I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Mohamed Saïdi

On sections of arithmetic fundamental groups of open \boldsymbol{p}-adic annuli
Volume 360 (2022), p. 291-296
https://doi.org/10.5802/crmath.303
© Académie des sciences, Paris and the authors, 2022.
Some rights reserved.
(c) EV This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

On sections of arithmetic fundamental groups of open p-adic annuli

Mohamed Saïdi ${ }^{a}$
${ }^{a}$ College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Harrison Building, North Park Road, EXETER EX4 4QF, United Kingdom
E-mail: M.Saidi@exeter.ac.uk

Abstract

We show the non-existence of sections of arithmetic fundamental groups of open p-adic annuli of small radii. This implies the non-existence of sections of arithmetic fundamental groups of formal boundaries of formal germs of p-adic curves.

Manuscript received 20th March 2021, accepted 25th November 2021.

1. Introduction/Statement of the Main Result

Let $p \geq 2$ be a prime integer, k a p-adic local field (i.e., k / \mathbb{Q}_{p} is a finite extension), with ring of integers \mathscr{O}_{k}, uniformiser π, and residue field F. Thus, F is a finite field of characteristic p.

Let $X \rightarrow \operatorname{Spec} \mathscr{O}_{k}$ be a flat, proper, relative \mathscr{O}_{k}-curve, with X normal, and $X_{k} \stackrel{\text { def }}{=} X \times{ }_{\operatorname{Spec} \mathscr{O}_{k}} \operatorname{Spec} k$ geometrically connected. Assume $X(F) \neq \varnothing$. Let $x \in X^{\mathrm{cl}}(F)$ be a closed point, $\mathscr{O}_{X, x}$ the local ring at $x, \widehat{\mathscr{O}}_{X, x}$ its completion, and $E \stackrel{\text { def }}{=} \widehat{\mathscr{O}}_{X, x} \otimes_{\mathscr{O}_{k}} k=\widehat{\mathscr{O}}_{X, x}\left[\frac{1}{\pi}\right]$. Write $\mathscr{X} \stackrel{\text { def }}{=} \operatorname{Spec} E$, which we assume to be geometrically connected. We shall refer to \mathscr{X} as the formal germ of X at x.

Let η be a geometric point of \mathscr{X} with values in its generic point. Thus, η determines an algebraic closure \bar{k} of k, and a geometric point $\bar{\eta}$ of $\mathscr{X}_{\bar{k}} \stackrel{\text { def }}{=} \mathscr{X} \times{ }_{\text {Spec } k}$ Spec \bar{k}. There exists a canonical exact sequence of profinite groups (cf. [3, Exposé IX, Théorème 6.1])

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(\mathscr{X}_{\bar{k}}, \bar{\eta}\right) \longrightarrow \pi_{1}(\mathscr{X}, \eta) \longrightarrow G_{k} \longrightarrow 1 . \tag{1}
\end{equation*}
$$

Here, $\pi_{1}(\mathscr{X}, \eta)$ denotes the arithmetic étale fundamental group of \mathscr{X} with base point $\eta, \pi_{1}\left(\mathscr{X}_{\bar{k}}, \bar{\eta}\right)$ the étale fundamental group of $\mathscr{X}_{\bar{k}}$ with base point $\bar{\eta}$, and $G_{k} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$ the absolute Galois group of k.

The sequence (1) splits if $\mathscr{X}(k) \neq \varnothing$. This is for example the case if the morphism $X \rightarrow \operatorname{Spec} \mathscr{O}_{k}$ is smooth at x. If $\mathscr{X}(k)=\varnothing$; for instance if X is stable and regular, and x is an ordinary F-rational double point of $X_{F} \stackrel{\text { def }}{=} X \times_{\text {Spec } \mathscr{\theta}_{k}} F$, the existence of sections $s: G_{k} \rightarrow \pi_{1}(\mathscr{X}, \eta)$ of the projection $\pi_{1}(\mathscr{X}, \eta) \rightarrow G_{k}$ would provide examples of sections of the projection $\pi_{1}\left(X_{k}, \eta\right) \rightarrow G_{k}$ which are non-geometric (η induces a geometric point of X_{k}, denoted also η, via the morphism $\mathscr{X}_{k} \rightarrow X_{k}$), i.e., which do not arise from rational points. These in turn will provide counter-examples to
the p-adic version of the Grothendieck anabelian section conjecture. This prompts the following question.

