC S = 20Is(50) (basalt) -

Kidybinski, 1980 [26] Coal UC S = 0.477e0.045R+ρ -
Singh, 1981 [20] - UC S = 18.7Is(50) −13.2 -
Singh et al., 1983 [27] Coal UC S = 2R 0.72
Forster, 1983 [21] - UC S = 14.5Is(50) -
Gunsallus et al. 1984 [96] - UC S = 16.5Is(50) +51.0 -
Sheorey and Kulhawy,
1984 [28]

Coal UC S = 0.4R −3.6 0.94

ISRM, 1985 [29] - UC S = 20.25Is(50) -
Haramy and DeMarco,
1985 [30]

- UC S = 0.994R −0.383 -

Ghose and Chakraborti,
1986 [31]

Coal UC S = 0.88R −12.11 -

Vallejo et al., 1989 [32] - UC S = 8.616Is(50) -

O’Rourke, 1989 [33]
Anhydrite, siltstone,
sandstone, limestone

UC S = 4.85R −76.18 0.77

Cargill and Shakoor,
1990 [34]

Sandstone, limestone,
dolomite, marble,
synthetic, gneiss

UC S = 23Is(50) +13 -

Sachpazis, 1990 [35] Carbonate rocks UC S = 4.29R −67.52 0.93

Xu et al., 1990 [36] Mica-schist UC S = 2.98e0.06R 0.95
Tsidzi, 1991 [37] - UC S = 14.82Is(50) -
Ghosh and Srivastava,
1991 [38]

Granitic rocks UC S = 16Is(50) -

Grasso et al., 1992 [39] -
UC S = 25.67(Is(50))0.57 -
UC S = 9.30Is(50) +20.04 -
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Table A1. (Continued)

Researchers Rock types Empirical equations R2

Ulusay et al., 1994 [97] Sandstone UC S = 19Is(50) +12.7 -

Chau and Wong,
1996 [104]

Granite, tuff UC S = 12.5Is(50) 0.73

Gokceoglu, 1996 [105] Marl UC S = 0.0001R3.2658 0.84
Aggistalis et al., 1996 [106] Gabbro, basalt UC S = 1.31R −2.52 0.55
Kahraman, 1996 [107] 10 lithological units UC S = 4.5×10−4R2.46 0.93
Smith, 1997 [108] Limestone, sandstone UC S = 14.3Is(50) -

Tugrul and Zarif, 1999 [109] Granite
UC S = 8.36R −416 0.87
UC S = 35.54Vp −55 0.80

Katz et al., 2000 [110] Chalk, limestone,
sandstone, marble,
granite, syenite

UC S = 2.208e0.067R 0.96

Sulukcu and Ulusay,
2001 [111]

23 samples in different
rock types

UC S = 15.31Is(50) 0.83

Kahraman, 2001 [112]
Dolomite, sandstone,
limestone, marl,
diabase, serpentine

UC S = 6.97e0.014Rρ 0.78

UC S = 8.41Is(50) +9.51 0.85

UC S = 9.95V 1.21
p 0.83

Yilmaz and Sendir,
2002 [113]

Gypsum UC S = 2.27e0.054R -

Quane and Russel,
2003 [100]

-

UC S = 24.4Is(50) (strong
rocks)

UC S = 3.86(Is(50))2+5.68Is(50)

(weak rocks)
-

Tsiambaos and
Sabatakakis, 2004 [101]

Limestone, sandstone,
marlstone

UC S = 7.3(Is(50))1.71 0.82

Yasar and Erdogan,
2004 [114]

Carbonate, sandstone,
basalt UC S = 4×10−6R4.2917 0.98

Yasar and Erdogan,
2004 [115]

Lime, marble, dolomite UC S = (Vp −2.0195)/0.032 0.81

Palchik and Hatzor,
2004 [102]

- UC S = k1Is(50)e−k2n -

Dincer et al., 2004 [116] Andesite, basalt, tuffs UC S = 2.75R −36.83 -
Aydin and Basu, 2005 [117] Granite UC S = 1.4459e0.0706R 0.92
Entwisle et al., 2005 [118] Volcanoclastic rocks UC S = 0.78e0.88Vp 0.53

Kahraman et al., 2005 [119]

Basalt, andesite,
granodiorite, granite,
volcanic bomb, marble,
serpentinite, gneiss, schist,
migmatite, limestone,
dolomitic limestone,
sandstone, travertine

UC S = 24.83Is(50) −39.64
(n < 1%)

0.84

UC S = 10.22Is(50) +24.31
(n > 1%)

0.75

Fener et al., 2005 [120] 11 different rock samples UC S = 4.24e(0.059R) -
Basu and Aydin, 2006 [121] Granitic rocks UC S = 18Is(50) 0.97
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Table A1. (Continued)

Researchers Rock types Empirical equations R2

Akran and Bakar,
2007 [122]

Sandstone, siltstone,
limestone, dolomite, marl

UC S = 22.791Is(50) +13.295 0.93

Shalabi et al., 2007 [123] Dolomite, limestone,
shale

UC S = 3.20R −46.59 0.76

Agustawijaya, 2007 [124] 39 samples in different
rock types

UC S = 13.4Is(50) 0.89

Cobanglu and Celik,
2008 [125]

Sandstone, limestone,
cement mortar

UC S = 8.66Is(50) +10.85 0.87

UC S = 56.71Vp −192.93 0.67

Sharma and Singh,
2008 [126]

Sandstone, basalt,
phyllite, quartz mica
schist, coal, shaly rock

UC S = 0.0642Vp −117.99 0.90

Kilic and Teymen,
2008 [127]

Different rock types UC S = 0.0137R0.2721 0.93

Yilmaz and Yuksek,
2008 [40]

Gypsum rock samples UC S = 12.4Is(50) −9.0859 0.81

Yagiz, 2009 [128] Travertine, limestone,
schist, dolomitic
limestone

UC S = 0.0028R2.584 0.92

Sabatakakis et al.,
2009 [129]

Marlstones,
sandstone, limestone

UC S = 13Is(50)

(Is(50) < 2 MPa)
0.70

UC S = 24Is(50)

(2 MPa < Is(50) < 5 MPa)
0.60

UC S = 28Is(50)

(Is(50) > 5 MPa)
0.72

Diamantis et al., 2009 [93] Serpentinite rock
UC S = 19.79Is(50) 0.74
UC S = 0.11Vp −515.56 0.81

Moradian and Behnia,
2009 [130]

64 different rock samples UC S = 165.05e−4.452/Vp 0.70

Gupta, 2009 [131] Granite UC S = 1.15R −15 -

Khandelwal and Singh,
2009 [132]

12 different rock samples UC S = 0.1333Vp −227.19 0.96

Altindag and Guney,
2010 [133]

Different rock types
including limestone UC S = 2.38BT S1.0725 0.89

Torabi et al., 2010 [134]
Siltstone, sandstone,
shale, argyle

UC S = 0.0465R2 −
0.1756Is(50) +27.682

0.92

Yagiz, 2011 [135]
Travertine, mica schist,
biotite schist, soft lime,
dolomietic lime

UC S = 0.258V 3.543
p 0.92

Kurtulus et al., 2011 [136] Ultrabasic rocks

UC S = 0.0675Vp −245.13
(accross foliation)

0.93

UC S = 0.0675Vp −245.13
(along foliation)

0.83

Diamantis et al.,
2011 [137]

cement mortar UC S = 0.41Vp −899.23 0.90
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Table A1. (Continued)

Researchers Rock types Empirical equations R2

Farah, 2011 [138] Weathered limestone UC S = 5.11BT S −133.86 0.68

Singh et al., 2012 [41]

Quartzite, khondalite,
sandstone, rock salt,
shale, gabbro,
amphibolite, epidiorite,
limestone, dolomiete,

UC S = 22.8Is(50)(quartzite) 0.99
UC S = 15.8Is(50)(Khondalite) 0.91
UC S = 21.9Is(50)(sandstone) 0.89
UC S = 16.1Is(50)(rock salt) 0.71
UC S = 14.4Is(50)(shale) 0.82
UC S = 23.3Is(50)(gabbro) 0.97

