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Abstract. Anantharaman and Le Masson proved that any family of eigenbases of the adjacency operators of
a family of graphs is quantum ergodic (a form of delocalization) assuming the graphs satisfy conditions of
expansion and high girth. In this paper, we show that neither of these two conditions is sufficient by itself to
necessitate quantum ergodicity. We also show that having conditions of expansion and a specific relaxation of
the high girth constraint present in later papers on quantum ergodicity is not sufficient. We do so by proving
new properties of the Cartesian product of two graphs where one is infinite.
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1. Introduction

While classical integral systems often have periodic orbits in phase space, eigenstates of quan-
tized chaotic systems tend to be uniformly distributed (see [30]). This phenomenon is expressed
in the high energy limit through the concept of quantum ergodicity. Consider a compact Rie-
mannian manifold (M , g ) and a basis of eigenfunctions {ψ j } of the Laplace–Beltrami operator ∆
on M with eigenvalues {λ j }. We say {ψ j } is quantum ergodic if for every continuous test function
a : M →R,

lim
λ→+∞

1

N (λ)

∑
λ j ≤λ

∣∣∣∣〈ψ j , aψ j 〉−
∫

M
a dVol

∣∣∣∣2

= 0.

Here 〈ψ j , aψ j 〉 := ∫
M a(x)|ψ(x)|2 dVol(x) and N (λ) := |{λ j ≤λ}|. Shnirelman’s Theorem [18, 28, 29]

states that if the geodesic flow of M is ergodic with respect to the Liouville measure, then {ψ j } is
quantum ergodic.

Discrete graphs have provided a fruitful model for quantum chaos [25, 26], and Brooks and
Lindenstrauss initiated the study of conditions of localization and delocalization of eigenvectors
on large regular discrete graphs [14]. They proved that if small sets in a graph expand well
(for example the graph has high girth), all eigenvectors are delocalized in a quantifiable way
depending on this expansion.
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It is in this context that Anantharaman and Le Masson proved a result on discrete graphs
analogous to Shnirelman’s Theorem [5]. To introduce this result, we consider an infinite family
of d-regular graphs (Gn) = (Vn ,En) with d constant and |Vn | = n. We write An to denote the
adjacency operator of Gn . d = λ1 ≥ λ2 ≥ ·· · ≥ λn are the eigenvalues of An . We also require the
following definitions.

Definition 1. The family of graphs (Gn) is said to satisfy EXP if there is a constant ε> 0 such that
for each An , max{λ2, |λn |} ≤ (1−ε)d.

Definition 2 ([12]). Take µ to be a measure over isomorphism classes of rooted, potentially infinite
graphs. The family of graphs (Gn) is said to have Benjamini–Schramm limit µ if for each fixed
R > 0, as n →∞, the distribution of isomorphism classes of rooted balls of radius R in Gn around
a root selected from Vn uniformly at random converges weakly to the distribution of isomorphism
classes of balls of radius R around the roots of graphs according to µ. For a graph H, we say (Gn)
has unrooted Benjamini–Schramm limit H if the limiting measure µ is H with a root of H selected
uniformly at random.

Definition 3. The family of graphs (Gn) is said to satisfy BST if it has unrooted Benjamini–
Schramm limit Td , where Td is the infinite d-regular tree. Namely, for all fixed R > 0,

lim
n→∞

|{x ∈Vn ,ρ(x) < R}|
n

→ 0,

where ρ(x) is the injectivity radius of x (the largest r such that the ball of radius r around x is a
tree).

These properties together are enough to guarantee quantum ergodicity.

Theorem 4 ([5, Theorem 1]). Assume that (Gn) = (Vn ,En) is a family of graphs that satisfies EXP
and BST. Let an : Vn → R be series of functions such that

∑
v∈Vn an(v) = 0 and ‖an‖∞ ≤ 1. Then for

any series of orthonormal eigenbases (ψ(n)
1 , . . . ,ψ(n)

n ) of (An),

lim
n→∞

1

n

n∑
i=1

|〈ψ(n)
i , anψ

(n)
i 〉|2 = 0, (1)

where
〈ψ(n)

i , anψ
(n)
i 〉 = ∑

v∈Vn

an(v)|ψ(n)
i (v)|2.