Question 1. With the above notations, assume $\mathscr{X}(k)=\varnothing$. Does the exact sequence (1) split?
In this note we investigate the case where \mathscr{X} is a p-adic open annulus. Let

$$
A \stackrel{\text { def }}{=} \mathscr{O}_{k} \llbracket S \rrbracket, \quad B \stackrel{\text { def }}{=} A \otimes_{\mathscr{O}_{k}} k=A\left[\frac{1}{\pi}\right],
$$

$D \stackrel{\text { def }}{=} \operatorname{Spf} A$ is the formal standard open disc, and $\mathscr{D} \stackrel{\text { def }}{=} D_{k}=\operatorname{Spec} B$ its "generic fibre" which is the standard open disc centred at the point " $S=0$ ". Let $\mathbb{A}_{k}^{1}=\operatorname{Spec} k[S], Y_{k}=\mathbb{P}_{k}^{1}$ its smooth compactification with function field $k(S)$, and $Y=\mathbb{P}_{\mathscr{O}_{k}}^{1}$ the smooth compactification of $\mathrm{A}_{\mathscr{O}_{k}}^{1}=$ $\operatorname{Spec} \mathscr{O}_{k}[S]$. We shall identify A with the completion of the local ring of Y at the closed point " $S=0$ ". We have a natural morphism $\mathscr{D} \rightarrow \mathbb{P}_{k}^{1}$, which induces an identification between the set of closed points of \mathscr{D} and the set

$$
\left\{x \in \mathbb{P}_{k}^{1}:|S(x)|<1\right\} .
$$

For an integer $n \geq 1$, let

$$
A_{n} \stackrel{\text { def }}{=} \frac{\mathscr{O}_{k} \llbracket S, T \rrbracket}{\left(S^{n} T-\pi\right)}, \quad B_{n} \stackrel{\text { def }}{=} A_{n} \otimes_{\mathscr{O}_{k}} k, \quad \text { and } \quad \mathscr{C}_{n} \stackrel{\text { def }}{=} \operatorname{Spec} B_{n} .
$$

The natural embedding $\mathscr{C}_{n} \hookrightarrow \mathscr{D}$ induces an identification between the set of closed points of \mathscr{C}_{n} and the open annulus

$$
\left\{x \in \mathscr{D}:|\pi|^{\frac{1}{n}}<|S(x)|<1\right\} .
$$

Further, let $P \stackrel{\text { def }}{=} A_{(\pi)}$ be the localisation of A at the ideal (π), and \widehat{P} the completion of P, which is a complete discrete valuation ring isomorphic to

$$
\mathscr{O}_{k} \llbracket S \rrbracket\left\{S^{-1}\right\} \stackrel{\text { def }}{=}\left\{\sum_{i=-\infty}^{\infty} a_{i} S^{i}: a_{i} \in \mathscr{O}_{k}, \underset{i \rightarrow-\infty}{\longrightarrow} \lim \left|a_{i}\right|=0\right\},
$$

where $|\cdot|$ is a normalised absolute value of $\mathscr{O}_{k}($ cf. $[2, \S 2,5])$. Let $L \stackrel{\text { def }}{=} \operatorname{Fr}(\widehat{P})$ be the fraction field of \widehat{P}, and $\mathscr{C}_{\infty} \stackrel{\text { def }}{=}$ Spec L. We shall refer to \mathscr{C}_{∞} as a formal boundary of the formal germs \mathscr{D}, and \mathscr{C}_{i} for $i \geq 1$. We have natural scheme morphisms

$$
\mathscr{C}_{\infty} \longrightarrow \cdots \longrightarrow \mathscr{C}_{n+1} \longrightarrow \mathscr{C}_{n} \longrightarrow \cdots \longrightarrow \mathscr{C}_{1} \longrightarrow \mathscr{D} \longrightarrow \mathbb{P}_{k}^{1}
$$

