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Abstract. We show that with probability exponentially close to 1, all near-maximizers of any mean-field mixed
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Gamarnik and Jagannath. The proof is elementary and extends to arbitrary polytopes with eo(N 2) faces.
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1. Introduction

The present paper concerns mixed p-spin glasses on the hypercube [−1,1]N . Such a model is
specified by a sequence γ1,γ2, . . . ≥ 0 of non-negative real numbers encapsulated in the mixture
function

ξ(t ) =
∞∑

p =1
γ2

p t p .

For each p ∈Z+ we sample i.i.d. Gaussian variables {gi1, i2, ..., ip }i1, i2, ..., ip ∈ [N ] and study the resulting
random Hamiltonian energy function

HN (x) =
∞∑

p =1

γp

N (p+1)/2

N∑
i1, ..., ip =1

gi1, ..., ip xi1 . . . xip .

Equivalently, HN (·) is a Gausian process with covariance

E
[
HN (x)HN (x ′)

]= 1

N
ξ
(〈

x, x ′〉) .

We assume the γp decay exponentially, i.e. limsupp →∞
logγp

p < 0, so that there are no issues re-

garding convergence. Here and throughout we use a normalized inner product 〈x, y〉 = 1
N

∑
i xi yi

for x, y ∈ RN and similarly define |x|2 =
√

1
N

∑
i x2

i . Hence the hypercube [−1,1]N has diam-
eter 2. This scaling is chosen for convenience as it makes all relevant quantities dimension-
independent. We will further assume throughout that γp is strictly positive for some p ≥ 2 so
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that the model is a genuine spin glass. The mixture function ξ is always taken to be fixed while
sending N →∞.

We focus on the (random) set of near-maximizers of HN (x). This set is intimately related to
the Gibbs measure µ(d x) ∝ eβN HN (x)d x in the low temperature regime with β large. The Gibbs
measure µ(d x) is typically studied not on the continuous cube [−1,1]N but on the discrete cube
{±1}N , where a great deal is known. A key quantity of interest is the free energy

FN (β) = 1

N
log

∑
x∈ {−1,1}N

eβN HN (x).

The limiting value (in probability) of FN (β) is famously given by the Parisi formula proposed
in [21] and proved in [20, 25]. The existence (but not the identification) of the limiting value for
large N was established earlier in [15].

The Hamiltonian HN (·) is non-convex and may have exponentially many near-maxima [8, 10,
13]. Moreover the structure of these near-maxima is highly nontrivial, as for each β the Gibbs
measure on {−1,1}N is known to concentrate on a random approximate ultrametric with high
probability in so-called generic mixed p-spin models with

∑
p :γp >0

1
p =∞ [9, 16]. Also of interest

are the results [4, 6, 7, 22] which study the landscape of critical points for spherical spin glasses
and the related spiked tensor models, computing the exponential growth rates for the number of
local maxima and critical points with a given energy value.

Let us now turn from the discrete cube {−1,1}N to the continuous cube [−1,1]N . The free
energy in this case takes a similar form as in the Ising case by the work of [17, 19]. Regarding
the ground states, it is not difficult to see that some near-maximum of HN on [−1,1]N must lie
on a corner in {±1}N . Indeed, one may ignore the small contribution of terms of HN which are
not multi-linear and then observe that any multilinear function of the coordinates x1, . . . , xN is
maximized at some corner of the cube. However this does not rule out the existence of other
near-maxima of HN which are far from a corner and therefore missed by considering the discrete
cube.

It was conjectured in [14, Conjecture 3.6] that in fact all near-maxima of HN on [−1,1]N must
occur near the corners with high probability as N → ∞. In other words, to understand the set
of near-maxima of HN on [−1,1]N , it is in some sense sufficient to understand it on the discrete
cube. Conditional on (an implication of) this result, [14] prove that approximate message passing
algorithms fail to approximately optimize pure p-spin models with γp 6= 0 for exactly 1 value of p,
over [−1,1]N when p ≥ 4 is even. Moreover their proof seems to apply to any ξ satisfying a suitable
overlap gap property, perhaps with the requirement γ1 = 0. By contrast for mixture functions ξ
satisfying a strong no overlap gap condition, approximate message passing algorithms are able to
efficiently locate near-maxima of HN with high probability [1, 18].