UC S = 23.5Is(50)(amphibolite) 0.98
UC S = 21Is(50)(epidiorite) 0.96
UC S = 22.3Is(50)(limestone) 0.68
UC S = 22.7Is(50)(dolomite) 0.82

Heidari et al., 2012 [139] Gypsum

UC S = 10.99Is(50) +7.042
(axial)

0.92

UC S = 11.96Is(50) +10.94
(diametral)

0.94

UC S = 13.29Is(50) +5.251
(irregular)

0.90

Mishra and Basu,
2012 [140]

Granite, schist, sandstone UC S = 14.63Is(50) 0.88

Kohno and Maeda,
2012 [141]

44 different rock samples UC S = 16.4Is(50) 0.85

Kahraman et al.,
2012 [142]

Different rock types
including limestone

UC S = 10.61BT S 0.54

Khandelwal, 2013 [143]
12 samples of a wide
rock type

UC S = 0.033Vp −34.83 0.87

Minaeian and Ahangari,
2013 [6]

Conglomerate UC S = 0.005Vp 0.94

Nazir et al., 2013 [144] 20 limestone samples UC S = 9.25BT S0.947 0.90

Bruno et al., 2013 [145] Sedimentary carbonate
rocks

UC S = e2.28R−4.04 -

Saptono et al., 2013 [146] Wlarukin formation
sandstone, mudstone
(Turkey)

UC S = 0.308R1.327 -

Kahraman, 2014 [7] Pyroclastic UC S = 2.68e0.93Is(50) 0.86

Mohamad et al.,
2015 [147]

40 samples of soft rocks UC S = 0.032Vp −44.23 0.83

Armaghani et al.,
2015 [148]

Granitic rocks UC S = 0.0308Vp −61.61 0.47

-
UC S = 0.1383R1.743 -

Kadir and Kesimal, UC S = 0.097R1.8776 -
2015 [149] UC S = 4.2423R −81.92 -

Armaghani et al.,
2016 [150]

Granite, metamorphic,
sedimentary rocks

UC S = 11.442e0.0297R

+0.001V 1.178
p +22.297Is(50) −

35.051

-
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Table A1. (Continued)

Researchers Rock types Empirical equations R2

Liang et al., 2016 [151] Sandstone UC S = 43.36DD + 11.161Is(50) +
1.039R −112.46

-

Azimian, 2017 [152] limestone
UC S = 2.664R −35.22 -
UC S = 1.530R +0.11Vp −24.673 -

Hebib et al., 2017 [153]
limestone, sandstone,
Dolomite, Calcareous
tuff

UC S = 2.855e0.0632R -

Kong and Shang, 2018 [154] Magnesian limesonte,
woodkirk sandstone

UC S = 1.80×10−5R−5.5(L-type) -

UC S = 0.30R1.43 (N-type) -

UC S: uniaxial compressive strength; Is(50): point load index; n: porosity; R:
Schmidt hammer rebound value; ρ: density; Vp: P-wave velocity; k1,k2: em-
pirical coefficient; a,b: constants; BT S: Brazilian tensile strength; I SI : impact
strength index; DD : dry density; γ: unit weight; I SI : impact strength index.

Table A2. Soft computation techniques for predicting UCS value

Researchers Input variables Techniques R2

Garret, 1994 [70] R, Vp, Is(50), n ANN -
Meulenkamp and Grima 1999 [13] L,n,ρ,d ANN 0.95
Singh et al., 2001 [53] PSV ANN -
Gokceoglu, 2002 [94] PC FIS 0.92
Gokceoglu and Zorlu, 2004 [5] Is(50),BPI ,Vp,BT S FIS 0.67
Sonmez et al., 2004 [11] PC FIS 0.64
Karakus and Tutmez, 2006 [155] Is(50), R, Vp FIS 0.97
Tiryaki, 2008 [156] ρ, R, C I ANN 0.40
Zorlu et al., 2008 [42] q,ρ,d ,cc ANN 0.76
Yilmaz and Yuksek, 2008 [40] Vp, Is(50), R, Id ANN 0.93
Baykasoglu et al., 2008 [54] Vp, ρ, W A GP 0.86
Yilmaz and Yuksek, 2009 [47] Vp, Is(50), R, Wc ANFIS 0.94
Gokceoglu et al., 2009 [157] CC , Id FIS 0.88
Canakci et al., 2009 [158] Vp, W A, ρ GP 0.88
Dehghan et al., 2010 [43] Vp, Is(50), R, n ANN 0.86
Cevik et al., 2011 [159] CC , Id ANN 0.97
Rabbani et al., 2012 [44] n, BD , Sw ANN 0.96
Razaei et al., 2012 [48] R, ρ, n FIS 0.95
Ceryan et al., 2012 [45] Id, Vp, ne, PSV ANN 0.88
Yagiz et al., 2012 [46] Vp, n, R, ρ, Id ANN 0.50
Monjezi et al., 2012 [9] R, ρ, n ANN-GA -
Beiki et al., 2013 [160] ρ, n, Vp GA 0.83
Yesiloglu-Gultekin et al., 2013 [71] BT S, Vp ANFIS 0.68
Mishra and Basu, 2013 [49] Vp, Is(50), R, BPI FIS 0.98
Yurdakul and Akdas, 2013 [161] R, SH , Vp ANN -
Manouchehrian et al., 2013 [162] n, ρ, C I , R, Q GP 0.63
Ceryan, 2014 [163] n, Id SVR 0.77
Torabi-Kaveh et al., 2015 [164] Vp, n, ρ ANN 0.95
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Table A2. (Continued)

Researchers Input variables Techniques R2

Mohamad et al., 2015 [147] BD , Vp, Is(50), BT S PSO-ANN 0.97
Momeni et al., 2015 [165] R, ρ, Vp, Is(50) PSO-ANN 0.97
Armaghani et al., 2016 [166] R, Vp, Is(50) ICA-ANN -
Fattahi, 2017 [95] R SVR-ABC -
Heidari et al., 2018 [50] R, BPI , Is(50), Vp FIS 0.91

R: Schmidt hammer rebound value; L: Equotip value; ρ: density; d : grain
size; PSV : petrography study value; BPI : block punch index; BD : bulk den-
sity; Sw: water saturation; Id: slake durability index; Vp: P-wave velocity; ne:
effective porosity; q : quartz content; n: porosity; Is(50): point load strength;
Wc: water content; cc: concavo convex; PSV : petrography study values; PC :
petrographic composition; C I : cone indenter hardness; CC : clay content; Q:
quartz content; W A: water absorption; GA: genetic algorithm; PSO: particle
swarm optimization; FIS: fuzzy inference system; ANN: artificial neural net-
work; SVR: support vector regression; ABC: artificial bee colony algorithm;
ICA: imperialist competitive algorithm; GP: genetic programming.