Let η be a geometric point of \mathscr{C}_{∞}, which induces a geometric point (denoted also η) of \mathscr{C}_{n} for $n \geq 1$. For $i \in \mathbb{N} \cup\{\infty\}$, we have an exact sequence of arithmetic fundamental groups

$$
\begin{equation*}
1 \longrightarrow \pi_{1}\left(\mathscr{C}_{i, \bar{k}}, \bar{\eta}\right) \longrightarrow \pi_{1}\left(\mathscr{C}_{i}, \eta\right) \longrightarrow G_{k} \longrightarrow 1 \tag{2}
\end{equation*}
$$

where $\pi_{1}\left(\mathscr{C}_{i}, \eta\right)$ denotes the arithmetic étale fundamental group of \mathscr{C}_{i} with base point η, $\pi_{1}\left(\mathscr{C}_{i, \bar{k}}, \bar{\eta}\right)$ the étale fundamental group of $\mathscr{C}_{i, \bar{k}} \stackrel{\text { def }}{=} C_{i} \times_{\text {Speck }} \operatorname{Spec} \bar{k}$ with base point $\bar{\eta}$; which is induced by η, and $G_{k} \stackrel{\text { def }}{=} \operatorname{Gal}(\bar{k} / k)$ the absolute Galois group of k. Here \bar{k} is the algebraic closure of k determined by η.

Our main result in this note is the following.
Theorem 2. We use notations as above. There exists an integer $N \geq 1$, such that for every integer $n \geq N$, the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ doesn't split.

The author ignores, for the time being, if the projection $\pi_{1}\left(\mathscr{C}_{1}, \eta\right) \rightarrow G_{k}$ splits or not.
As a corollary of Theorem 2, we obtain the following.
Theorem 3. The projection $\pi_{1}\left(\mathscr{C}_{\infty}, \eta\right) \rightarrow G_{k}$ doesn't split.

One of the consequences of Theorems 2 and 3 is that one can not produce examples of sections of hyperbolic curves over p-adic local fields, which arise from sections of arithmetic fundamental groups of boundaries of formal fibres, or open annuli with small radii. Those sections would be non-geometric, hence would provide counter-examples to the p-adic version of the Grothendieck anabelian section conjecture.

Finally we observe the following. For $i \in \mathbb{N} \cup\{\infty\}$, let $\pi_{1}\left(\mathscr{C}_{i, \bar{k}}, \bar{\eta}\right)^{\text {ab }}$ be the maximal abelian quotient of $\pi_{1}\left(\mathscr{C}_{i, \bar{k}}, \bar{\eta}\right)$, and consider the push-out diagram

Thus, $\pi_{1}\left(\mathscr{C}_{i}, \eta\right)^{(\mathrm{ab})}$ is the geometrically abelian quotient of $\pi_{1}\left(\mathscr{C}_{i}, \eta\right)$.
Proposition 4. The projection $\pi_{1}\left(\mathscr{C}_{i}, \eta\right)^{(\mathrm{ab})} \rightarrow G_{k}$ splits, $\forall i \in \mathbb{N}$.
The author ignores, for the time being, if the projection $\pi_{1}\left(\mathscr{C}_{\infty}, \eta\right)^{(\mathrm{ab})} \rightarrow G_{k}$ splits or not.

2. Proof of Theorem 2

In this section we shall prove Theorem 2. We use the notations used in Section 1. We argue by contradiction, and assume that the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ splits, $\forall n \geq 1$.

Proposition 5. There exists a relative curve $X \rightarrow \operatorname{Spec} \mathscr{O}_{k}$ with the following properties.
(i) The morphism $X \rightarrow \operatorname{Spec} \mathscr{O}_{k}$ is flat, proper, stable, and $X_{k} \stackrel{\text { def }}{=} X \times \operatorname{Spec} \mathscr{O}_{k}$ Spec k is geometrically connected.
(ii) X is regular.
(iii) The set of singular points $X_{F}^{\text {sing }}$ of the special fibre $X_{F} \stackrel{\text { def }}{=} X \times \times_{\operatorname{Spec} \mathscr{\theta}_{k}}$ Spec F of X consists of F-rational ordinary double points, $U \stackrel{\text { def }}{=} X_{F} \backslash X_{F}^{\text {sing }}$ is F-smooth, and $U(F)=\varnothing$ holds.
(iv) $X(k)=\varnothing$ holds.