Our main result is that all near-maxima of HN on [−1,1]N are close to a corner in {±1}N ,
confirming the conjecture of [14]. Moreover we obtain an explicit quantitative dependence,
though we do not expect it to be tight. Below we use the notationΩε,η(N ) to represent a quantity
bounded below by C (ε,η)N for some constant C (ε,η) independent of N when N ≥ N0(ε,η) is
sufficiently large.

Theorem 1. Let ξ define a mixed p-spin model and fix ε,η> 0. Then for N sufficiently large, with
probability 1−e−Ωε,η(N ) all x ∈ [−1,1]N with

HN (x) ≥ max
y ∈ [−1,1]N

HN (y)−
∫ 1

1−ε

√
(1− t )ξ′′(t )d t +η

satisfy |x|22 ≥ 1−ε.

The idea of the proof is based on that of [24], which uses uniform control of top eigenvalues
of the Hessian ∇2HN (x) to optimize mean field spin glasses on the sphere via small local steps.
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Our main insight is that this idea continues to work when a constant fraction of coordinates
are fixed at ±1, allowing us to substantially increase the energy HN from any starting point
far from a corner even after reaching the boundary of [−1,1]N . Our proof is elementary and
avoids any reliance on complicated Parisi-type variational formulas which characterize much
of the spin glass literature. In fact it does not even require the existence of a limiting value for
maxy ∈ [−1,1]N HN (y). Due to the simplicity of our approach, Theorem 1 extends to quite general
polytopes as we explain in Section 3.

Finally let us mention two alternative approaches to our main result, at least on the cube.
First, we believe that [12, Theorems 8, 9] should imply Theorem 1. In their language it suffices
to check that T AP∞(µ) is bounded away from 0 for µ a probability measure on [−1,1] with L2

norm bounded away from 1. See also [11, 23] for positive temperature and spherical analogs.
Second, [17, Theorem 1.2] gives a Parisi-type formula for the ground state energy of mixed
p-spin models on the subset of [−1,1]N with any asymptotically fixed L2 norm in [0,1], so showing
that their formula is strictly increasing in this L2 norm would imply Theorem 1. However a proof
produced by either method would be far less elementary than the proof we present, and even
with significant effort might not extend beyond highly structured classes of polytopes.

2. Proof of Theorem 1

We set ζ(t ) = √
ξ′′(t ). By our assumption that γp > 0 for some p ≥ 2 it follows that ζ(t ) > 0

for any t > 0. Below and throughout, given M ∈ M atN×N (R) and a subspace W ⊆ RN we set
M |W = P>

W MPW where PW : RN → W is the orthogonal projection onto W . In other words M |W
is the restriction of M to W as a bilinear form, and is a matrix of size dim(W )×dim(W ).

Proposition 2. For nonzero x ∈ RN let x⊥ denote the orthogonal subspace to x. For any fixed
subspace W ⊆ x⊥, the restriction ∇2HN (x)|W of the Hessian of HN to x⊥ has the distribution of a
GOE(dim(W )) matrix times

ζ
(|x|22)

√
dim(W )

N
.

By a GOE(N ) matrix we mean a symmetric N ×N matrix of independent centered Gaussians
in which diagonal entries have variance 2

N and off-diagonals have variance 1
N . In the case

W = x⊥, Proposition 2 can be shown as in [24, Equation (3.10)] by setting x = (x1,0, . . . , 0) using
rotational invariance and performing a simple direct computation. See also the text following
[24, Equation (1.8)]. Proposition 2 then follows for general subspaces W ⊆ x⊥ because the upper
dim(W )×dim(W ) corner of a GOE(N −1) matrix is a GOE(dim(W )) matrix up to scaling.

Denote the eigenvalues of a symmetric matrix G in decreasing order by λ1(G) ≥ λ2(G) ≥ . . .
Recall that λ1(G) ≈ 2 holds with high probability when G ∼ GOE(N ). In fact the following
fundamental result states that many eigenvalues are at least 2−δwith extremely high 1−e−Ωδ(N 2)

probability. It follows from [3, Theorem 1.1] and is also used in the proof of [24, Lemma 3]. See
also [2, Theorem 2.6.1].

Proposition 3. For any δ> 0 and fixed positive integer k, if G ∼GOE(N ) then

P [λk (G) ≥ 2−δ] ≥ 1−e−Ωδ,k (N 2).

We also require the following apriori uniform bound on the derivatives of HN taken from [5].
Below BN denotes the unit ball {σ ∈ RN : |σ|2 ≤ 1} while SN−1 denotes the unit sphere {v ∈ RN :
|v |2 = 1}. Here again we use the rescaled norm in which

|v |2 =
√∑

i v2
i

N
;
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moreover our definition of HN differs from that of [5] by a factor N . This is why the derivative
estimates below are of constant order unlike in [5].