Table A3. Basic information of collected data

Researchers Rock types Indirect parameters Number of
data set

Tugrul and Zarif, 1999 [109] Quartz monzonite,
granite, tonalite

R, Is(50), Vp, ne, n 19

Kahraman, 2001 [112] Dolomite, sandstone,
limestone, marl, diabase

R, Is(50), Vp, ρ, I SI 48

Yasar and Erdogan, 2004 [114] Limestone, marble,
sandstone, basalt

SSH 6

Palchik and Hatzor,
2004 [102]

Chalk ρ, n 12

Dincer et al., 2004 [116] Basalt, andesite, tuff DUW 24
Karakus et al., 2005 [167] Dacite, limestone, mar-

ble, listwanite
Is(50), Vp, ne, ρ 9

Kahraman et al., 2005 [119] Basalt, andesite, granite,
granodiorite, marble,
limestone, sandstone,
travertine

Is(50), n 38

Aydin and Basu, 2005 [117] Granite R, ne, ρ, n 80
Fener et al., 2005 [120] Basalt, granite, andesite,

marble, limestone,
travertine

R, Is(50), I SI 11

Karakus and Tutmez,
2006 [155]

Dacite, limestone,
marble

R, Vp 9

Buyuksagis and Goktan,
2007 [168]

Granite, marble,
limestone

R 54

Shalabi et al., 2007 [123] Dolmite, shale, diopside R, SSH , HA 58
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Table A3. (Continued)

Researchers Rock types Indirect parameters Number of
data set

Aoki and Matsukura,
2008 [169]

Tuff, sandstone, granite,
andesite, limestone, dolomite,
marble

ne, L 33

Kilic and Teymen,
2008 [127]

Sedimentary, metamorphic
rock

R, Is(50), Vp, ne, SSH 19

Sharma and Singh,
2008 [126]

Sandstone, Greenish phyllite,
quartz mica schist, coal,
shaly rock

I d , Vp, I SI 48

Yagiz, 2009 [128] Limestone, travertine, schist Vp, ρ 9
Moradian and Behnia,
2009 [130]

Marlstone, sandstone,
limestone

Vp, ρ, Vs 64

Diamantis et al.,
2009 [93]

Serpentinite Vp, ne, DUW , Vs 35

Kayabali and Selcuk,
2010 [170]

Gypsum, tuff, ignimbrite,
andesite, sandstone,
limestone, marble

R, Is(50) 130

Torabi et al., 2010 [134] Coal R 41
Dehghan et al., 2010 [43] Travertine samples Is(50), Vp, n 30
Yagiz, 2011 [135] Travertine, beige lime,

dolomitic lime, soft lime,
mica schist

Vp, ρ 9

Karakus, 2011 [171] Granitic rocks Is(50), Vp, n, BT S 19
Ceryan et al., 2012 [45] Carbonate rocks I d , Vp, ne, Vs, n 42
Heidari et al., 2012 [139] Rock samples from southeast

of Gachasaran City, Southwest
of Iran

Is(50) 15

Gupta and Sharma,
2012 [172]

Pandukeshawar quartzite,
tapovan quartzite, berinag
quartzite

Vp, ρ, Vs, n 18

Singh et al., 2012 [173] 17 rock samples Id, Vp, I SI 17
Singh et al., 2012 [8] Sandstone, rock salt,

limestone, dolomite, amphi-
bolite, quartzite, apidiorite

Is(50) 11

Mishra and Basu,
2012 [140]

Granite, schist, sandstone Is(50), BPI 60

Kahraman et al.,
2012 [142]

Basalt, andesite, volcanic
bomb, granite, marble, lime-
stone, travertine

BT S, I H I 46

Rezaei et al., 2012 [48] Diabase, gabbro, olivine, am-
phibolite, dunite, norite,
granite

ρ, n 10

Nazir et al., 2013 [144] Limestone BT S 20
Bruno et al., 2013 [145] Sedimentary carbonate rock R 95
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Table A3. (Continued)

Researchers Rock types Indirect parameters Number of
data set

Khandelwal, 2013 [143] Rock mass samples were
collected from different
locations in India

R, Id, Vp, ρ 12

Kumar et al., 2013 [174] Sandstone, ironstone,
shell limestone, marl,
shale

Vp, ne, ρ 7

Yarali and Soyer, 2013 [175] Quartzite, limestone, dia-
base, siltstone, granodior-
ite, basalt, marl

R, Is(50), SSH 32

Ng et al., 2015 [176] Granitic rocks R, Is(50), Vp, ne 115
Armaghani et al., 2015 [148] Granite Vp, ρ 45
Torabi-Kaveh et al., 2015 [164] Limestone Vp, n 20
Momeni et al., 2015 [165] Limestone, granite R, Is(50), Vp, ρ 66
Mohamad et al., 2015 [147] Shale, old alluvium, iron pan Is(50), Vp 40
Ataei et al., 2015 [177] Magnetite R, Vp, ne, Vs 11
Karaman and Kesimal,
2015 [149]

Limestone, basalt, dacite,
metabasalt

Vp 46

Mishra et al., 2015 [178] Granite, schist, sandstone Is(50), Vp, BPI 60
Tandon and Gupta, 2015 [179] Granitoids, gneisses,

metabasics, dolomite
R, Is(50), Vp 60

Kurtulus et al., 2016 [180] Kizaderbent volcanic,
sopali arkose, korfez
sandstone, derince sand-
stone, akveren limestone

Is(50), ne, DUW 96

Armaghani et al., 2016 [150] Granite R, Is(50), Vp 71
Ersoy and Acar, 2016 [181] Granite Vp 9
Armaghhani et al., 2016 [182] Granite Is(50), Vp 124
Afoagboye et al., 2017 [183] granite gneiss, migmatite

gneiss
R, Is(50) 50

Akram et al., 2017 [184] Sakesar limestone R, Is(50) 42
Azimian, 2017 [152] Limestone R, Vp 30
Hebib et al., 2017 [153] Sandstone, carbonate

rocks
R, ne, ρ 19

Ghasemi et al., 2018 [185] Travertines, limestone R, Vp, Id, ne, UW 10
Kong and Shang, 2018 [154] Limestone, sandstone R, Is(50) 18
Heidari et al., 2018 [50] grainstone, wackestone-

mudstone, boundstone,
gypsum, and silty marl

Is(50), Vp, BPI 106

R: Schmidt hammer rebound value; Is(50): point load strength; Vp: ultrasonic
P-wave velocity; Id: slake durability index; ne: effective porosity; UW : unit
weight; BPI : block punch index; ρ: density; Vs: ultrasonic S-wave velocity;
SSH : shore scleroscope hardness; I SI : impact strength index; L: equitip hard-
ness; HA: abrasion hardness; n: total porosity; DUW : dry unit weight; BT S:
Brazilian tensile strength; I H I : indentation hardness index.

C. R. Mécanique, 2020, 348, n 1, 3-32



26 Min Wang and Wen Wan and Yanlin Zhao

References

[1] K. Thuro, “Drillability prediction: geological influences in hard rock drill and blast tunneling”, Geol. Rundsch. 86
(1997), p. 426-438.

[2] ASTM, “Standard test method for unconfined compressive strength of intact rock core specimens”, in Soil and Rock,
Building Stones: Annual Book of ASTM Standards 4.08, ASTM, Philadelphia, Pennsylvania, 1984.

[3] ISRM, in Rock Characterisation Testing and Monitoring (E. T. Brown, ed.), Pergamon Press, Oxford, 1981.
[4] ——— , “The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006”,

in Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics
(R. Ulusay, J. A. Hudson, eds.), ISRM Turkish National Group, Ankara, Turkey, 2007.

[5] C. Gokceoglu, K. Zorlu, “A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of
a problematic rock”, Eng. Appl. Artif. Intell. 17 (2004), p. 61-72.

[6] B. Minaeian, K. Ahangari, “Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer
rebound using statistical method”, Arab. J. Geosci. 6 (2013), p. 1925-1931.

[7] S. Kahraman, “The determination of uniaxial compressive strength from point load strength for pyroclastic rocks”,
Eng. Geol. 170 (2014), p. 33-42.

[8] R. Singh, A. Kainthola, T. N. Singh, “Estimation of elastic constant of rocks using an ANFIS approach”, Appl. Soft
Comput. 12 (2012), no. 1, p. 40-45.

[9] M. Monjezi, H. A. Khoshalan, M. Razifard, “A neuro-genetic network for predicting uniaxial compressive strength of
rocks”, Geotech. Geol. Eng. 30 (2012), no. 4, p. 1053-1062.

[10] M. Alber, S. Kahraman, “Predicting the uniaxial compressive strength and elastic modulus of a fault breccia from
texture coefficient”, Rock Mech. Rock Eng. 42 (2009), p. 117-127.

[11] H. Sonmez, E. Tuncay, C. Gokceoglu, “Models to predict the uniaxial compressive strength and the modulus of
elasticity for Ankara agglomerate”, Int. J. Rock Mech. Min. Sci. 41 (2004), no. 5, p. 717-729.