Proof. First, assume $p \neq 2$. Let $\widetilde{C} \stackrel{\text { def }}{=} \mathbb{P}_{F}^{1}$ with function field $k(\widetilde{C})$. Thus, $\operatorname{Card}(\widetilde{C}(F))=\operatorname{Card} F+1$ is even. Arrange the set $\widetilde{C}(F)$ in pairs of F-rational points: $\widetilde{C}(F)=\left\{\left(x_{i}, y_{i}\right)\right\}_{1 \leq i \leq \frac{\text { Card }}{2}}^{2}$. One can identify in \widetilde{C} the points x_{i} and $y_{i} ; 1 \leq i \leq \frac{\operatorname{Card} F+1}{2}$, to construct a stable proper F-curve C which is geometrically connected and geometrically reduced, with normalisation $\widetilde{C} \rightarrow C$. Moreover, the set of singular points $C^{\text {sing }}=\left\{c_{i}\right\}_{1 \leq i \leq \frac{C \operatorname{Card} F+1}{2}}$ consists of F-rational ordinary double points, and the pre-image of c_{i} in \widetilde{C} consists of the two F-rational points $\left\{x_{i}, y_{i}\right\}$. In particular, $C(F)=C^{\text {sing }}=$ $\left\{c_{i}\right\}_{1 \leq i \leq \frac{\operatorname{Card} F+1}{2}}$. More precisely, for $1 \leq i \leq \frac{\operatorname{Card} F+1}{2}$, let $\widetilde{\mathscr{O}}_{i} \xlongequal{\text { def }} \mathscr{O}_{\widetilde{C}, x_{i}} \cap \mathscr{O}_{\widetilde{C}, y_{i}} \subset k(\widetilde{C}), \mathscr{N}_{x_{i}} \stackrel{\text { def }}{=} \mathfrak{m}_{x_{i}} \cap \widetilde{\mathscr{O}}_{i}$, and $\mathscr{N}_{y_{i}}$ def $\mathfrak{m}_{y_{i}} \cap \widetilde{\mathscr{O}}_{i}$, where $\mathfrak{m}_{x_{i}}\left(\right.$ resp. $\mathfrak{m}_{y_{i}}$) is the maximal ideal of $\mathscr{O}_{\widetilde{C}, x_{i}}$ (resp. $\mathscr{O}_{\widetilde{C}, y_{i}}$). Define $\mathscr{O}_{c_{i}}$ def $F+\mathscr{N}_{x_{i}} \mathscr{N}_{y_{i}} \subset \widetilde{\mathscr{O}}_{i}$. Then $\mathscr{O}_{c_{i}}$ is a local ring (with maximal ideal $\mathscr{N}_{x_{i}} \mathscr{N}_{y_{i}}$, and residue field F) whose integral closure is $\mathscr{O}_{c_{i}}$ (cf. [1, Proposition 3.1, Theorem 3.4, and the references therein] for the properties of $\mathscr{O}_{c_{i}}$, as well as the existence of C with the required properties).

In case $p=2$. Consider the affine F-curve $\operatorname{Spec}\left(\frac{F[s, t]}{(s t)}\right)$, and \widetilde{C} its smooth compactification. Thus, \widetilde{C} consists of two F-smooth irreducible components $\widetilde{C}_{1}=\mathbb{P}_{F}^{1}$, and $\widetilde{C}_{2}=\mathbb{P}_{F}^{1}$, which intersect at the F-rational ordinary double point $c=(s, t) \in \operatorname{Spec}\left(\frac{F[s, t]}{(s t)}\right)$. On each irreducible component \widetilde{C}_{i} of $\widetilde{C} ; 1 \leq i \leq 2$, the set of F-rational points of $\widetilde{C}_{i} \backslash\{c\}$ is non-empty and comes into pairs of rational points $\left\{\left(x_{i, j}, y_{i, j}\right)\right\}_{1 \leq j \leq \frac{\operatorname{Card} F}{2}}$. As above we can identify each of those pairs of F-rational points $\left(x_{i, j}, y_{i, j}\right)$ into an F-rational ordinary double point $c_{i, j}$ to construct a reducible and geometrically connected stable curve F-curve C such that the set of singular points $C^{\text {sing }}$ consists of F-rational
ordinary double points, a double point $c_{i, j}$ lies on a unique irreducible component of C, and $C^{\text {sing }}=C(F)$ (the local ring at c_{i} is defined as above; the case $p \neq 2$. See [7,§4], for a discussion of this procedure and the existence of such a curve C in the case of reducible curves).

