I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Bing-Ling Wu and Xiao-Hui Yan

On the denominators of harmonic numbers. IV
Volume 360 (2022), p. 53-57
https://doi.org/10.5802/crmath.282
© Académie des sciences, Paris and the authors, 2022.
Some rights reserved.
(c) EV This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

On the denominators of harmonic numbers.

IV

Bing-Ling Wu ${ }^{a}$ and Xiao-Hui Yan ${ }^{*}, b$

${ }^{a}$ School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
${ }^{b}$ School of Mathematics and Statistics, Anhui Normal University, Wuhu 241002, P. R. China

E-mails: wubingling911219@163.com, yanxiaohui_1992@163.com

Abstract

Let \mathscr{L} be the set of all positive integers n such that the denominator of $1+1 / 2+\cdots+1 / n$ is less than the least common multiple of $1,2, \ldots, n$. In this paper, under a certain assumption on linear independence, we prove that the set \mathscr{L} has the upper asymptotic density 1 . The assumption follows from Schanuel's conjecture.

Keywords. harmonic numbers, least common multiples, upper asymptotic density.
Mathematical subject classification (2010). 11B05, 11B75.
Funding. This work is supported by the National Natural Science Foundation of China (Grant Nos. 12101332 and 12101009), the Natural Science Foundation in Jiangsu Province (Grant No. BK20200748), the Natural Science Foundation for Colleges and Universities in Jiangsu Province (Grant No. 20KJB110003), the Anhui Provincial Natural Science Foundation (Grant No. 2108085QA02) and the Talent Foundation of Anhui Normal University (Grant No.752038).
Manuscript received 11th August 2021, revised 25th August 2021 and 18th September 2021, accepted 12th October 2021.

1. Introduction

For any positive integer n, let

$$
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\frac{u_{n}}{v_{n}}, \quad\left(u_{n}, v_{n}\right)=1, v_{n}>0 .
$$

The number H_{n} is called n-th harmonic number. Shiu [6] proved that $v_{n}=v_{n+1}$ for infinitely many positive integers n. Recently, Wu and Chen [9] showed that the set of positive integers n with $v_{n}=v_{n+1}$ has asymptotic density one. For related research, one may refer to $[1,2,5,7,8]$. Especially, Eswarathasan and Levine [2] conjectured that the set J_{p} of positive integers n such that $p \mid u_{n}$ is finite for any prime number p. Sanna [5] proved that $J_{p}(x) \leq 129 p^{2 / 3} x^{0.765}$, where

[^0]$J_{p}(x)$ denotes the number of integers which are in J_{p} and do not exceed x. Later, Wu and Chen [7] improved this result to $J_{p}(x) \leq 3 x^{2 / 3+1 /(25 \log p)}$.

Let \mathscr{L} be the set of all positive integers n such that v_{n} is less than the least common multiple of $1,2, \ldots, n$. Note that v_{n} divides the least common multiple of $1,2, \ldots, n$. Let

$$
\bar{d}(\mathscr{L})=\limsup _{x \rightarrow \infty} \frac{\mathscr{L}(x)}{x}
$$

In this paper, under a certain assumption on linear independence, we prove that the set \mathscr{L} has the upper asymptotic density 1. Firstly, we introduce a special case of Schanuel's conjecture [4, p. 30-31].

Weak Schanuel's Conjecture. If $\beta_{1}, \ldots, \beta_{m}$ are non-zero, multiplicatively independent algebraic numbers, then $\log \beta_{1}, \ldots, \log \beta_{m}$ are algebraically independent.

It is clear that the set of prime numbers is multiplicatively independent. For any distinct primes $q_{1}, q_{2}, \ldots, q_{l}$, it follows from weak Schanuel's conjecture that $\log q_{1}, \ldots, \log q_{l}$ are algebraically independent and so are $1 / \log q_{1}, \ldots, 1 / \log q_{l}$. So we mention the following conjecture.

Conjecture 1. For any distinct primes $q_{1}, q_{2}, \ldots, q_{l}$, the l real numbers $1 / \log q_{1}, \ldots, 1 / \log q_{l}$ are linear independent over \mathbb{Q}.

In this paper, we prove the following result.
Theorem 2. Assuming Conjecture 1, we have $\bar{d}(\mathscr{L})=1$.

2. Preliminaries

Lemma 3 ([3, Theorem 429], Mertens' theorem).

$$
\prod_{\substack{p \leq x \\ \text { pis a prime }}}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\log x} \text { as } x \rightarrow+\infty
$$

Lemma 4 ([3, Theorem 442], Kronecker's theorem). If $\vartheta_{1}, \vartheta_{2}, \ldots, \vartheta_{k}, 1$ are real numbers and linearly independent over $\mathbb{Q}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are arbitrary real numbers, and N and ϵ are positive real numbers, then there are integers $n>N, s_{1}, s_{2}, \ldots, s_{k}$ such that $\left|n \vartheta_{m}-s_{m}-\alpha_{m}\right|<\epsilon(m=1,2, \ldots, k)$.