A series of eigenvectors that satisfies (1) is called quantum ergodic. In fact, the theorem can be
generalized to more general operators an than given, but the above formulation is sufficient for
our purposes.

Anantharaman and Le Masson suggest that the EXP condition is analogous to the requirement
of ergodicity in Shnirelman’s Theorem. Therefore, it is natural to wonder whether EXP alone is
sufficient to necessitate quantum ergodicity, as no other assumptions are made in Shnirelman’s
Theorem. However, we show that this is not the case.

Theorem 5. There is an infinite family of graphs (G ′
n) satisfying EXP that have a family of or-

thonormal eigenbases of the adjacency operators (ψ(n)
1 , . . . ,ψ(n)

n ) that violates quantum ergodicity.
Specifically, there is a series of functions an : Vn → Rn , ‖an‖∞ ≤ 1,

∑
v∈Vn an(v) = 0 such that for

each n,
1

n

n∑
i=1

|〈ψ(n)
i , anψ

(n)
i 〉|2 = 1/2.

The family of graphs in Theorem 5 is (Gn äC4) for any family of graphs (Gn) that satisfies
EXP. Here G1 äG2 denotes the Cartesian product of graphs G1 and G2, and C4 is the cycle graph
of length 4. Intuitively, EXP measures expansion at global scales, whereas the Cartesian product
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Figure 1. C4 äC5 and a portion of T3 äC4. The Cartesian product G1 äG2 can be thought
of as replacing each vertex of G1 with a copy of G2. Note that G1 äG2

∼=G2 äG1.

creates a pattern on a local scale that causes localization of eigenvectors. The Cartesian product is
particularly useful because of the explicit formula of its eigenvectors based on the eigenvectors of
the two original graphs. Therefore, because C4 has an eigenbasis with localized eigenvectors, the
series of graphs (Gn äC4) all have many localized eigenvectors. In fact, C4 can be replaced with
any graph with an adjacency operator with localized eigenvectors. Moreover, (Gn äC4) satisfies
EXP because of the relationship between eigenvalues of the adjacency operator of the Cartesian
product with those of the adjacency operators of the original graphs. For the various properties
of the Cartesian product, see Section 2.3 of Cvetković, Rowlinson, and Simic [17].

Considering we cannot fully remove the requirement of BST, we then try to relax it. In order
to necessitate quantum ergodicity in Schrödinger operators [7] and quantum graphs [4]), along
with requirements similar to EXP and BST, an extra requirement is added that the imaginary part
of the entries of the Green’s function of the Benjamini Schramm limit is bounded for all z ∈ C+,
where C+ is the upper half of the complex plane. For the adjacency operator, this property is a
generalization of BST, as the Green’s function of the infinite tree is known to be have bounded
imaginary part for all z ∈C+ (see [1] for a proof). Therefore we asked whether we could relax BST
to a condition bounding the imaginary part of entries of the Green’s function of the Benjamini–
Schramm limit.

The first step is to calculate the Benjamini Schramm limit of (GnäX ). Of course, by Theorem 4,
(Gn äC4) cannot satisfy BST. In fact, the Cartesian product creates many cycles at every vertex.
We show that the Benjamini–Schramm limit commutes with the Cartesian product, as for any
graph X , the sequence of graphs (Gn ä X ) converges to the Cartesian product of the Benjamini–
Schramm limit of (Gn) with X . Therefore if our family of d-reguler graphs (Gn) satisfies BST, then
the Benjamini–Schramm limit of (Gn äC4) is Td äC4.

Examining the entries of the Green’s function in our example, we show that for an infinite
graph G1 and finite G2, the Green’s function of G1 äG2 follows the pattern of the spectrum
of the Cartesian product of finite graphs. Namely, we prove the following, which could be of
independent interest. Here G z

G denotes the Green’s function of G at z.

C. R. Mathématique — 2022, 360, 399-408
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Figure 2. A plot of the spectral density of T5äC4. It is the sum of the Kesten–McKay measure
shifted by the different eigenvalues of AC4 .