Now the stable F-curve C can be deformed to a semi-stable \mathscr{O}_{k}-curve $X \rightarrow \operatorname{Spec} \mathscr{O}_{k}$ with special fibre $X_{F}=C$ satisfying (i) and (ii) (cf. [9, Proposition 7.10, Corollary 7.11 and its proof]). By our construction (iii) holds also. If $x \in X(k)$, then X specialises in a point $\bar{x} \in C(F)$ which is a regular point of C and lies on a unique irreducible component of C (cf. [5, Corollary 9.1.32]). Thus, (iv) follows from (iii).

Let $X \rightarrow \operatorname{Spec} \mathscr{O}_{K}$ be a regular, proper, flat, and stable \mathscr{O}_{k}-curve as in Proposition 5. Let $y \in X_{F}(F)$ be an F-rational point, which is an ordinary double point and a regular point of X (cf. Proposition 5 (ii) and (iii)). We fix an isomorphism $\rho: \widehat{\mathscr{O}}_{X, y} \underset{\rightarrow}{ } R \llbracket S, T \rrbracket /(S T-\pi)$, and identify $\mathscr{X} \stackrel{\text { def }}{=} \operatorname{Spec}\left(\widehat{\mathscr{O}}_{X, y} \otimes_{\mathscr{O}_{k}} k\right)$ with \mathscr{C}_{1} via the isomorphism $\rho_{k}: \widehat{\mathscr{O}}_{X, y} \otimes_{\mathscr{C}_{k}} k \sim \frac{R[S, T]}{(S T-\pi)} \otimes_{\mathscr{C}_{k}} k$ induced by ρ. Thus, we have scheme morphisms

$$
\mathscr{C}_{\infty} \longrightarrow \cdots \longrightarrow \mathscr{C}_{n+1} \longrightarrow \mathscr{C}_{n} \longrightarrow \cdots \longrightarrow \mathscr{C}_{1} \longrightarrow X_{k}
$$

For $n \geq 1$, write

$$
\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right) \stackrel{\text { def }}{=} \underset{S_{n} \subset X_{k} \backslash \mathscr{C}_{n}}{\lim } \pi_{1}\left(X_{k} \backslash S_{n}, \eta\right)
$$

where the projective limit is over all finite sets of closed points $S_{n} \subset X_{k} \backslash \mathscr{C}_{n}$, and $\pi_{1}\left(X_{k} \backslash S_{n}, \eta\right)$ is the arithmetic fundamental group of the affine curve $X_{k} \backslash S_{n}$ with base point η. (Here, we identify the set of closed points of $\mathscr{C}_{n} ; n \geq 1$, with a subset of the set of closed points of X_{k} which specialise in y.) There is a natural projection $\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right) \rightarrow G_{k}$, and we have a commutative diagram

where the left vertical map is induced by the morphism $\mathscr{C}_{n} \rightarrow X_{k}$.
Further, we have a natural map

$$
{\underset{n \geq 1}{\lim } \pi_{1}\left(\mathscr{C}_{n}, \eta\right) \longrightarrow \overleftarrow{n \geq 1}_{\lim }^{n} \pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right), ~, ~}_{\text {, }}
$$

and $\lim _{n \geq 1} \pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right)$ is naturally identified with the absolute Galois group $G_{k(X)} \stackrel{\text { def }}{=}$ $\operatorname{Gal}\left(k_{(X)^{\text {sep }}}^{n>k} /(X)\right)$, where $k(X)^{\text {sep }}$ is the separable closure of the function field $k(X)$ of X determined by the geometric point η.
Lemma 6. The projection $G_{k(X)} \rightarrow G_{k}$ splits.
Proof. First, our assumption that the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ splits, implies that the projection $\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right) \rightarrow G_{k}$ splits, $\forall n \geq 1$ (cf. diagram (4)).