Lemma 4 ([5, Corollary 59]). Let HN be the Hamiltonian for a mixed p-spin model with fixed

mixture ξ satisfying limp→∞
logγp

p < 0. For appropriate C > 0 and i = 1,2,3 we have:

P
[
∀σ ∈BN ,∀ v ∈SN−1 :

∣∣∣∂i
v HN (σ)

∣∣∣<C
]
≥ 1−e−Ω(N ).

P
[
∀σ,σ′ ∈BN :

∥∥∇2HN (σ)−∇2HN
(
σ′)∥∥

op <C
∥∥σ−σ′∥∥]

≥ 1−e−Ω(N ).

We next define the class of axis-aligned subspaces WS for S ⊆ [N ]. The key to our proof is to
obtain uniform control on the Hessians HN (x)|WS over all x ∈ [−1,1]N and large S.

Definition 5. Given a subset S ⊆ [N ] we denote by WS the |S| dimensional subspace spanned by
elementary basis vectors es for s ∈ S. We set WS (x) =WS ∩x⊥ so that dim(WS (x)) ∈ {|S|−1, |S|}.

Definition 6. The Hamiltonian HN : [−1,1]N → R is (ε,δ)-good at x ∈ [−1,1]N if for every subset
S ⊆ [N ] of size |S| ≥ εN ,

λ1
(∇2HN (x)

∣∣
WS (x)

)≥ 2ζ
(|x|22)pε−δ.

HN is (ε,δ)-good if it is (ε,δ)-good at all x ∈ [−1,1]N , and is δ-good if it is (ε,δ)-good for all ε≥ δ.

Roughly speaking, HN is δ-good if its Hessian has a maximum eigenvalue of typical size or
larger on all high-dimensional axis-aligned affine subspaces. We next show this condition occurs
with exponentially high probability.

Lemma 7. Fix δ> 0 and ξ(t ) =∑
p≥1γ

2
p t p . Then HN (·) is δ-good with probability 1−e−Ωδ(N ).

Proof. We follow the proof of the case S = [N ] in [24, Lemma 3], extending the union bound
to be over subsets S as well as points x. First, it suffices to show HN is (ε,δ/2)-good with the
claimed probability for all fixed (ε,δ) since one can then union bound over Oδ(1) values of ε using
uniform continuity of ζ. Replacing δ/2 by δ, we will show that HN is (ε,δ)-good with probability
1−e−Ωε,δ(N ) which implies the conclusion.

For any fixed x ∈ [−1,1]N and S ⊆ [N ], because WS (x) ⊆ x⊥, we obtain from Proposition 2 that
the restricted Hessian ∇2HN (x)|WS (x) has the law of

ζ
(|x|22)

√
dimWS (x)

N
·GOE (dimWS (x)) .

As dimWS (x) ≥ |S|−1, Proposition 3 implies:

P

[
λ2

(∇2HN (x)
∣∣
WS (x)

)≥ 2ζ
(|x|22)

√ |S|−1

N
− δ

2

]
≥ 1−e−Ωδ(|S|2). (1)

Restricting to |S| ≥ εN and observing there are at most 2N possibilities for S, we conclude that for
any fixed x ∈ [−1,1]N ,

P

[
∀ S ⊆ [N ], |S| ≥ εN :λ2

(∇2HN (x)
∣∣
WS (x)

)≥ 2ζ
(|x|22)

√ |S|−1

N
− δ

2

]
≥ 1−e−Ωε,δ(N 2). (2)

Next choose a δ′-net Nδ′ for [−1,1]N of size |Nδ′ | = eOδ′ (N ). Union bounding over y ∈ Nδ′ , it
follows that (2) holds for all y ∈Nδ′ simultaneously with the same high probability 1−e−Ωε,δ(N 2).
Assume additionally that the conclusions of Lemma 4 hold, which is with probability 1− e−Ω(N ).
Under these conditions we now show that Equation (2) holds simultaneously for all x ∈ [−1,1]N

and |S| ≥ εN . For such an x choose y = y(x) ∈Nδ′ with |x− y |2 ≤ δ′. Difference of squares and the
triangle inequality imply

|x|22 −
∣∣y

∣∣2
2 ≤ 2

∣∣x − y
∣∣
2 ≤ 2δ′.
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From Lemma 4 and the fact (which follows from the Courant–Fisher characterization) that
|λk (M)−λk (M ′)| ≤ |M −M ′|op for any symmetric matrices M , M ′ and any integer k,∣∣λ2

(∇2HN (x)
∣∣
WS (y)

)−λ2
(∇2HN (y)

∣∣
WS (y)

)∣∣≤ ∣∣(∇2HN (x)−∇2HN (y)
)∣∣

WS (y)
∣∣
op

≤ ∣∣∇2HN (x)−∇2HN (y)
∣∣
op

≤ 2Cδ′.