Theorem 6. Consider a (potentially infinite) graph G1 and a finite graph G2 with adjacency oper-
ators A1 and A2, respectively. Let ψ1, . . .ψk be an orthonormal eigenbasis of A2 with eigenvalues
λ1, . . . ,λk .

We have

G z
G1äG2

=
k∑

i=1
G

z−λi
G1

⊗ψiψ
T
i .

Therefore the entries of the Green’s function of Td äC4 can be written as a linear combination
of entries of Green’s functions on Td . As this latter quantity has bounded imaginary part every-
where, G z

TdäC4
also has bounded imaginary part. This means that by taking (Gn) to satisfy both

EXP and BST, the family of graphs (Gn äC4) satisfies EXP and has bounded imaginary part of
the Green’s function in the Benjamini–Schramm limit, but nevertheless by Theorem 5 it violates
quantum ergodicity. Therefore, in general, BST cannot be generalized to the requirement of hav-
ing bounded imaginary part of the Green’s function.

We end the paper with Section 4, which shows that BST by itself is not sufficient to necessitate
quantum ergodicity.

Theorem 7. There is an infinite family of graphs (Hn) satisfying BST that have a family of or-
thonormal eigenbases of the adjacency operators (ψ(n)

1 , . . . ,ψ(n)
n ) that violates quantum ergodicity.

Specifically, there is a series of functions an : Vn → Rn , ‖an‖∞ ≤ 1,
∑

v∈Vn an(v) = 0 such that for
each n,

1

n

n∑
i=1

|〈ψ(n)
i , anψ

(n)
i 〉|2 ≥ 1/d .

As EXP measures global expansion, BST measures local expansion, so our example creates
localization by creating patterns on a global scale. Our construction is similar to those of [2,21,27]
in that we take a set of high girth graphs and connect them in such a way that creates a geometric
phenomenon without destroying girth.
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1.1. Related work

Eigenvectors of random regular graphs. The shape of eigenvectors of random regular graphs has
received considerable attention. Bauerschmidt, Huang, and Yao and then Huang and Yao [11,23]
proved bounds on the entries of the Green’s function that hold with high probability. These
are sharp enough to in turn imply a polylog(n)/

p
n infinity norm bound on any normalized

eigenvector, as well as show quantum unique ergodicity, a notion of localization stronger than
quantum ergodicity. In another vein, Backhausz and Szegedy proved that the distribution of
entries of an eigenvector of a random regular graph must approximate a Gaussian distribution
by showing that the only typical eigenvector processes are Gaussian waves [10] (note that this
does not necessitate delocalization, as the distribution of entries of a localized vector is close to a
Gaussian of variance 0).

Other results in graph quantum ergodicity. For an overview of results before 2019, see [8].
Since the original proof of quantum ergodicity, Anantharaman [3] and Brooks, Le Masson, and
Lindenstrauss [13] have given alternate proofs of Theorem 4. Quantum ergodicity statements
have since then been found for a variety of graphical models, including quantum graphs [4, 24]
and the Anderson model on the Bethe lattice [6].

Other eigenvector delocalization results. Ganguly and Srivastava built upon the result of Brooks
and Lindenstrauss to achieve a relation between local expansion and delocalization that is
essentially tight [21]. Alon, Ganguly and Srivastava then further examined the example showing
tightness, increasing the lower bound on girth and showing it is a good spectral expander [2].

Nodal domains of random graphs. Another line of research has asked about the shape of the
subgraph created by taking an eigenvector f and deleting all edges (u, v) such that f (u) f (v) < 0.
The resulting connected components are called nodal domains. Dekel, Lee, and Linial proved
that for fixed p, an eigenvector of a G(n, p) random graph has almost all its vertices contained in
two large nodal domains w.h.p. [19]. Arora and Bhaskara then showed that for p ≥ n−1/20 there are
exactly 2 nodal domains [9]. Huang and Rudelson proved that these domains are approximately
the same size [22].