Let $\left(H_{i}\right)_{i \in I}$ be a projective system of quotients $G_{k(X)} \rightarrow H_{i}$, where H_{i} sits in an exact sequence $1 \rightarrow F_{i} \rightarrow H_{i} \rightarrow G_{k} \rightarrow 1$ with F_{i} finite, and $G_{k(X)}=\lim _{i \in I} H_{i}$. [More precisely, write $G_{k(X)}$ as a projective limit of finite groups $\left\{\widetilde{H}_{i}\right\}_{i \in I}$. Then \widetilde{H}_{i} fits in an exact sequence $1 \rightarrow F_{i} \rightarrow \widetilde{H}_{i} \rightarrow G_{i} \rightarrow 1$, where G_{i} is a quotient of G_{k}, and F_{i} a quotient of $\operatorname{Gal}\left(k(X)^{\text {sep } / k(X) \bar{k}) \text {. Let } 1 \rightarrow F_{i} \rightarrow H_{i} \rightarrow G_{k} \rightarrow 1}\right.$ be the pull-back of the group extension $1 \rightarrow F_{i} \rightarrow \widetilde{H}_{i} \rightarrow G_{i} \rightarrow 1$ by $G_{k} \rightarrow G_{i}$. Then $G_{k(X)}=$ $\left.\lim _{i \in I} H_{i}\right]$. The set $\operatorname{Sect}\left(G_{k}, G_{k(X)}\right)$ of group-theoretic sections of the projection $G_{k(X)} \rightarrow G_{k}$ is naturally identified with the projective limit $\varliminf_{i \in I} \operatorname{Sect}\left(G_{k}, H_{i}\right)$ of the sets $\operatorname{Sect}\left(G_{k}, H_{i}\right)$ of grouptheoretic sections of the projection $H_{i} \rightarrow G_{k}$. For each $i \in I$, the set $\operatorname{Sect}\left(G_{k}, H_{i}\right)$ is non-empty. Indeed, H_{i} (being a quotient of $\left.G_{k(X)}\right)$ is a quotient of $\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right)$ for some $n \geq 1$, this quotient $\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right) \rightarrow H_{i}$ commutes with the projections onto G_{k}, and we know the projection
$\pi_{1}\left(X_{k} \backslash \mathscr{S}_{n}, \eta\right) \rightarrow G_{k}$ splits. Hence the projection $H_{i} \rightarrow G_{k}$ splits. Moreover, the set $\operatorname{Sect}\left(G_{k}, H_{i}\right)$ is, up to conjugation by the elements of F_{i}, a torsor under the group $H^{1}\left(G_{k}, F_{i}\right)$ which is finite since k is a p-adic local field (cf. [6, (7.1.8) Theorem (iii)]). Thus, $\operatorname{Sect}\left(G_{k}, H_{i}\right)$ is a nonempty finite set. Hence the set $\operatorname{Sect}\left(G_{k}, G_{k(X)}\right)$ is nonempty being the projective limit of nonempty finite sets. This finishes the proof of Lemma 6. (See also [8, the proof of Proposition 1.5] for similar arguments in a slightly different context.)

Let $s: G_{k} \rightarrow G_{k(X)}$ be a section of the projection $G_{k(X)} \rightarrow G_{k}$ (cf. Lemma 6).
Lemma 7. The section s is geometric, i.e., $s\left(G_{k}\right) \subset D_{x}$, where $D_{x} \subset G_{k(X)}$ is a decomposition group associated to a (unique) rational point $x \in X(k)$. In particular, $X(k) \neq \varnothing$.