[12] H. Sonmez, C. Gokceoglu, E. W. Medley, E. Tuncay, H. A. Nefeslioglu, “Estimating the uniaxial compressive strength
of a volcanic bimrock”, Int. J. Rock Mech. Min. Sci. 43 (2006), no. 4, p. 554-561.

[13] F. Meulenkamp, M. A. Grima, “Application of neural networks for the prediction of the unconfined compressive
strength (UCS) from Equotip hardness”, Int. J. Rock Mech. Min. Sci. 36 (1999), no. 1, p. 29-39.

[14] D. V. D’Andrea, R. L. Fisher, D. E. Fogelson, “Prediction of compression strength from other rock properties”, Q. Colo.
Sch. Mines 59 (1964), no. 4b, p. 623-640.

[15] D. U. Deere, R. P. Miller, “Engineering classification and index properties for intact rock”, Air Force Weapons Lab.
Tech. Report, AFWL-TR 65-116., Kirtland Base, New Mexico, 1966.

[16] E. Broch, J. A. Franklin, “Point-load strength test”, Int. J. Rock Mech. Min. Sci. 9 (1972), no. 6, p. 669-697.
[17] Z. T. Bieniawski, “Point load test in geotechnical practice”, Eng. Geol. 9 (1975), no. 1, p. 1-11.
[18] F. P. Hassani, M. J. J. Scoble, B. N. Whittaker, “Application of point-load index test to strength determination of rock

and proposals for new size-correction chart”, in Proc. 21st US Symp. Rock Mech., Rolla, Missouri (D. A. Summers,
ed.), 1980, p. 543-553.

[19] J. R. L. Read, P. N. Thornten, W. M. Regan, “A rational approach to the point load test”, in Proc. 3rd Australian-New
Zealand Geomechanics Conference, vol. 2, 1980, p. 35-39.

[20] D. P. Singh, “Determination of some engineering properties of weak rocks”, in Proc. Int. Symp. Weak Rock, Tokyo,
1981, p. 21-24.

[21] I. R. Forster, “The influence of core sample geometry on the axial point-load test”, Int. J. Rock Mech. Min. Sci.
Geomech. Abstr. 20 (1983), no. 6, p. 291-295.

[22] D. W. Hobbs, “Rock compressive strength”, Colliery Eng. 41 (1964), p. 287-292.
[23] R. E. Aufmuth, “A systematic determination of engineering criteria for rocks”, Bull. Assoc. Eng. Geol. 11 (1973),

p. 235-245.
[24] W. R. Dearman, T. Y. Irfan, “Assessment of the degree of weathering in granite using petrographic and physical index

tests”, in Proc. Int. Symp. On Deterioration and Protection of Stone Monuments. Unesco, Paris, 1978, p. 1-35.
[25] B. E. Beverly, D. A. Schoenwolf, G. S. Brierly, Correlations of Rock Index Values with Engineering Properties and the

Classification of Intact Rock, FHWA, Washington, DC, 1979.
[26] A. Kidybinski, “Bursting liability indices of coal”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17 (1980), p. 157-

161.
[27] R. N. Singh, F. P. Hassani, P. A. S. Elkington, “The application of strength and deformation index testing to the

stability assessment of coal measure excavations”, in Proc. 24th US Symp. Rock Mech., Texas A&M University, Texas,
1983, p. 599-609.

[28] P. R. Sheorey, D. Barat, M. N. Das, K. P. Mukherjee, B. Singh, “Schmidt hammer rebound data for estimation of large-
scale in situ coal strength”, Int. J. Rock Mech. Min. Sci. 21 (1984), p. 39-42.

[29] ISRM, “Suggested method for determining point load strength”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 22
(1985), no. 2, p. 53-60.

C. R. Mécanique, 2020, 348, n 1, 3-32



Min Wang and Wen Wan and Yanlin Zhao 27

[30] K. Y. Haramy, M. J. DeMarco, “Use of the Schmidt hammer for rock and coal testing”, in 26th US Symp. on Rock
Mech., Rapid City, 1985, p. 549-555.

[31] A. K. Ghose, S. Chakraborti, “Empirical strength indices of Indian coals-an investigation”, in Proc. 27th US Symp.
Rock Mech., Balkema, Rotterdam, 1986, p. 59-61.

[32] L. E. Vallejo, R. A. Welsh, M. K. Robinson, “Correlation between unconfined compressive and point load strength
for Appalachian rocks”, in Proc. 30th US Symp. Rock Mech., Morgantown, 1989, p. 461-468.

[33] J. E. O’Rourke, “Rock index properties for geo-engineering in underground development”, Min. Eng. 41 (1989),
no. 2, p. 106-110.

[34] J. S. Cargill, A. Shakoor, “Evaluation of empirical methods for measuring the uniaxial compressive strength of rock”,
Int. J. Rock Mech. Min. Sci. 27 (1990), no. 6, p. 495-503.

[35] C. I. Sachpazis, “Correlating Schmidt hardness with compressive strength and young’s modulus of carbonate rocks”,
Bull. Int. Assoc. Eng. Geol. 42 (1990), p. 75-84.

[36] S. Xu, P. Grasso, A. Mahtab, “Use of Schmidt hammer for estimating mechanical properties of weak rock”, in Proc.
6th Int. Assoc. Eng. Geol. Congr., Balkema, Rotterdam, 1990, p. 511-519.

[37] K. E. N. Tsidzi, “Point load-uniaxial compressive strength correlation”, in Proc. 7th ISRM Congress, Aachen, Ger-
many, vol. 1, 1991, p. 637-639.

[38] D. K. Ghosh, M. Srivastava, “Point-load strength: an index for classification of rock material”, Bull. Int. Assoc. Eng.
Geol. 44 (1991), p. 27-33.

[39] P. Grasso, S. Xu, A. Mahtab, “Problems and promises of index testing of rocks”, in Proc. 33rd US Symp. Rock Mech.,
Sante Fe, NM, Balkema, Rotterdam, 3–5, 1992, p. 879-888.

[40] I. Yilmaz, A. G. Yuksek, “An example of artificial neural network (ANN) application for indirect estimation of rock
parameters”, Rock Mech. Rock Eng. 41 (2008), no. 5, p. 781-795.

[41] T. N. Singh, A. Kainthola, A. Venkatesh, “Correlation between point load index and uniaxial compressive strength
for different rock types”, Rock Mech. Rock Eng. 45 (2012), p. 259-264.

[42] K. Zorlu, C. Gokceoglu, F. Ocakoglu, H. A. Nefeslioglu, S. Acikalin, “Prediction of uniaxial compressive strength of
sandstones using petrography-based models”, Eng. Geol. 96 (2008), no. 3–4, p. 141-158.

[43] S. Dehghan, G. H. Sattari, C. S. Chehreh, M. A. Aliabadi, “Prediction of uniaxial compressive strength and modulus
of elasticity for Travertine samples using regression and artificial neural networks”, Int. J. Rock Mech. Min. 20 (2010),
p. 41-46.

[44] E. Rabbani, F. Sharif, S. M. Koolivand, A. Moradzadeh, “Application of neural network technique for prediction of
uniaxial compressive strength using reservoir formation properties”, Int. J. Rock Mech. Min. Sci. 56 (2012), p. 100-
111.

[45] N. Ceryan, U. Okkan, A. Kesimal, “Prediction of unconfined compressive strength of carbonate rocks using artificial
neural networks”, Environ. Earth Sci. 68 (2012), no. 3, p. 807-819.

[46] S. Yagiz, E. A. Sezer, C. Gokceoglu, “Artificial neural networks and nonlinear regression techniques to assess the
influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for
carbonate rocks”, Int. J. Numer. Anal. Methods 36 (2012), p. 1636-1650.

[47] I. Yilmaz, G. Yuksek, “Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN,
and ANFIS models”, Int. J. Rock Mech. Min. Sci. 46 (2009), no. 4, p. 803-810.