Green’s function of the Cartesian product. Chung and Yau, then Ellis [16, 20] proved that the
entries of the Green’s function of a Cartesian product can be expressed as a contour integral of a
function of Green’s functions on the two original graphs, assuming that both graphs are finite.

2. EXP is not sufficient for quantum ergodicity

For a graph G = (V ,E), we will use |G| to denote the number of vertices |V |. In refers to the identity
operator of dimension n. Unless otherwise specified, for a graph G , we will use the notation
G = (VG ,EG ) with adjacency operator AG . For u, v ∈V , we will write u ∼ v to signify (u, v) ∈ E .

Definition 8. Consider two graphs G1 = (V1,E1) and G2 = (V2,E2). The Cartesian product G1 äG2

of the graphs G1 and G2 is defined as follows. G1äG2 has vertex set V1×V2, and for (u1,u2), (v1, v2) ∈
V1 ×V2, (u1,u2) ∼ (v1, v2) if and only if either

(1) u1 ∼ v1 in G1 and u2 = v2 or
(2) u1 = v1 and u2 ∼ v2 in G2.

An equivalent characterization is that if G1 and G2 have adjacency operations A1 and A2

respectively, then G1 äG2 is the graph with adjacency operator A1 ⊗ I|G2|+ I|G1|⊗A2.

C. R. Mathématique — 2022, 360, 399-408
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Note that the Cartesian product is well defined for locally finite graphs (graphs where each
vertex has finite degree), even if the graphs have an infinite number of vertices. However, in this
section, we assume that all graphs are finite.

Given φi : Vi →R for i ∈ {1,2}, we define ψφ1,φ2 : V1 ×V2 →R to be

ψφ1,φ2 (u1,u2) :=φ1(u1) ·φ2(u2). (2)

The key property of Cartesian products we use is the following:

Fact 9. Ifφ1 is an eigenvector of A1 of eigenvalueλ1 andφ2 is an eigenvector of A2 with eigenvalue
λ2, then ψφ1,φ2 is an eigenvector of AG1äG2 of eigenvalue λ1 +λ2.

Take (Gn) as a family of d-regular graphs (Vn ,En) that satisfies EXP with a fixed parameter ε> 0
with adjacency operators (An). Let C4 denote the cycle graph of length 4. Gn äC4 is a d+2 regular
graph on 4n vertices.

Proposition 10. The family of graphs (Gn äC4) satisfies EXP but does not satisfy BST.

Proof. As the spectrum of AC4 is {2,0,0,−2}, by Fact 9, the adjacency operator of Gn äC4 satisfies
EXP with parameter min{dε,2}

d+2 , which is constant for constant d .
Given (u1,u2) ∈Vn ×VC4 , take (v1, v2) such that u1 ∼ v1 in Gn and u2 ∼ v2 in C4. This defines a

4−cycle in Gn äC4, given by

(u1,u2) ∼ (u1, v2) ∼ (v1, v2) ∼ (v1,u2) ∼ (u1,u2).

By the regularity of Gn and C4, such a vertex pair (v1, v2) will exist for any (u1,u2) (in fact, a total
of 2d such pairs will exist). Therefore, there is a cycle of length 4 starting at any given vertex, so if

R ≥ 2, then
|{(u1,u2)∈Vn×VC4 ,ρ(x)<R}|

4n = 1. This means Gn äC4 does not satisfy BST. �

Theorem 11 (Implies Theorem 5). Each graph in the family (Gn äC4) admits an eigendecompo-
sition that violates quantum ergodicity.

Proof. We order and label the four vertices of VC4 {1,2,3,4}. The localized eigenbasis of AC4 we
will use is given by the following table:

eigenvector eigenvalue( 1
2 , 1

2 , 1
2 , 1

2

)
2( 1p

2
,0,− 1p

2
,0

)
0(

0, 1p
2

,0,− 1p
2

)
0( 1

2 ,− 1
2 , 1

2 ,− 1
2

) −2

.

We define an : (Vn ×VC4 ) →R,

an(u1,u2) =
{

1 u2 ∈ {1,3}

−1 u2 ∈ {2,4}.