Lemma 5. Let a, b, c, d be positive real numbers. Then

$$
|(a, b) \backslash(c, d)| \leq|c-a|+|b-d|+2,
$$

where (x, y) denotes the set of all integers n with $x<n<y$.
Proof. If $b \leq c$ or $d \leq a$, then the claim is obvious, since $(a, b) \cap(c, d)=\varnothing$. So assuming $b>c$ and $d>a$ one gets

$$
\begin{aligned}
|(a, b) \backslash(c, d)| & =\sum_{\substack{a<n<b \\
n \leq c \text { or } n \geq d}} 1 \leq \sum_{a<n \leq \min \{b, c\}} 1+\sum_{\max \{a, d\} \leq n<b} 1=\sum_{a<n \leq c} 1+\sum_{d \leq n<b} 1 \\
& \leq|c-a|+|b-d|+2 .
\end{aligned}
$$

This completes the proof of Lemma 5.

3. Proof of Theorem 2

Let L_{n} be the least common multiple of $1,2, \ldots, n$. Let p_{i} be i-th prime, $a_{1}=1$ and

$$
a_{i}=\prod_{j=2}^{i}\left(1-\frac{1}{p_{j}}\right), \quad i=2,3, \ldots
$$

By Lemma 3, $a_{i} \rightarrow 0$ as $i \rightarrow+\infty$. For any $0<\varepsilon<1$, we can choose k (fixed) such that $a_{k}<\frac{1}{2} \varepsilon$. In view of the assumption,

$$
\frac{\log p_{2}}{\log p_{i}}, \quad i=2,3, \ldots, k
$$

are linear independent over \mathbb{Q}. By Lemma 4, for any

$$
\begin{equation*}
0<\delta<\frac{\varepsilon}{16 k \log p_{k}} \tag{1}
\end{equation*}
$$

there are infinitely many k tuples $q>0, s_{2}, \ldots, s_{k}$ of integers such that

$$
\left|q \frac{\log p_{2}}{\log p_{i}}-s_{i}+\frac{\log a_{i-1}}{\log p_{i}}\right| \leq \delta, \quad i=2,3, \ldots, k
$$

That is,

$$
\begin{equation*}
p_{i}^{s_{i}-\delta} \leq a_{i-1} p_{2}^{q} \leq p_{i}^{s_{i}+\delta}, \quad i=2,3, \ldots, k \tag{2}
\end{equation*}
$$

It is clear that $s_{i} \rightarrow+\infty$ as $q \rightarrow+\infty(i=2,3, \ldots, k)$. Now we prove that

$$
\begin{equation*}
\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right) \subseteq \mathscr{L} . \tag{3}
\end{equation*}
$$

Let $n \in\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)$. Then $p_{i}^{s_{i}-1} \mid L_{n}$. Since

$$
1+\frac{1}{2}+\cdots+\frac{1}{p_{i}-1}=\sum_{1 \leq j \leq\left(p_{i}-1\right) / 2}\left(\frac{1}{j}+\frac{1}{p_{i}-j}\right)=\sum_{1 \leq j \leq\left(p_{i}-1\right) / 2} \frac{p_{i}}{j\left(p_{i}-j\right)},
$$

it follows that

$$
\begin{aligned}
H_{n} & =\sum_{j=1, p_{i}^{s_{i}-1} \nmid j}^{n} \frac{1}{j}+\frac{1}{p_{i}^{s_{i}-1}}\left(1+\frac{1}{2}+\cdots+\frac{1}{p_{i}-1}\right) \\
& =\sum_{j=1, p_{i}^{s_{i}-1} \nmid j}^{n} \frac{1}{j}+\frac{1}{p_{i}^{s_{i}-2}} \sum_{1 \leq j \leq\left(p_{i}-1\right) / 2} \frac{1}{j\left(p_{i}-j\right)} \\
& =\frac{a}{b}+\frac{1}{p_{i}^{s_{i}-2}} \frac{c}{d},
\end{aligned}
$$

where $p_{i}^{s_{i}-1} \nmid b$ and $p_{i} \nmid d$. Then $v_{p_{i}}\left(H_{n}\right) \geq-\left(s_{i}-2\right)$. Hence, v_{n} is not divisible by $p_{i}^{s_{i}-1}$, that is, $p_{i}^{s_{i}-1} \nmid v_{n}$. Noting that $v_{n} \mid L_{n}$ and $p_{i}^{s_{i}-1} \mid L_{n}$, we have $v_{n}<L_{n}$. Hence $n \in \mathscr{L}$. So (3) holds. It follows from (3) that

$$
\begin{aligned}
\mathscr{L}\left(p_{2}^{q}\right) & \geq \sum_{i=2}^{k}\left|\mathscr{L} \cap\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right)\right| \\
& \geq \sum_{i=2}^{k}\left|\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right) \cap\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right)\right| \\
& =\sum_{i=2}^{k}\left(\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right)\right|-\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right|\right) \\
& \geq \sum_{i=2}^{k}\left(a_{i-1} p_{2}^{q}-a_{i} p_{2}^{q}-1-\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right|\right) \\
& =a_{1} p_{2}^{q}-a_{k} p_{2}^{q}-k+1-\sum_{i=2}^{k}\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right| \\
& \geq p_{2}^{q}-\frac{1}{2} \varepsilon p_{2}^{q}-k-\sum_{i=2}^{k}\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right| .
\end{aligned}
$$