[48] M. Rezaei, A. Majdi, M. Monjezi, “An intelligent approach to predict unconfined compressive strength of rock
surrounding access tunnels in longwall coal mining”, Neural Comput. Appl. 24 (2012), no. 1, p. 233-241.

[49] D. A. Mishra, A. Basu, “Estimation of uniaxial compressive strength of rock materials by index tests using regression
analysis and fuzzy inference system”, Eng. Geol. 160 (2013), p. 54-68.

[50] M. Heidari, H. Mohseni, S. H. Jalali, “Prediction of uniaxial compressive strength of some sedimentary rocks by
fuzzy and regression models”, Geotech. Geol. Eng. 36 (2018), p. 401-412.

[51] J. H. Ghaboussi, J. H. Garrett, X. Wu, “Knowledge-based model of material behaviour with neural networks”, J. Eng.
Mech. 117 (1991), no. 1, p. 132-153.

[52] P. K. Simpson, Artificial Neural System: Foundation, Paradigms, Applications and Implementations, Pergamon, New
York, 1990.

[53] V. K. Singh, D. Singh, T. N. Singh, “Prediction of strength properties of some schistose rocks from petrographic
properties using artificial neural networks”, Int. J. Rock Mech. Min. Sci. 38 (2001), no. 2, p. 269-284.

[54] A. Baykasoglu, H. Gullu, H. Canakci, L. Ozbakir, “Predicting of compressive and tensile strength of limestone via
genetic programming”, Expert Syst. Appl. 35 (2008), p. 111-123.

[55] F. Meulenkamp, “Improving the prediction of the UCS by Equotip readings using statistical and neural network
models”, Mem. Centre Eng. Geol. Net 162 (1997), p. 127.

[56] S. Kahraman, M. Alber, “Estimating the unconfined compressive strength and elastic modulus of a fault breccia
mixture of weak rocks and strong matrix”, Int. J. Rock Mech. Min. Sci. 43 (2006), p. 1277-1287.

[57] K. Sarkar, A. Tiwary, T. N. Singh, “Estimation of strength parameters of rock using artificial neural networks”, Bull.
Eng. Geol. Environ. 69 (2010), p. 599-606.

C. R. Mécanique, 2020, 348, n 1, 3-32



28 Min Wang and Wen Wan and Yanlin Zhao

[58] L. Jing, J. A. Hudson, “Numerical methods in rock mechanics”, Int. J. Rock Mech. Min. Sci. 39 (2010), p. 409-427.
[59] Y. Lee, S. H. Oh, M. W. Kim, “The effect of initial weights on premature saturation in back-propagation learning”, in

Proc. IEEE Int. Joint Conf. on Neural Networks, Seattle, WA, USA, 18–21, 1991, p. 765-770.
[60] M. Hajihassani, A. D. Jahed, H. Sohaei, M. E. Tonnizam, A. Marto, “Prediction of airblast-overpressure induced

by blasting using a hybrid artificial neural network and particle swarm optimization”, Appl. Acoust. 80 (2014), p. 57-
67.

[61] L. A. Zadeh, “Fuzzy sets”, Inf. Control 8 (1965), p. 338-353.
[62] R. J. S. Jang, “ANFIS: adaptive-network-based fuzzy inference system”, IEEE Trans. Syst. Man Cybern. 23 (1993),

p. 665-685.
[63] R. J. S. Jang, C. T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing, Prentice-Hall, Upper Saddle River, 1997.
[64] M. A. Grima, P. A. Bruines, P. N. W. Verhoef, “Modeling tunnel boring machine performance by neuro-fuzzy

methods”, Tunn. Undergr. Space Technol. 15 (2000), no. 3, p. 260-269.
[65] M. Iphar, M. Yavuz, H. Ak, “Prediction of ground vibrations resulting from the blasting operations in an open-pit

mine by adaptive neuro-fuzzy inference system”, Environ. Geol. 56 (2008), p. 97-107.
[66] E. A. Sezer, H. A. Nefeslioglu, C. Gokceoglu, “An assessment on producing synthetic samples by fuzzy C-means for

limited number of data in prediction models”, Appl. Soft Comput. 24 (2014), p. 126-134.
[67] R. Eberhart, J. Kennedy, “A new optimizer using particle swarm theory”, in Proc 6th Int. Symp. on Micro Machine

and Human Science, Nagoya, Japan, 4–6, 1995, p. 39-43.
[68] R. Mendes, P. Cortes, M. Rocha, J. Neves, “Particle swarms for feed forward neural net training”, in Proc. IEEE Int.

Joint Conf. on Neural Networks, Honolulu, HI, USA, 12–17, 2002, p. 1895-1899.
[69] D. J. Armaghani, M. Hajihassani, E. T. Mohamad, A. Marto, S. A. Noorani, “Blasting-induced flyrock and ground

vibration prediction through an expert artificial neural network based on particle swarm optimization”, Arab. J.
Geosci. 7 (2014), no. 12, p. 5383-5396.

[70] J. H. Garret, “Where and why artificial neural networks are applicable in civil engineering”, J. Comput. Civ. Eng. 8
(1994), p. 129-130.

[71] N. Yesiloglu-Gultekin, C. Gokceoglu, E. A. Sezer, “Prediction of uniaxial compressive strength of granitic rocks by
various nonlinear tools and comparison of their performances”, Int. J. Rock Mech. Min. Sci. 62 (2013), no. 9, p. 113-
122.

[72] U. Atici, “Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an
artificial neural network”, Expert Syst. Appl. 38 (2011), p. 9609-9618.

[73] M. Asadi, B. M. Hossein, M. Eftekhari, “Development of optimal fuzzy models for predicting the strength of intact
rocks”, Comput. Geosci. 54 (2013), p. 107-112.

[74] A. Marto, M. Hajihassani, A. D. Jahed, M. E. Tonnizam, A. M. Makhtar, “A novel approach for blast-induced flyrock
prediction based on imperialist competitive algorithm and artificial neural network”, Sci. World J. 2014 (2014),
article ID 643715.

[75] ISRM, “Suggested methods for the quantitative description of discontinuities in rock masses”, Int. J. Rock Mech.
Min. Sci. Geomech. Abstr. 15 (1978), p. 319-368.

[76] R. Díaz-Uriarte, S. A. De Andres, “Gene selection and classification of micro array data using random forest”, BMC
Bioinforma. 7 (2006), p. 3.

[77] L. Breiman, “Random forests”, Mach. Learn. 45 (2001), p. 5-32.
[78] ——— , “Bagging predictors”, Mach. Learn. 24 (1996), p. 123-140.
[79] V. F. Rodriguez-Galiano, B. Ghimire, J. Rogan, M. Chica-Olmo, J. P. Rigol-Sanchez, “An assessment of the effective-

ness of a random forest classifier for land-cover classification”, ISPRS J. Photogramm. Remote Sens. 67 (2012), p. 93-
104.

[80] F. Collard, B. Kempen, G. B. M. Heuvelink, N. P. A. Saby, A. C. R. Forges, S. Lehmann, P. Nehlig, D. Arrouays, “Refining
a reconnaissance soil map by calibrating regression models with data from the same map (Normandy, France)”,
Geoderma Regional. 1 (2014), p. 21-30.

[81] R. Grimm, T. Behrens, M. Märker, H. Elsenbeer, “Soil organic carbon concentrations and stocks on Barro Colorado
Island - digital soil mapping using random forests analysis”, Geoderma 146 (2008), p. 102-113.

[82] M. Wiesmeier, F. Barthold, B. Blank, I. Kögel-Knabner, “Digital mapping of soil organic matter stocks using random
forest modeling in a semi-arid steppe ecosystem”, Plant Soil 340 (2011), p. 7-24.

[83] A. M. Prasad, L. R. Iverson, A. Liaw, “Newer classification and regression tree techniques: bagging and random-
forests for ecological prediction”, Ecosystems 9 (2006), p. 181-199.

[84] R. D. Cutler, T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson et al., “Random forests for classification in
ecology”, Ecology 88 (2007), p. 2783-2792.

