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1. Introduction

Throughout this article, all rings R are assumed to be associative rings with identity and all mod-
ules are unitary. By an “R-module” or just a “module” we always mean a left R-module, and hence
by a “complex” we mean a complex of left R-modules; by “Noether” (resp. “coherent”) we mean
left Noether (resp. left coherent); by global dimension (resp. “global Gorenstein AC-injective di-
mension”, “global Gorenstein injective dimension”) of R we mean left global dimension (resp.
left global Gorenstein AC-injective dimension, left global Gorenstein injective dimension) of R.
When we wish to refer to a right module (resp. a right coherent ring), we will use the full name or
an Rop -module (resp. Rop is coherent) and so on. Here Rop denotes the oppositive ring of R.

In 2005, Krause proved in [27, Theorem 1.1] that, if R is Noether, then both K(R-Inj) and
Kac(R-Inj), the homotopy category of injective R-modules and its homotopy subcategory con-
sisting of acyclic complexes of injective R-modules, are compactly generated. Furthermore, there
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is a recollement of compactly generated triangulated categories (the recollement is known as
”Krause’s recollement”)

Kac(R-Inj) // K(R-Inj)
oo

oo
// D(R).

oo

oo

Ten years later, Št’ovíček [35, Theorem 7.7] improved the results to the case of coherent rings.
In order to extend Krause’s recollement to an arbitrary ring R, Gillespie [21, Corollary 5.9] ex-
plained how K(R-Inj) and Kac(R-Inj) can be replaced by K(AC-Inj) and Kac(AC-Inj), the homo-
topy category of all AC-injective R-complexes and its homotopy subcategory consisting of all
acyclic AC-injective R-complexes, to get the same beautiful results (see Definition 2.4 for the no-
tion of AC-injective complexes). For a coherent ring R, Št’ovíček showed in [35, Corollary 6.13]
that K(AC-Inj) = K(R-Inj). Gillespie then in [21, Introduction] raised the following questions in-
volving such an equality:

Question 1. For what rings R do we have K(AC-Inj) = K(R- Inj)?

Question 2. Does K(AC-Inj) = K(R- Inj) characterize that R is coherent?

Enochs, Jenda and Torrecillas [9, 11] introduced Gorenstein projective, injective and flat mod-
ules for any ring and then established Gorenstein homological algebra. Such a relative homo-
logical algebra has been developed rapidly during the past several years and become a rich the-
ory. We refer to [1, 2, 4–7, 10, 12, 14, 17, 18, 23, 30, 40] for more details about Gorenstein homolog-
ical modules. Particularly, in order to give a similarity between Gorenstein rings and Ding-Chen
rings, Ding, Mao and Li as well as Gillespie [6, 17, 30] introduced Ding projective and Ding in-
jective modules and then Gillespie [17] established two hereditary abelian model structures with
respect to Ding modules; in order that Gorenstein homological algebra should work for any ring,
Bravo, Gillespie and Hovey [4] introduced the notions Gorenstein AC-projective and Gorestein
AC-injective modules and then established two new hereditary abelian model structures with re-
spect to such Gorenstein AC-modules.

It is well-known that a very natural way to study homological algebra is extending the ho-
mological theory on the category of modules to the one of complexes of modules, and that
it is an important question to establish relationships between a complex and all modules as
its components. Based on these viewpoints, Gorenstein homological complexes, Ding homo-
logical complexes and Gorenstein AC-homological complexes have been given a description
in [3, 15, 20, 28, 29, 37–39, 41]. Let R be a Noether ring. Liu and Zhang proved in [28] that Goren-
stein injective complexes are exactly the complexes consisting of Gorenstein injective modules.
This improves the corresponding result in [15] from Gorenstein rings to Noether rings. Using dif-
ferent approaches, Liu, Yang and Yang [37, 41] further improved the result to an arbitrary ring.
Recently, Gillespie [20] showed that the behavior for Ding injective complexes holds over any
Ding-Chen ring. The result was improved to coherent rings by Yang and Estrada [38]. Notice that
Gorenstein AC-injective complexes and Ding injective complexes coincide whenever the ring is
coherent. Thus, it is natural to ask

Question 3. For what rings do we have Gorenstein AC-injective complexes are exactly complexes
consisting of Gorenstein AC-injective modules?

By introducing the notions of Gorenstein n-coherent rings (here n ∈N∪ {∞}), Wang, Liu and
Yang [36] gave a negative answer to Question 2 above. One of the goals of the present manuscript
is to show that Questions 1 and 3 are equivalent as follows.

Theorem 4 (=Corollary 22). Let R be a ring. Then the following are equivalent:

(1) K(AC-Inj) = K(R- Inj).
(2) Kac(AC-Inj) = Kac(R- Inj).
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(3) For any (acyclic) R-complex X , X is Gorenstein AC-injective if and only if each Xm is a
Gorenstein AC-injective R-module.