Because
∑

Vn×VC4
an(u1,u2) = 0 and ‖an‖∞ = 1, an satisfies the conditions of Theorem 4.

Define ψφ,i as the eigenvector from (2) corresponding to the normalized eigenvector φ of An

and the i th eigenvector of C4 given in the table. By Fact 9, for any u ∈Vn ,

ψφ,2(u,2) =ψφ,2(u,4) =ψφ,3(u,1) =ψφ,3(u,3) = 0.

Therefore

|〈ψφ,2, a4nψφ,2〉| = |〈ψφ,3, a4nψφ,3〉| = 1

and

|〈ψφ,1, a4nψφ,1〉| = |〈ψφ,4, a4nψφ,4〉| = 0.

C. R. Mathématique — 2022, 360, 399-408
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For any n,

1

4n

∑
φ,i

|〈ψφ,i , a4nψφ,i 〉|2 = 1

2
,

meaning this family of eigenbases is not quantum ergodic. �

3. Green’s function on the infinite Cartesian product

Our goal in this section is to show the Benjamini–Schramm limit of (Gn äC4) from Section 2 has
bounded imaginary part of the Green’s function under the added assumption that (Gn) satisfies
BST. Therefore the requirement of BST cannot be generalized to this looser requirement on
the Benjamini–Schramm limit. This relies on the Cartesian product commuting with both the
Benjamini Schramm limit and, in a sense, with the Green’s function itself.

Take µ to be a measure over isomorphism classes of rooted graphs, and X to be a finite graph.
The measure µäX is defined over the same space as µ, such that for any set Γ of isomorphism
classes,

µäX (Γ) = 1

|X |
∑

v∈VX

µ
({

(G ,o) : ∃ (H ,o′) ∈ Γ s.t. (G äX , (o, v)) ∼= (H ,o′)
})

.

Proposition 12. If the Benjamini–Schramm limit of (Gn) isµ, then the Benjamini–Schramm limit
of (Gn äX ) is µäX .

Proof. Because (Gn) converges to µ, ∀ ε > 0, ∃ N such that for n > N , the distribution of 1/ε
rooted balls in Gn is within ε in any metrization of the weak topology of that of µ. We denote by
Br (G ,o) the ball of radius r around the root o in G . We have that

B1/ε(Gn äX , (o, v)) ∼= B1/ε(B1/ε(Gn ,o)äX , (o, v)).

This is to say that the distribution over 1/ε neighborhoods in Gn ä X only depends on Gn up to
vertices of distance 1/ε. Therefore the distribution of 1/ε balls with root (u, v) in Gn äX obtained
by sampling u at random is within ε of the measureµäX conditioned on the root being of the form
(·, v) for specific v ∈VX . Sampling uniformly over v ∈VX and sending ε→ 0 gives the result. �

Consider a graph G with adjacency operator A and z ∈ C+. The Green’s function G z
G is the

unique operator such that (A − z)G z
G = I|G|.

Theorem 13 (Restatement of Theorem 6). Take any (potentially infinite) graph G1 and a finite
graph G2. Let ψ1, . . .ψk be an orthonormal eigenbasis of A2 with eigenvalues λ1, . . . ,λk .

We have

G z
G1äG2

=
k∑

i=1
G

z−λi
G1

⊗ψiψ
T
i .

Originally I wrote a proof for when G1 = Td which calculated entries of the Green’s function
recursively, similar to the proof of the Kesten–McKay measure using recursion (see for example
Section 3 of [1]). The proof below was then sent to me by Mostafa Sabri, which generalizes to any
G1 and is less computationally intensive.

C. R. Mathématique — 2022, 360, 399-408
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Proof. The adjacency operator of G1 äG2 is A1 ⊗ I|G2| + I|G1| ⊗A2, where A1 and A2 are the
adjacency operators of G1 and G2 respectively.