Proof. This follows from [4, Proposition 2.4 (2)].
Now the conclusion of Lemma 7 that $X(k) \neq \varnothing$ contradicts the assertion (iv) in Proposition 5 that $X(k)=\varnothing$. This is a contradiction. Thus, our assumption that the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ splits, $\forall n \geq 1$, can not hold. Let $N \geq 1$ be such that the projection $\pi_{1}\left(\mathscr{C}_{N}, \eta\right) \rightarrow G_{k}$ doesn't splits. Then the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ doesn't splits, $\forall n \geq N$ as required. Indeed, this follows from the fact that for $n \geq N$ we have a natural homomorphism $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow \pi_{1}\left(\mathscr{C}_{N}, \eta\right)$ which commutes with the projections onto G_{k}. Hence if the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ splits then the projection $\pi_{1}\left(\mathscr{C}_{N}, \eta\right) \rightarrow G_{k}$.

This finishes the proof of Theorem 2.

3. Proof of Theorem 3

Next, we explain how Theorem 3 can be derived from Theorem 2 . We have, $\forall n \geq 1$, a commutative diagram

where the horizontal maps are the natural projections, and the left vertical map is induced by the morphism $\mathscr{C}_{\infty} \rightarrow \mathscr{C}_{n}$.

Now assume that the projection $\pi_{1}\left(\mathscr{C}_{\infty}, \eta\right) \rightarrow G_{k}$ splits. Then the projection $\pi_{1}\left(\mathscr{C}_{n}, \eta\right) \rightarrow G_{k}$ splits, $\forall n \geq 1$, by the above diagram. But this contradicts Theorem 2.

This finishes the proof of Theorem 3.

4. Proof of Proposition 4

Let $n \geq 1$ be an integer, and ℓ_{1}, ℓ_{2}, distinct prime integers such that $\ell_{1} \geq 2 n$, and $\ell_{2} \geq 2 n$. Let \mathscr{O}_{1}, and \mathscr{O}_{2}, be totally ramified extensions of \mathscr{O}_{k} of degree ℓ_{1}, and ℓ_{2}, with fraction fields $L_{1}=\operatorname{Fr}\left(\mathscr{O}_{1}\right)$, and $L_{2}=\operatorname{Fr}\left(\mathscr{O}_{2}\right)$; respectively. Thus, the extensions L_{1} / k and L_{2} / k, are disjoint and $\mathscr{C}_{n}\left(L_{i}\right) \neq \varnothing$, for $i \in\{1,2\}$. A restriction-corestriction argument shows that the class $\left[\pi_{1}\left(\mathscr{C}_{n}, \eta\right)^{(\mathrm{ab})}\right]$ of the group extension $\pi_{1}\left(\mathscr{C}_{n}, \eta\right)^{(\mathrm{ab})}$ in $H^{2}\left(G_{k}, \pi_{1}\left(\mathscr{C}_{n, \bar{k}}, \bar{\eta}\right)^{\mathrm{ab}}\right)$ is trivial. Thus the group extension $\pi_{1}\left(\mathscr{C}_{n}, \eta\right)^{(\mathrm{ab})}$ splits.

This finishes the proof of Proposition 4.

References

[1] Y. Aubry, A. Iezzi, "On the Maximum Number of Rational Points on Singular Curves over Finite Fields", Mosc. Math. J. 15 (2015), no. 4, p. 615-627.
[2] N. Bourbaki, Eléments de mathématique. Algèbre commutative. Chapitre 9: Anneaux locaux noethériens complets, Masson, 1983.
[3] A. Grothendieck (ed.), Revêtements étales et groupe fondamental, Lecture Notes in Mathematics, vol. 224, Springer, 1971.
[4] J. Koenigsmann, "On the 'Section Conjecture' in anabelian geometry", J. Reine Angew. Math. 588 (2005), p. 221-235.
[5] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, 2002.
[6] J. Neukirch, A. Schmidt, K. Wingberg, "Cohomology of number fields", 2000.
[7] M. Rosenlicht, "Equivalence relations on algebraic curves", Ann. Math. 56 (1952), no. 1, p. 169-191.
[8] M. Saïdi, "On the existence of non-geometric sections of arithmetic fundamental groups", Math. Z. 277 (2014), no. 1-2, p. 361-372.
[9] M. Talpo, A. Vistoli, "Deformation theory from the point of view of fibered categories", in Handbook of moduli. Volume III, Advanced Lectures in Mathematics (ALM), vol. 26, International Press, 2013, p. 281-397.