[85] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, B. P. Feuston, “Random forest: a classification and
regression tool for compound classification and QSAR modeling”, J. Chem. Inf. Comput. Sci. 43 (2003), p. 1947-
1958.

[86] C. H. Hsieh, R. H. Lu, R. H. Lee, N. H. Lee, W. T. Chiu, M. H. Hsu, Y. C. Li, “Novel solutions for an old disease: diagnosis

C. R. Mécanique, 2020, 348, n 1, 3-32



Min Wang and Wen Wan and Yanlin Zhao 29

of acute appendicitis with random forest, support vector machines, and artificial neural networks”, Surgery 149
(2011), no. 1, p. 87-93.

[87] L. Chen, C. Chu, T. Huang, X. Y. Kong, Y. D. Cai, “Prediction and analysis of cell-penetrating peptides using pseudo-
amino acid composition and random forest models”, Amino Acids 47 (2015), no. 7, p. 1485-1493.

[88] R. P. Sheridan, “Using random forest to model the domain applicability of another random forest model”, J. Chem.
Inf. Model. 53 (2013), no. 11, p. 2837-2850.

[89] X. Ma, J. Guo, J. S. Wu, H. D. Liu, J. F. Yu, J. M. Xie, X. A. Sun, “Predition of RNA-binding residues in proteins from
primary sequence using an enriched random forest model with a novel hybrid feature”, Proteins-Struct. Funct.
Bioinform. 79 (2011), no. 4, p. 1230-1239.

[90] M. Cerrada, G. Zurita, D. Cabrera, R. V. Sanchez, M. Artes, C. Li, “Fault diagnosis in spur gears based on genetic
algorithm and random forest”, Mech. Syst. Signal Process. 70–71 (2016), p. 87-103.

[91] ASTM, Test Methods for Ultra Violet Velocities Determination, American Society for Testing and Materials, 1983,
D2845 pages.

[92] ISRM, “Suggested methods for determining the uniaxial compressive strength and deformability of rock materials”,
Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16 (1979), p. 135-140.

[93] K. Diamantis, E. Gartzos, G. Migiros, “Study on uniaxial compressive strength, point load strength index, dynamic
and physical properties of serpentinites from Central Greece: test results and empirical relations”, Eng. Geol. 108
(2009), p. 199-207.

[94] C. Gokceoglu, “A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates
from their petrographic composition”, Eng. Geol. 66 (2002), p. 39-51.

[95] H. Fattahi, “Applying soft computing methods to predict the uniaxial compressive strength of rock from schmidt
hammer rebound values”, Comput. Geosci. 21 (2017), no. 1, p. 1-17.

[96] K. L. Gunsallus, F. H. Kulhawy, “A comparative evaluation of rock strength measures”, Int. J. Rock Mech. Min. Sci. 21
(1984), p. 233-248.

[97] R. Ulusay, K. Tureli, M. H. Ider, “Prediction of engineering properties of a selected litharenite sandstone from its
petrographic characteristics using correlation and multivariate statistical techniques”, Eng. Geol. 38 (1994), p. 135-
157.

[98] D. Adler, “Genetic algorithms and simulated annealing: a marriage proposal”, Int. Symp. Neural Netw. 2 (1993),
p. 1104-1109.

[99] D. Li, L. N. Y. Wong, “Point load test on meta-sedimentary rocks and correlation to UCS and BTS”, Rock Mech. Rock
Eng. 46 (2013), no. 4, p. 889-896.

[100] S. L. Quane, J. K. Russel, “Rock strength as a metric of welding intensity in pyroclastic deposits”, Eur. J. Mineral. 15
(2003), p. 855-864.

[101] G. Tsiambaos, N. Sabatakakis, “Considerations on strength of intact sedimentary rocks”, Eng. Geol. 72 (2004), p. 261-
273.

[102] V. Palchik, Y. H. Hatzor, “The influence of porosity on tensile and compressive strength of porous chalk”, Rock Mech.
Rock Eng. 37 (2004), no. 4, p. 331-341.

[103] H. Moomivand, “Development of a new method for estimating the indirect uniaxial compressive strength of rock
using Schmidt hammer”, BHM Berg- Huettenmaenn Monatsh 156 (2011), no. 4, p. 142-146.

[104] K. T. Chau, R. H. C. Wong, “Uniaxial compressive strength and point load strength”, Int. J. Rock Mech. Min. Sci. 33
(1996), p. 183-188.

[105] C. Gokceoglu, “Schmidt sertlik cekici kullanılarak tahmin edilen tek eksenli basınç dayanımı verilerinin guvenirligi
uzerine bir degerlendirme”, Jeol. Muh. 48 (1996), p. 78-81.

[106] G. Aggistalis, A. Alivizatos, D. Stamoulis, G. Stournaras, “Correlating uniaxial compressive strength with Schmidt
hammer rebound number, point load index, Young’s modulus, and mineralogy of gabbros and basalts (Northern
Greece)”, Bull. Eng. Geol. 54 (1996), p. 3-11.

[107] S. Kahraman, “Basınc direnci tahmininde Schmidt venokta yuk indeksi kullanmanın guvenirligi”, in KTU Jeoloji
Muhendisligi Bolumu 30. Yıl Sempozyumu BildirilerKitabı, Trabzon (S. Korkmazve, M. Akcay, eds.), 1996, p. 362-
369.

[108] H. J. Smith, “The point load test for weak rock in dredging applications”, Int. J. Rock Mech. Min. Sci. 34 (1997),
no. 3–4, p. 702.

[109] A. Tugrul, I. H. Zarif, “Correlation of mineralogical and textural, characteristics with engineering properties of
selected granitic rocks from Turkey”, Eng. Geol. 51 (1999), p. 303-317.

[110] O. Katz, Z. Reches, J. C. Roegiers, “Evaluation of mechanical rock properties using a Schmidt hammer”, Int. J. Rock
Mech. Min. Sci. 37 (2000), p. 723-728.

[111] S. Sulukcu, R. Ulusay, “Evaluation of the block punch index test with particular reference to the size effect, failure
mechanism and its effectiveness in predicting rock strength”, Int. J. Rock Mech. Min. Sci. 38 (2001), p. 1091-1111.

[112] S. Kahraman, “Evaluation of simple methods for assessing the uniaxial compressive strength of rock”, Int. J. Rock
Mech. Min. Sci. 38 (2001), p. 981-994.

C. R. Mécanique, 2020, 348, n 1, 3-32



30 Min Wang and Wen Wan and Yanlin Zhao

[113] I. Yilmaz, H. Sendir, “Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus
in gypsum from Sivas (Turkey)”, Eng. Geol. 66 (2002), p. 211-219.

[114] E. Yasar, Y. Erdogan, “Estimation of rock physicomechanical properties using hardness methods”, Eng. Geol. 71
(2004), p. 281-288.

[115] ——— , “Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate
rocks”, Int. J. Rock Mech. Min. Sci. 5 (2004), p. 871-875.

[116] I. Dincer, A. C. Acar, I. Obanoglu, Y. Uras, “Correlation between Schmidt hardness, uniaxial compressive strength
and Young’s modulus for andesites, basalts and tuffs”, Bull. Eng. Geol. Environ. 63 (2004), p. 141-148.

[117] A. Aydin, A. Basu, “The Schmidt hammer in rock material characterization”, Eng. Geol. 81 (2005), p. 1-14.
[118] D. C. Entwisle, P. R. N. Hobbs, L. D. Jones, D. Gunn, M. G. Raines, “The relationship between effective porosity,

uniaxial compressive strength and sonic velocity of intact Borrowdale volcanic group core samples from Sellafield”,
Geotech. Geol. Eng. 23 (2005), no. 6, p. 793-809.

[119] S. Kahraman, O. Gunaydin, M. Fener, “The effect of porosity on the relation between uniaxial compressive strength
and point load index”, Int. J. Rock Mech. Min. Sci. 42 (2005), no. 4, p. 584-589.