From here we derive the eigenvalue lower bound

λ1
(∇2HN (x)

∣∣
WS (x)

)≥λ1

(
∇2HN (x)

∣∣∣WS (x)∩y⊥
)

≥λ2
(∇2HN (x)

∣∣
WS (y)

)
≥λ2

(∇2HN (y)
∣∣
WS (y)

)−2Cδ′

≥ 2ζ
(|y |22)pε− δ

2
−2Cδ′

≥ 2ζ
(
max

(
0, |x|22 −2δ′

))p
ε− δ

2
−2Cδ′.

As ζ is uniformly continuous on [0,1], taking δ′ sufficiently small gives the conclusion

λ1
(∇2HN (x)

∣∣
WS (x)

)≥ 2ζ
(|x|22)pε−δ.

Because x ∈ [−1,1]N and |S| ≥ εN were arbitrary, we conclude that HN is (ε,δ)-good with
probability 1−e−Ω(N ) −e−Ωε,δ(N 2) = 1−e−Ωε,δ(N ). Recalling the discussion at the beginning of the
proof, it follows that HN is δ-good with probability 1−e−Ωδ(N ) as claimed. �

The next lemma shows how to use Lemma 7 to obtain local improvements to HN (·) from any
point x ∈ [−1,1]N which is far from a corner.

Lemma 8. Suppose the Hamiltonian HN is δ-good and satisfies the guarantee of Lemma 4. Then
for any x ∈ [−1,1]N with |x|22 ≤ 1−δ there is a non-zero vector v orthogonal to x such that:

(1) x + v ∈ [−1,1]N

(2) If |xi | = 1 then vi = 0.
(3)

HN (x + v)−HN (x) ≥
(
ζ
(|x|22)√1−|x|22 −δ

)
|v |22.

(4) |v |2 ≤ δ
10C .

(5) Either |v |2 = δ
10C or x + v has strictly more ±1-valued coordinates than x.

Proof. By a simple Markov inequality we know that x has a set S of at least (1−|x|22)N coordinates
not equal to ±1. Because HN is δ-good the restriction ∇2HN (x)|WS (x) has an eigenvalue at least

2ζ
(|x|22)√1−|x|22 −δ

with corresponding eigenvector v . Since v ∈WS ⊆RN , we may by slight abuse of notation treat v
as a vector in RN . Of course this v ∈RN need not be an eigenvector of ∇2HN (x) but we retain the
Rayleigh quotient lower bound〈

v,∇2HN (x)v
〉≥ (

2ζ
(|x|22)√1−|x|22 −δ

)
|v |22.

Since v,−v play symmetric roles we may assume by symmetry that 〈∇HN (x), v〉 ≥ 0. By scaling
v to be sufficiently small we may assume that x + v ∈ [−1,1]N and that |v |2 ≤ δ

10C . Using the
guarantee of Lemma 4 with i = 3, it follows that along the line segment x + [0,1]v the Hessian

C. R. Mathématique — 2021, 359, n 9, 1097-1105
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of HN varies in operator norm by at most δ
5 . This combined with 〈∇HN (x), v〉 ≥ 0 easily implies

that

HN (x + v) ≥ HN (x)+
(
ζ
(|x|22)√1−|x|22 −δ

)
|v |22.

Hence v satisfies the first 4 claimed conditions. By scaling v to be as long as possible given the
constraints x + v ∈ [−1,1]N and |v |2 ≤ δ

10C we ensure that item 5 is satisfied. �

Proof of Theorem 1. We take δ small depending on ε and assume HN is δ-good and that the
conclusion of Lemma 4 holds. For any point x0 ∈ [−1,1]N with |x0|22 ≤ 1 − ε we choose v0 as
guaranteed by Lemma 8 and set x1 = x0 + v0. We continue producing iterates xi+1 = xi + v i via
Lemma 8 with increasing energies until we reach an xm with |xm |22 ≥ 1−δ. By Lemma 8(5), this
occurs for some finite m.