We find that Theorem 4 has some interesting applications. Firstly, by the definitions, it is trivial
that any Gorenstein AC-injective module (resp. any Gorenstein AC-injective complex) is always
Gorenstein injective. But using Theorem 4, we obtain some examples to show that the converse
is not true in general (see Examples 24 and 25).

Secondly, we get the following corollary, which unifies some well-known conditions of rings
such that Krause’s recollement holds.

Corollary 5 (=Corollaries 23 and 26). Let R be a ring such that any acyclic complex of injective
modules is Gorenstein AC-injective or totally AC-acyclic. Then Krause’s recollement holds; in par-
ticular, both K(R- Inj) and Kac(R- Inj) are compactly generated.

We denote by G (resp. GI ) the subcategory of all Gorenstein AC-injective (resp. all Gorenstein
injective) R-modules for a ring R. Then G (resp. GI ), together with all short exact sequences in G

(resp. GI ), forms a Frobenius category with projective-injective objects all injective R-modules.
It follows that the stable category G (resp. GI ) is a triangulated category. The third application
of Theorem 4 as below concerns when such stable categories are compactly generated.

Corollary 6 (=Corollary 27). Let R be a ring such that any acyclic complex of injective R-modules
is totally AC-acyclic. Then G =GI are compactly generated.

Grothendieck duality is a classical subject which can go back 1958s. Roughly speaking, it is a
statement concerning the existence of a right adjoint to the “direct image with compact support”
functor between derived categories of sheaves or modules. For a ring R, besides using dualizing
complexes, over the years many people investigated Grothendieck duality for derived categories
of R-modules by providing the following insights:

(GD1) There is a triangulated equivalence Db(Rop -mod)op ' Db(R-mod), where the right cat-
egory is the bounded derived category of finitely presented R-modules and the left one
is the oppositive category of the bounded derived category of finitely presented right R-
modules;

(GD2) K(R-Proj) and K(R-Inj) are compactly generated and triangulated equivalent, where
K(R-Proj) denotes the homotopy category of projective R-modules.

Building from the works of Krause and Iyengar [24, 27], as well as Jørgensen [25], Neeman [34]
gave an new point that (GD2) implies (GD1) provided that R is a Noether and right coherent ring
such that all flat R-modules have finite projective dimension. The second goal of this paper is to
improve Neeman’s angle of view to the case of left and right coherent rings and to investigate the
relationship between (GD1) (and/or (GD2)) and the finiteness of global Gorenstain (AC-)injective
dimension.

The following result provides another counterexample of Question 2 and shows that (GD2)
happens if the global Gorenstain AC-injective dimension of the ring, that is, the supremum of
Gorenstain AC-injective dimensions of all modules, is finite.

Theorem 7 (=Theorem 29 and Example 34).

(1) Let R be a ring with finite global Gorenstain AC-injective dimension. Then K(AC-Inj) =
K(R- Inj) and (GD2) hold.

(2) The class of rings with finite global Gorenstain AC-injective dimension includes strictly the
one of rings with finite global dimension and the one of coherent rings with finite global
Gorenstein injective dimension.

Let us denote by Db(R-tmod) (resp. Db(Rop -tmod)op ) the bounded derived category of R-
modules of type FP∞ (resp. the oppositive category of the bounded derived category of right
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R-modules of type FP∞); by K(R-Proj)c (resp. K(R-Inj)c ) the full triangulated subcategory of
K(R-Proj) (resp. K(R-Inj)) consisting of all compact objects. The following result can be viewed as
a continuation of [25, Theorem 3.2] and [27, Proposition 2.3].

Theorem 8 (=Proposition 30). Let R be a ring.

(1) If K(R-Proj) is compactly generated, then there is a triangulated equivalence K(R-Proj)c '
Db(Rop -tmod)op .

(2) If K(AC-Inj) = K(R- Inj), then there exists a triangulated equivalence K(R- Inj)c '
Db(R-tmod).

As applications of the preceding two theorems, we have the following corollary, the second
result of which improves Neeman’s angle of view, i.e., (GD2) implies (GD1), from the case of left
Noether and right coherent rings such that all flat left modules have finite projective dimension
to the case of left and right coherent rings.

Corollary 9 (=Corollaries 31 and 33).

(1) Let R be a ring with K(R-Proj) compactly generated and with the equality K(AC-Inj) =
K(R- Inj). Then the triangulated equivalence K(R-Proj) ' K(R- Inj) implies another one
Db(Rop -tmod)op ' Db(R-tmod). In particular, the two triangulated equivalences hold
provided that R is of finite global Gorenstein AC-injective dimension.

