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Abstract. Let Z be the set of all positive integers n such that the denominator of 1+1/2+---+1/n is less than
the least common multiple of 1,2, ..., n. In this paper, under a certain assumption on linear independence, we
prove that the set £ has the upper asymptotic density 1. The assumption follows from Schanuel’s conjecture.
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1. Introduction

For any positive integer n, let

1 1 1 u,

Hy=1+-+=-+-+—=—, (up,vy)=1,v,>0.

2 3 n vy
The number H,, is called n-th harmonic number. Shiu [6] proved that v, = v,4; for infinitely
many positive integers n. Recently, Wu and Chen [9] showed that the set of positive integers n
with v, = v,4+1 has asymptotic density one. For related research, one may refer to [1, 2, 5, 7, 8].
Especially, Eswarathasan and Levine [2] conjectured that the set J, of positive integers n such
that p | uy, is finite for any prime number p. Sanna [5] proved that J,(x) < 129 pZ/ 3x0-765 where
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Jp(x) denotes the number of integers which are in J, and do not exceed x. Later, Wu and Chen [7]
improved this result to J,, (x) < 3x%/3+1/(25logp),

Let Z be the set of all positive integers n such that v, is less than the least common multiple
of 1,2,..., n. Note that v, divides the least common multiple of 1,2,..., n. Let

d(%£) =limsup Z)

X—00 X

In this paper, under a certain assumption on linear independence, we prove that the set £ has
the upper asymptotic density 1. Firstly, we introduce a special case of Schanuel’s conjecture [4,
p. 30-31].

Weak Schanuel’s Conjecture. If fi,..., 5, are non-zero, multiplicatively independent algebraic
numbers, thenlog B, ...,log B, are algebraically independent.

It is clear that the set of prime numbers is multiplicatively independent. For any distinct
primes q1,qz,...,q;, it follows from weak Schanuel’s conjecture that logq,...,logq; are alge-
braically independent and so are 1/1og gy, ..., 1/1og q;. So we mention the following conjecture.

Conjecture 1. For any distinct primes q1, G, ..., q;, the | real numbers 1/logq,...,1/logq; are
linear independent over Q.

In this paper, we prove the following result.

Theorem 2. Assuming Conjecture 1, we have d(%£) = 1.

2. Preliminaries

Lemma 3 ( [3, Theorem 429], Mertens’ theorem).

1 e’V
Im i-=~ as x — +oo.
p=x p) logx

p isa prime

Lemma 4 ( [3, Theorem 442], Kronecker’s theorem). If 91,0,...,9,1 are real numbers and
linearly independent over Q, a1, a», ..., ay are arbitrary real numbers, and N and e are positive real
numbers, then there are integersn> N, sy, Sa,..., S Such that |n9,, — sy, —apl <e (m=1,2,..., k).

Lemma5. Leta,b,c,d be positive real numbers. Then
l(a,b)\(c,d)<|c—al+|b-d|+2,
where (x, y) denotes the set of all integers n withx <n<y.

Proof. If b < c or d < a, then the claim is obvious, since (a, b) N (c,d) = @. So assuming b > ¢ and
d > a one gets

la,b)\(c,d)l= Y 1< > 1+ Yy 1= Y 1+ Y 1

a<n<b a<n<min{b,c} max{a,d}<n<b a<nsc d<n<b
n<cor nzd

<|c—al+|b-d|+2.

This completes the proof of Lemma 5. d
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3. Proof of Theorem 2

Let L, be the least common multiple of 1,2,..., n. Let p; be i-th prime, a; =1 and

55

By Lemma 3, a; — 0 as i — +oo. For any 0 < € < 1, we can choose k (fixed) such that a; < %e. In

view of the assumption,

log p2

, 1=2,3,...,k
logp;

are linear independent over Q. By Lemma 4, for any

0<<—r—
16klogpi’

there are infinitely many k tuples g > 0, s, ..., s of integers such that

logps - loga;_1
logp; ' logp;

<94, i=23,...,k
That is,
p; sai_lpZSpf“é, i=2,3,...,k

It is clear that s; — +ocoas g — +oo (i =2,3,..., k). Now we prove that

si—1

(pi-Dp],piHc.

si—1
i

Letne ((p;—1p;"", p;"). Then p;"_lan. Since

1+%+...+ 1 = Z (14_ 1 ) Z L

Pi=1 icicGrivne\i pi—i) cj<trvnipi= D)

it follows that
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where ps”_1 {b and p; 1 d. Then vp (Hn) = —(s; —2). Hence, v, is not divisible by pfi_l, that is,
S‘ IJ[ vy, Noting that v,|L, and p IL,,, we have v, < L,,. Hence n € £. So (3) holds. It follows
from (3) that

k
LphH=zY 1Lnaip],ai-1p)
i=2
k si—1 _s;
EZI((pi—l)p; piN(aipy, ai-1py)l

(|(alp2,al 1pI=1@ipd, aiap\ (pi = Dp; = pi)I)

™= ﬁ[\/]w I

I
[\S)

\%

(ai-1pf - aipd ~1-l@ipg, @i pD\ (i = Vp ™ p}1I)

si—1

k
=aip] —arpy —k+1-Y_ |(aip],ai-ip)\ ((pi ~Dp; ", pi)

=2

1 k 1.
= py - 5epy k- ZZ|(aip§,ai_1pg’) \((pi=Dpy " il
i=

It follows from Lemma 5 that

s,—l si—1

l(@ipg, aicpD\ (pi - Dp; " pi)I < laipd — (pi— Dpy ' +lai-1py — py1+2

1 i i
-[1- ;) ai-1pd - pii1+ @i pd - piil+2
1

<2la;.1py - pi'l+2.
Ifa;_, pg > pfi, then by (2) we have

0=aipf-p=pi ™ —py = (pl-1)p}.
If a;_1 pj < p}", then by (2) we have

0<pj—aiapf<pi-pi 0 =p;® (P2 -1)p} < (pP-1) P}
In all cases, we have
jaipg - piil < (pf 1) i
By (2),
Pfi = ai-1 PS’P? = P;’P?-
Hence,
jaipg - pit= (P -1) plpf.

In view of (1), )
€
0<6l <6l —.
<ologp; 0gpi < 16k 16

It follows frome*-1<2x (0<x < l) that

_ slogp; 1716 _ €
(p l)pl <2d(logpje <8ke <4k'

Thus,

lai-1pg —p |<—k pd.

It follows that

-1 s L g
Zi(amz,al 1PN ((pi =D} ,ps)|<k(2kp2 2) = Sepq+2k.
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Hence, ] 1
L(p) = p; - 5epy —k-ep) —2k=p] —ep] - 3k.
Thus, q
3 ZLph
d(#) = lim 421—5,
q—00 P,

where g — oo and g satisfying (2). Therefore, d(£) = 1. This completes the proof.
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