Since v i is orthogonal to xi , we find

HN
(
xm)−HN

(
x0)= ∑

i <m
HN

(
xi+1

)
−HN

(
xi

)
(3)

≥ ∑
i <m

(
ζ
(∣∣xi ∣∣2

2

)√
1− ∣∣xi

∣∣2
2 −δ

)∣∣v i ∣∣2
2 (4)

= ∑
i <m

(
ζ
(∣∣xi ∣∣2

2

)√
1− ∣∣xi

∣∣2
2 −δ

)(∣∣xi+1∣∣2
2 −

∣∣xi ∣∣2
2

)
. (5)

Up to the error ∑
i <m

δ
(∣∣xi+1∣∣2

2 −
∣∣xi ∣∣2

2

)
≤ δ,

this is exactly a Riemann sum for the integral∫ |xm |22
|x0|22

ζ(t )
p

1− td t .

Because |v i |22 → 0 as δ→ 0 uniformly in i , and |x0|22 ≤ 1− ε, |xm |22 ≥ 1−δ, these Riemann sums
have limit infimum at least the integral

∫ 1
1−ε ζ(t )

p
1− td t . Hence for fixed ε, and δ→ 0, we obtain

HN
(
xm)−HN

(
x0)≥ ∫ 1

1−ε
ζ(t )

p
1− td t −oδ→0(1).

Here oδ→0(1) indicates a term tending to 0 as δ→ 0, uniformly in N . Since x0 was arbitrary given
the constraint |x0|22 ≤ 1−ε and HN (xm) ≤ maxy ∈ [−1,1]N HN (y), taking δ small enough depending
on (ε,η) concludes the proof. �

3. Extension to General Polytopes

Theorem 1 extends to more general polytopes than cubes. In particular we show that for bounded
polytopes with eo(N 2) total faces, all near-maxima of HN over the polytope occur near a point at
which (1− ε)N faces are incident. We remark that the condition of eo(N 2) total faces is implied
by having either eo(N ) vertices or eo(N ) maximal (i.e. codimension 1) faces. It also holds for any
product of O(N ) polytopes of constant dimension.

Definition 9. A sequence of polytopes PN ⊆RN is said to be regular if:

(1) PN has at most eo(N 2) faces of all dimensions.
(2) PN ⊆BN .

The second condition ensures that Lemma 4 continues to hold over PN . We again remind the

reader that we use the normalization |x|22 =
∑N

i =1 x2
i

N

C. R. Mathématique — 2021, 359, n 9, 1097-1105
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Definition 10. Given a polytope PN ⊆ RN an ε-corner is a point on the boundary ∂PN at which
at least (1−ε)N faces meet.

Theorem 11. Let ξ define a mixed p-spin model and fix ε,ε′,η > 0. Let PN ⊆ RN be a regular
sequence of polytopes. Then for N sufficiently large, with probability 1−e−Ωε,ε′ ,η(N ), for any x ∈PN

satisfying

HN (x) ≥ max
y ∈PN

HN (y)−p
ε

∫ |x|22+ε′

|x|22
ζ(t )d t +η

there exists an ε-corner x̂ of PN with |x − x̂|22 ≤ ε′.
Note that because ζ is increasing, we have∫ |x|22+ε′

|x|22
ζ(t )d t ≥

∫ ε′

0
ζ(t )d t

which is positive and independent of x. The proof is almost the same as the cubical case. The
subspaces WS are replaced by the family of all PN -face-aligned subspaces in RN . The main
difference is that to prove Theorem 11 it does not suffice to track the distance |xi |2 to the origin,
as being a near-corner is no longer equivalent to having near-maximal distance from the origin.
Because of this we additionally track the distances |xi − x0|2 of our sequence x0, x1, x2, . . . from
the starting point x0. This leads to an additional linear constraint on the increment vectors v i

and hence requires one more large eigenvalue of the restricted Hessians.

Definition 12. We say a subspace U ⊆ RN is PN -face-aligned if PN has a face whose tangent
space is exactly (a translate of) U .

Definition 13. For a mixture ξ and polytope PN ⊆RN , the Hamiltonian HN is (ε,δ)-superb if for
all x ∈PN and all PN -face-aligned subspaces U with dim(U ) ≥ εN ,

λ2
(∇2HN (x)

∣∣
U ∩x⊥

)≥ 2ζ
(|x|22)pε−δ.