[120] M. Fener, S. Kahraman, A. Bilgil, O. Gunaydin, “A comparative evaluation of indirect methods to estimate the
compressive strength of rocks”, Rock Mech. Rock Eng. 38 (2005), no. 4, p. 329-343.

[121] A. Basu, A. Aydin, “Predicting uniaxial compressive strength by point load test: significance of cone penetration”,
Rock Mech. Rock Eng. 39 (2006), no. 5, p. 483-490.

[122] M. Akram, M. Z. A. Bakar, “Correlation between uniaxial compressive strength and point load index for salt-range
rocks”, Pak. J. Eng. Appl. Sci. 1 (2007), p. 1-8.

[123] F. I. Shalabi, E. J. Cording, O. H. Al-Hattamleh, “Estimation of rock engineering properties using hardness tests”,
Eng. Geol. 90 (2007), p. 138-147.

[124] D. S. Agustawijaya, “The uniaxial compressive strength of soft rock”, Civ. Eng. Dimens. 9 (2007), p. 9-14.
[125] I. Cobanglu, S. Celik, “Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and

P-wave velocity”, Bull. Eng. Geol. Environ. 67 (2008), p. 491-498.
[126] P. K. Sharma, T. N. Singh, “A correlation between P-wave velocity, impact strength index, slake durability index and

uniaxial compressive strength”, Bull. Eng. Geol. Environ. 67 (2008), p. 17-22.
[127] A. Kilic, A. Teymen, “Determination of mechanical properties of rocks using simple methods”, Bull. Eng. Geol.

Environ. 67 (2008), p. 237-244.
[128] S. Yagiz, “Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the

Schmidt hammer”, Bull. Eng. Geol. Environ. 68 (2009), p. 55-63.
[129] N. Sabatakakis, G. Koukis, G. Tsiambaos, S. Papanakli, “Index properties and strength variation controlled by

microstructure for sedimentary rocks”, Eng. Geol. 97 (2009), p. 80-90.
[130] Z. A. Moradian, M. Behnia, “Predicting the uniaxial compressive strength and static Young’s modulus of intact

sedimentary rocks using the ultrasonic test”, Int. J. Geomech. 9 (2009), no. 1, p. 14-19.
[131] V. Gupta, “Non-destructive testing of some higher Himalayan rocks in the Satluj Valley”, Bull. Eng. Geol. Environ.

68 (2009), p. 409-416.
[132] M. Khandelwal, T. N. Singh, “Correlating static properties of coal measures rocks with P-wave velocity”, Int. J. Coal

Geol. 79 (2009), p. 55-60.
[133] R. Altindag, A. Guney, “Predicting the relationships between brittleness and mechanical properties (UCS, TS and

SH) of rocks”, Sci. Res. Essays 5 (2010), p. 2107-2118.
[134] S. R. Torabi, M. Ataei, M. Javanshir, “Application of Schmidt rebound number for estimating rock strength under

specific geological conditions”, J. Min. Sci. 1 (2010), no. 2, p. 1-8.
[135] S. Yagiz, “P-wave velocity test for assessment of geotechnical properties of some rock materials”, Bull. Mater. Sci. 34

(2011), no. 4, p. 947-953.
[136] G. Kurtulus, T. Irmak, I. Sertcelik, “Physical and mechanical properties of Gokcseda: Imbros (NE Aegean Sea) Island

andesites”, Bull. Eng. Geol. Environ. 69 (2011), p. 321-324.
[137] K. Diamantis, S. Bellas, G. Migiros, E. Gartzos, “Correlating wave velocities with physical, mechanical properties and

petrographic characteristics of peridotites from the central Greece”, Geotech. Geol. Eng. 29 (2011), no. 6, p. 1049-
1062.

[138] R. Farah, Correlations Between Index Properties and Unconfined Compressive Strength of Weathered Ocala Lime-
stone, University of North Florida, Jacksonville, 2011, 142 pages.

[139] M. Heidari, G. Khanlari, M. Torabi-Kaveh, S. Kargarian, “Predicting the uniaxial compressive and tensile strengths
of gypsum rock by point load testing”, Rock Mech. Rock Eng. 45 (2012), no. 2, p. 265-273.

[140] D. A. Mishra, A. Basu, “Use of the block punch test to predict the compressive and tensile strengths of rocks”, Int. J.
Rock Mech. Min. Sci. 51 (2012), p. 119-127.

[141] M. Kohno, H. Maeda, “Relationship between point load strength index and uniaxial compressive strength of
hydrothermally altered soft rocks”, Int. J. Rock Mech. Min. Sci. 50 (2012), p. 147-157.

C. R. Mécanique, 2020, 348, n 1, 3-32



Min Wang and Wen Wan and Yanlin Zhao 31

[142] S. Kahraman, M. Fener, E. Kozman, “Predicting the compressive and tensile strength of rocks from indentation
hardness index”, J. South. Afr. Ins. Min. Metall. 112 (2012), no. 5, p. 331-339.

[143] M. Khandelwal, “Correlating P-wave velocity with the physico-mechanical properties of different rocks”, Pure Appl.
Geophys. 170 (2013), p. 507-514.

[144] R. Nazir, E. Momeni, A. D. Jahed, “Correlation between unconfined compressive strength and indirect tensile
strength of limestone rock samples”, Electr. J. Geotech. Eng. 18 (2013), p. 1737-1746.

[145] G. Bruno, G. Vessia, L. Bobbo, “Statistical method for assessing the uniaxial compressive strength of carbonate rock
by Schmidt hammer tests performed on core samples”, Rock Mech. Rock Eng. 46 (2013), no. 1, p. 199-206.

[146] S. Saptono, S. Kramadibratab, B. Sulistiantob, “Using the Schmidt hammer on rock mass characteristic in sedimen-
tary rock at Tutupan Coal Mine”, Procedia. Earth Planet. Sci. 6 (2013), p. 390-395.

[147] E. T. Mohamad, D. J. Armaghani, E. Momeni, “Prediction of the unconfined compressive strength of soft rocks: a
PSO-based ANN approach”, Bull. Eng. Geol. Environ. 74 (2015), no. 3, p. 745-757.

[148] D. J. Armaghani, E. T. Mohamad, E. Momeni, M. S. Narayanasamy, M. F. M. Amin, “An adaptive neurofuzzy inference
system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite”, Bull.
Eng. Geol. Environ. 74 (2015), no. 4, p. 1301-1319.

[149] K. Karaman, A. Kesimal, “Correlation of Schmidt rebound hardness with uniaxial compressive strength and P-wave
velocity of rock materials”, Arab. J. Sci. Eng. 40 (2015), no. 7, p. 1897-1906.

[150] D. J. Armaghani, E. T. Mohamad, E. Momeni, M. Monjezi, M. S. Narayanasamy, “Prediction of the strength and
elasticity modulus of granite through an expert artificial neural network”, Arab. J. Geosci. 9 (2016), p. 48.

[151] M. Liang, E. T. Mohamad, R. S. Faradonbeh, D. J. Armaghani, S. Ghoraba, “Rock strength assessment based on
regression tree technique”, Eng. Comput. 32 (2016), p. 343-354.

[152] A. Azimian, “Application of statistical methods for predicting uniaxial compressive strength of limestone rocks using
nondestructive tests”, Acta Geotechnica 12 (2017), no. 2, p. 1-13.

[153] R. Hebib, D. Belhai, B. Alloul, “Estimation of uniaxial compressive strength of North Algeria sedimentary rocks using
density, porosity, and Schmidt hardness”, Arab. J. Geosci. 10 (2017), p. 383.

[154] K. Kong, J. Shang, “A validation study for the estimation of uniaxial compressive strength based on index tests”, Rock
Mech. Rock Eng. 51 (2018), p. 2289-2297.

[155] M. Karakus, B. Tutmez, “Fuzzy and multiple regression modelling for evaluation of intact rock strength based on
point load, Schmidt hammer and sonic velocity”, Rock Mech. Rock Eng. 39 (2006), no. 1, p. 45-57.