(A1 ⊗ I|G2|+ I|G1|⊗A2 − z)(G z−λi
G1

⊗ψiψ
T
i )

=A1G
z−λi
G1

⊗ψiψ
T
i +G

z−λi
G1

⊗A2ψiψ
T
i − z(G z−λi

G1
⊗ψiψ

T
i )

=A1G
z−λi
G1

⊗ψiψ
T
i +λi (G z−λi

G1
⊗ψiψ

T
i )− z(G z−λi

G1
⊗ψiψ

T
i )

= (A1 +λi − z)G z−λi
G1

⊗ψiψ
T
i

= I|G1|⊗ψiψ
T
i .

Therefore
k∑

i=1
(A1 ⊗ I|G2|+ I|G1|⊗A2 − z)(G z−λi

G1
⊗ψiψ

T
i ) =

k∑
i=1

I|G1|⊗ψiψ
T
i = I|G1äG2|

as desired. �

Theorem 14. EXP and having bounded imaginary part in entries of the Green’s function of the
Benjamini–Schramm limit do not necessarily imply quantum ergodicity.

Proof. Take the family (Gn) to satisfy EXP and BST. (Gn äC4) satisfies EXP and, by Proposition 12,
has Benjamini–Schramm limit Td äC4. The entries of G z

Td
have bounded imaginary part for

z ∈C+, so by Theorem 6 so does G z
TdäC , as ψiψ

T
i has norm 1. However, by Theorem 11, (Gn äC4)

has a family of eigenbases that violates quantum ergodicity. �

4. BST is not sufficient for quantum ergodicity

Consider any family of d-regular graphs (Fn) for d even and d ≥ 8 such that (Fn) satisfies BST and
|Fn | = n. We construct a family of graphs (Hn) as follows. Delete an arbitrary edge of Fn , and call
this new graph F ′

n . Create d/2 copies of F ′
n . Then add a vertex vn , and add an edge from vn to

each of the d vertices of degree d −1, two for each copy of F ′
n . Call this graph Hn = (VHn ,EHn ).

Proposition 15. (Hn) satisfies BST but not EXP.

Proof. Take a vertex x ∈ VHn \vn . To differentiate between the injectivity radii of Hn and Fn , we
will write ρHn (x) and ρFn (x). The former refers to the injectivity radius of x in Hn , whereas the
latter is the injectivity radius of the vertex corresponding to x in Fn . We claim that ρHn (x) ≥
ρFn (x). To see this, take a cycle through x in Hn . If it intersects vn , then it must intersect both
neighbors of vn in the copy of Fn that contains x. Therefore the length of such a cycle is at least
2ρFn (x)+2. If a cycle does not intersect vn , it remains in Fn and has length at least 2ρFn (x)+1.
Putting these together, we have ρHn (x) ≥ ρFn (x). Therefore, (Hn) satisfies BST.

By Cheeger’s inequality (see for example [15]), because there are only 2 edges from one copy
of F ′

n to the rest of the graph, λ2 ≥ (1−4/n)d , meaning (Hn) does not satisfy EXP. �

Theorem 16 (Implies Theorem 7). The family of graphs (Hn) has an orthonormal eigenbasis
which violates quantum ergodicity.

Proof. Enumerate the copies of F ′
n in Hn F ′

n,1, . . . ,F ′
n,d/2. For any eigenvector φ of AF ′

n
, a normal-

ized eigenvector χ of AHn of the same eigenvalue is given by

χ(u) =


φ(u)/

p
2 u ∈VF ′

n,1

−φ(u)/
p

2 u ∈VF ′
n,2

0 otherwise.

C. R. Mathématique — 2022, 360, 399-408
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Figure 3. An example of a graph Hn from Section 4.

Call X the set of eigenvectors of this type. We then set

an(u) =


1 u ∈VF ′

n,1
,VF ′

n,2

−1 u ∈VF ′
n,3

,VF ′
n,4

0 otherwise.

an satisfies the conditions of a test function for quantum ergodicity. If we take Λ to be an
eigenbasis of AHn that contains X ,

1
d
2 n +1

∑
ψ∈Λ

|〈ψ, anψ〉|2 ≥ 1
d
2 n +1

∑
χ∈X

|〈χ, anχ〉|2 = 1
d
2 n +1

∑
χ∈X

1 = n
d
2 n +1

≥ 1

d

violating quantum ergodicity. �
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