Lemma 14. Fix ε,δ> 0 a mixture ξ, and a regular sequence PN of polytopes. Then with probability
1−e−Ωε,δ(N ) the random function HN is (ε, δ)-superb.

Proof. The proof is almost identical to that of Lemma 7 - note that U ∩ x⊥ is exactly the same as
WS (x) for the case of the cube. To obtain a lower bound on λ2 rather than λ1, we simply change
all instances of λk to λk+1 in the proof of Lemma 7. Regularity of PN ensures that when we take
a union bound over pairs (y,U ) for y in a δ′-net Nδ′ ⊆PN and all PN -face-aligned subspaces U ,
we only consider eo(N 2) distinct pairs. Hence the N 2 large deviation rate of Proposition 3 ensures
uniform eigenvalue lower bounds across all such pairs with exponentially high probability. As
remarked previously, Lemma 4 continues to apply to PN , so that by again taking δ′ small we
extend from a δ′ net to all of PN just as in Lemma 7. �

We next give the analog of Lemma 8 with the new constraint 〈v, x0〉 = 0.

Lemma 15. Suppose the Hamiltonian HN is (ε,δ)-superb and satisfies the guarantee of Lemma 4.
Then for any x ∈PN not a ε-corner and for any x0 ∈PN there is a non-zero vector v orthogonal to
both x and x0 such that:

(1) x + v ∈PN

(2) If x is contained in a boundary face of PN , then x + v is in the same face.
(3)

HN (x + v)−HN (x) ≥ (
ζ
(|x|22)pε−δ) |v |22.

(4) |v |2 ≤ δ
10C .

(5) Either |v |2 = δ
10C or x + v is contained in a face of dimension strictly smaller than that of

any face containing x.

C. R. Mathématique — 2021, 359, n 9, 1097-1105
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Proof. Let U be the subspace corresponding to the minimal face containing x. As x is not an
ε-corner we know that |U | ≥ εN . By Cauchy interlacing,

λ1
(∇2HN (x)

∣∣
U ∩x⊥∩x0⊥

)≥λ2
(∇2HN (x)

∣∣
U∩x⊥

)
(6)

≥ 2ζ
(|x|22)pε−δ. (7)

Let v ∈U ∩ x⊥∩ x0⊥ be the top eigenvector of ∇2HN (x). As before since U ∩ x⊥∩ x0⊥ ⊆RN we
may treat v as a vector in RN . The remainder of the proof is identical to that of Lemma 8. �

Proof of Theorem 11. We begin with a point x0 and repeatedly us Lemma 15, whose assump-
tions hold with probability 1−e−Ωε,δ(N ). We obtain a sequence x0, x1 = x0 + v i , x2 = x1 + v1, . . . of
points in our polytope. We continue until reaching an ε-corner xm . We have for each i :

HN

(
xi+1

)
−HN

(
xi

)
≥

(
ζ
(∣∣xi ∣∣2

2

)p
ε−δ

)∣∣v i ∣∣2
2.

From the orthogonality conditions on v i we have∣∣xi+1∣∣2
2 −

∣∣xi ∣∣2
2 =

∣∣v i ∣∣2
2 =

∣∣xi+1 −x0∣∣2
2 −

∣∣xi −x0∣∣2
2 (8)

which implies δ
∑m−1

i =0 |v i |22 =O(δ) = oδ→0(1). As in the proof of Theorem 1, the fact that |v i |22 → 0
uniformly as δ→ 0 gives the Riemann sum convergence

m−1∑
i =0

ζ
(∣∣xi ∣∣2

2

)p
ε
∣∣v i ∣∣2

2 =
m−1∑
i =0

ζ
(∣∣xi ∣∣2

2

)p
ε
(∣∣xi+1∣∣2

2 −
∣∣xi ∣∣2

2

)
→p

ε

∫ |xm |22
|x0|22

ζ(t )d t .

It follows that for δ sufficiently small as a function of ε, with probability 1−e−Ωε,δ(N ):

HN
(
xm)−HN

(
x0)≥p

ε

∫ |xm |22
|x0|2

ζ(t )d t −oδ→0(1)

=p
ε

∫ |x0|22+|xm−x0|22
|x0|22

ζ(t )d t −oδ→0(1).

Here the latter equality follows from (8). Since x0 was arbitrary and xm is an ε-corner, taking δ
small enough depending on (ε,ε′,η) completes the proof of Theorem 11. �
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