It follows from Lemma 5 that

$$
\begin{aligned}
\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right| & \leq\left|a_{i} p_{2}^{q}-\left(p_{i}-1\right) p_{i}^{s_{i}-1}\right|+\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right|+2 \\
& =\left(1-\frac{1}{p_{i}}\right)\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right|+\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right|+2 \\
& \leq 2\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right|+2
\end{aligned}
$$

If $a_{i-1} p_{2}^{q} \geq p_{i}^{s_{i}}$, then by (2) we have

$$
0 \leq a_{i-1} p_{2}^{q}-p_{i}^{s_{i}} \leq p_{i}^{s_{i}+\delta}-p_{i}^{s_{i}}=\left(p_{i}^{\delta}-1\right) p_{i}^{s_{i}}
$$

If $a_{i-1} p_{2}^{q}<p_{i}^{s_{i}}$, then by (2) we have

$$
0 \leq p_{i}^{s_{i}}-a_{i-1} p_{2}^{q} \leq p_{i}^{s_{i}}-p_{i}^{s_{i}-\delta}=p_{i}^{-\delta}\left(p_{i}^{\delta}-1\right) p_{i}^{s_{i}} \leq\left(p_{i}^{\delta}-1\right) p_{i}^{s_{i}}
$$

In all cases, we have

$$
\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right| \leq\left(p_{i}^{\delta}-1\right) p_{i}^{s_{i}}
$$

By (2),

$$
p_{i}^{s_{i}} \leq a_{i-1} p_{2}^{q} p_{i}^{\delta} \leq p_{2}^{q} p_{i}^{\delta}
$$

Hence,

$$
\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right| \leq\left(p_{i}^{\delta}-1\right) p_{i}^{\delta} p_{2}^{q}
$$

In view of (1),

$$
0<\delta \log p_{i} \leq \delta \log p_{k}<\frac{\varepsilon}{16 k}<\frac{1}{16}
$$

It follows from $e^{x}-1 \leq 2 x\left(0 \leq x \leq \frac{1}{2}\right)$ that

$$
\left(p_{i}^{\delta}-1\right) p_{i}^{\delta} \leq 2 \delta\left(\log p_{i}\right) e^{\delta \log p_{i}}<\frac{\varepsilon}{8 k} e^{1 / 16}<\frac{\varepsilon}{4 k}
$$

Thus,

$$
\left|a_{i-1} p_{2}^{q}-p_{i}^{s_{i}}\right|<\frac{\varepsilon}{4 k} p_{2}^{q}
$$

It follows that

$$
\sum_{i=2}^{k}\left|\left(a_{i} p_{2}^{q}, a_{i-1} p_{2}^{q}\right) \backslash\left(\left(p_{i}-1\right) p_{i}^{s_{i}-1}, p_{i}^{s_{i}}\right)\right|<k\left(\frac{\varepsilon}{2 k} p_{2}^{q}+2\right)=\frac{1}{2} \varepsilon p_{2}^{q}+2 k
$$

Hence,

$$
\mathscr{L}\left(p_{2}^{q}\right) \geq p_{2}^{q}-\frac{1}{2} \varepsilon p_{2}^{q}-k-\frac{1}{2} \varepsilon p_{2}^{q}-2 k=p_{2}^{q}-\varepsilon p_{2}^{q}-3 k .
$$

Thus,

$$
\bar{d}(\mathscr{L}) \geq \lim _{q \rightarrow \infty} \frac{\mathscr{L}\left(p_{2}^{q}\right)}{p_{2}^{q}} \geq 1-\varepsilon,
$$

where $q \rightarrow \infty$ and q satisfying (2). Therefore, $\bar{d}(\mathscr{L})=1$. This completes the proof.

Acknowledgments

We would like to thank the referee for his/her helpful comments.

References

[1] D. W. Boyd, "A p-adic study of the partial sums of the harmonic series", Exp. Math. 3 (1994), no. 4, p. 287-302.
[2] A. Eswarathasan, E. Levine, "p-integral harmonic sums", Discrete Math. 91 (1991), no. 3, p. 249-257.
[3] G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford University Press, 1979.
[4] S. Lang, Introduction to transcendental numbers, Addison-Wesley Series in Mathematics, Addison-Wesley Publishing Group, 1966.
[5] C. Sanna, "On the p-adic valuation of harmonic numbers", J. Number Theory 166 (2016), p. 41-46
[6] P. Shiu, "The denominators of harmonic numbers", https://arxiv.org/abs/1607.02863v1, 2016.
[7] B.-L. Wu, Y.-G. Chen, "On certain properties of harmonic numbers", J. Number Theory 175 (2017), p. 66-86.
[8] -, "On the denominators of harmonic numbers", C. R. Math. Acad. Sci. Paris 356 (2018), no. 2, p. 129-132.
[9] _, "On the denominators of harmonic numbers. II", J. Number Theory 200 (2019), p. 397-406.

[^0]: * Corresponding author.