[156] B. Tiryaki, “Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural
networks, and regression trees”, Eng. Geol. 99 (2008), p. 51-60.

[157] C. Gokceoglu, H. Sonmez, K. Zorlu, “Estimating the uniaxial compressive strength of some clay-bearing rocks
selected from Turkey by nonlinear multivariable regression and rule-based fuzzy models”, Expert Syst. 26 (2009),
p. 176-190.

[158] H. Canakci, A. Baykasoglu, H. Gullu, “Prediction of compressive and tensile strength of Gaziantep basalts via neural
networks and gene expression programming”, Neural Comput. Appl. 18 (2009), p. 1031-1041.

[159] A. Cevik, E. A. Sezer, A. F. Cabalar, C. Gokceoglu, “Modeling of the uniaxial compressive strength of some clay-
bearing rocks using neural network”, Appl. Soft Comput. 11 (2011), p. 2587-2594.

[160] M. Beiki, A. Majdi, A. D. Givshad, “Application of genetic programming to predict the uniaxial compressive strength
and elastic modulus of carbonate rocks”, Int. J. Rock Mech. Min. Sci. 63 (2013), p. 159-169.

[161] M. Yurdakul, H. Akdas, “Modeling uniaxial compressive strength of building stones using non-destructive test
results as neutral networks input parameters”, Constr. Build. Mater. 47 (2013), p. 1010-1019.

[162] A. Manouchehrian, M. Sharifzadeh, M. R. Hamidzadeh, T. Nouri, “Selection of regression models for predicting
strength and deformability properties of rocks using GA”, Int. J. Min. Sci. Technol. 23 (2013), p. 495-501.

[163] N. Ceryan, “Application of support vector machines and relevance vector machines in predicting uniaxial compres-
sive strength of volcanic rocks”, J. Afr. Earth Sci. 100 (2014), p. 634-644.

[164] M. Torabi-Kaveh, F. Naseri, S. Saneie, B. Sarshari, “Application of artificial neural networks and multivariate statistics
to predict UCS and E using physical properties of Asmari limestones”, Arab. J. Geosci. 8 (2015), no. 5, p. 2889-2897.

[165] E. Momeni, D. J. Armaghani, M. Hajihassani, M. F. M. Amin, “Prediction of uniaxial compressive strength of rock
samples using hybrid particle swarm optimization-based artifical neural networks”, Measurement 60 (2015), p. 50-
63.

[166] D. J. Armaghani, M. F. M. Amin, S. Yagiz, R. S. Faradonbeh, R. A. Abdullah, “Prediction of the uniaxial compressive
strength of sandstone using various modeling techniques”, Int. J. Rock Mech. Min. Sci. 85 (2016), p. 174-186.

[167] M. Karakus, M. Kumral, O. Kilic, “Predicting elastic properties of intact rocks from index tests using multiple
regression modelling”, Int. J. Rock Mech. Min. Sci. 42 (2005), p. 323-330.

[168] I. S. Buyuksagis, R. M. Goktan, “The effect of Schmidt hammer type on uniaxial compressive strength prediction of
rock”, Int. J. Rock Mech. Min. Sci. 44 (2007), p. 299-307.

[169] H. Aoki, Y. Matsukura, “Estimating the unconfined compressive strength of intact rocks from Equotip hardness”,
Bull. Eng. Geol. Environ. 67 (2008), p. 23-29.

C. R. Mécanique, 2020, 348, n 1, 3-32



32 Min Wang and Wen Wan and Yanlin Zhao

[170] K. Kayabali, L. Selcuk, “Nail penetration test for determining the uniaxial compressive strength of rock”, Int. J. Rock
Mech. Min. Sci. 47 (2010), no. 2, p. 265-271.

[171] M. Karakus, “Function identification for the intrinsic strength and elastic properties of granitic rock via genetic
programming (GP)”, Comput. Geosci. 37 (2011), no. 9, p. 1318-1323.

[172] V. Gupta, R. Sharma, “Relationship between textural, petrophysical and mechanical properties of quartzites: a case
study from northwestern Himalaya”, Eng. Geol. 135–136 (2012), p. 1-9.

[173] R. Singh, V. Vishal, T. N. Singh, “Soft computing method for assessment of compressional wave velocity”, Scientia
Iranica 19 (2012), no. 4, p. 1018-1024.

[174] B. R. Kumar, H. Vardhan, M. Govindaraj, G. S. Vijay, “Regression analysis and ANN models to predict rock properties
from sound levels produced during drilling”, Int. J. Rock Mech. Min. Sci. 58 (2013), p. 61-72.

[175] O. Yarali, E. Soyer, “Assessment of relationships between drilling rate index and mechanical properties of rocks”,
Tunn. Undergr. Space Tech. 33 (2013), p. 46-53.

[176] I. T. Ng, K. V. Yuen, C. H. Lau, “Predictive model for uniaxial compressive strength for Grade III granitic rocks from
Macao”, Eng. Geol. 199 (2015), p. 28-37.

[177] M. Ataei, R. Kakaie, M. Ghavidel, O. Saeidi, “Drilling rate prediction of an open pit mine using the rock mass
drillability index”, Int. J. Rock Mech. Min. Sci. 73 (2015), p. 130-138.

[178] D. A. Mishra, M. Srigyan, A. Basu, P. J. Rokade, “Soft computing methods for estimating the uniaxial compressive
strength of intact rock from index tests”, Int. J. Rock Mech. Min. Sci. 80 (2015), p. 418-424.

[179] R. S. Tandon, V. Gupta, “Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer
rebound, point load index, and compressional wave velocity”, Bull. Eng. Geol. Environ. 74 (2015), p. 521-533.

[180] C. Kurtulus, F. Sertcelik, I. Sertcelik, “Correlating physico-mechanical properties of intact rocks with P-wave veloc-
ity”, Acta Geod. Geophys. 51 (2016), p. 571-582.

[181] H. Ersoy, S. Acar, “Influences of petrographic and textural properties on the strength of very strong granite rocks”,
Environ. Earth Sci. 75 (2016), no. 22, p. 1461.

[182] D. J. Armaghhani, E. T. Mohamad, M. Hajihassani, S. Yagiz, H. Motaghedi, “Application of several non-linear pre-
diction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances”,
Eng. Comput. 32 (2016), p. 189-206.

[183] L. O. Afoagboye, A. O. Talabi, C. A. Oyelami, “The use of index tests to determine the mechanical properties of
crushed aggregates from precambrian basement complex rocks, Ado-Ekiti, SW Nigeria”, J. Afr. Earth Sci. 129 (2017),
p. 659-667.

[184] M. S. Akram, S. Farooq, M. Naeem, S. Ghazi, “Prediction of mechanical behaviour from mineralogical composition
of Sakesar limestone, Central Salt Range, Pakistan”, Bull. Eng. Geol. Environ. 76 (2017), p. 601-615.

[185] E. Ghasemi, H. Kalhori, R. Baghergour, S. Yagiz, “Model tree approach for predicting uniaxial compressive strength
and Young’s modulus of carbonate rocks”, Bull. Eng. Geol. Environ. 77 (2018), p. 331-343.

C. R. Mécanique, 2020, 348, n 1, 3-32


	1. Introduction
	1.1. Regression techniques
	1.2. Soft computing techniques
	1.3. Objectives of this paper

	2. Suggested parameters for predicting UCS values
	2.1. Description of collected data
	2.2. Suggested indirect parameters

	3. UCS values prediction based on random forest algorithm
	3.1. UCS values prediction model based on random forest algorithm
	3.2. Suggested input variables
	3.3. Verification of the predictive model by laboratory tests
	3.3.1. Ultrasonic pulse (P-wave) tests
	3.3.2. Schmidt hammer rebound tests
	3.3.3. Uniaxial compressive tests
	3.3.4. Laboratory test verification of the predictive models


	4. Discussion
	5. Conclusions
	5.1. Acknowledgments

	Compliance with ethical standards
	Conflict of interest

	Appendix
	References