(2) Let R be a left and right coherent ring. Then the triangulated equivalence K(R-Proj) '
K(R- Inj) implies another one Db(Rop -mod)op ' Db(R-mod). In particular, the two tri-
angulated equivalences hold provided that R is of finite global Gorenstein injective dimen-
sion.

2. Preliminaries

In this section we recall some notions which will be used in the article.
Let R be a ring. Denote by R-Mod (resp. Rop -Mod) the categories of all R-modules (resp.

all right R-modules); by Ch(R) (resp. Ch(Rop )) the category of complexes of R-modules (resp.
Rop -modules); by D(R) the derived category of all R-modules; by R-Proj, R-Inj and R-Flat the
subcategory of R-Mod consisting of all projective, injective and flat R-modules respectively;
by pdR (M), idR (M) and fdR (M) the projective, injective and flat dimension of an R-module
respectively.

2.1. The basics of Complexes

Following [38, Preliminaries], we denote by Extk
Ch(R)( · , · ) the right derived functors of

HomCh(R)( · , · ).

Given a complex X = ·· ·→ Xm+1
dm+1−→ Xm

dm−→ Xm−1 →··· , we denote by Zk (X ) (resp. Hk (X )) the
module Kerdk (resp. Kerdk /Imdk+1) for any integer k, and X is said to be acyclic (or exact) if all
Hk (X ) = 0. X is bounded if it is bounded above and below, where we say that X is bounded above
(resp. bounded below) if Xm = 0 holds for m À 0 (resp. m ¿ 0); for integers n and m, the hard
right-truncation of X at n (resp. the hard left-truncation of X at m) is denoted by X≥n (resp. X≤m)
are defined as the following bounded-below complex and bounded-above complex, respectively:

X≥n = ·· ·→ Xn+1
d X

n+1−→ Xn → 0 and X≤m = 0 → Xm
d X

m−→ Xm−1 →··· .

Given X ,Y ∈ Ch(R), the homomorphism complex of X and Y , denoted by H om(X ,Y ), is

defined as the Z-complex · · · −→ ∏
k∈ZHomR (Xk ,Yk−m)

dm−→ ∏
k∈ZHomR (Xk ,Yk−m−1) −→ ·· · ,

where dm is given by dm(( fk )k∈Z) = (d Y
k−m fk − (−1)m fk−1d X

k )k∈Z, for all ( fk )k∈Z ∈H om(X ,Y )m .

C. R. Mathématique — 2021, 359, n 5, 593-607
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A morphism f : X → Y is said to be null-homotopic if there exists a family (hm : Xm →
Ym+1)m∈Z of R-homomorphisms such that fm = d Y

m+1hm +hm−1d X
m for all m ∈Z.

We refer to readers to see more details in [38, Preliminaries].

2.2. Cotorsion pairs.

Let A be an abelian category and X ,Y subcategories of A . A pair (X ,Y ) is called a cotorsion
pair if X ⊥ = Y and Y =⊥ X . Here X ⊥ = {A ∈ A | Ext1

A
(X , A) = 0,∀ X ∈ X }, and similarly we

can define ⊥X . A cotorsion pair (X ,Y ) is said to be hereditary if Extn
A

(X ,Y ) = 0 for all X ∈ X ,
Y ∈ Y and n ≥ 1. A cotorsion pair (X ,Y ) is called complete if for any object A ∈ A , there are
exact sequences 0 → Y → X → A → 0 and 0 → A → Y ′ → X ′ → 0 respectively with X , X ′ ∈ X and
Y ,Y ′ ∈Y . Let A be an abelian category with enough injectives. Recall that a subcategory X of A

is injective coresolving if X contains all injective objects and is closed under extensions as well as
cokernels of monic morphisms of A . Recall that a class X of objects in A is thick if X is closed
under direct summands and such that if any two terms in a short exact sequence are in X , then
so is the third. According to [18, Proposition 3.6], a cotorsion pair (X ,Y ) is called injective if X is
thick and X ∩Y equals the class of all injective objects.

Gillespie introduced in [16] the following definitions, which extend the notions of dg-injective
complexes (recall that a complex C is dg-injective if each Cm is injective and each morphism
f : E →C is null-homotopic whenever E is acyclic).

Definition 10 (cf. [16, Definition 3.3]). Let (X ,Y ) be a cotorsion pair in R-Mod and C a complex.

(1) C is called an X complex if it is exact and Zi (C ) ∈X for each i ∈Z.
(2) C is called a Y complex if it is exact and Zi (C ) ∈Y for each i ∈Z.
(3) C is called a dg-X complex if Ci ∈ X for each i ∈ Z, and every morphism f : C → Y is

null-homotopic whenever Y is a Y complex.
(4) C is called a dg-Y complex if Ci ∈ Y for each i ∈ Z, and every morphism f : X → C is

null-homotopic whenever X is an X complex.

2.3. Gorenstein AC-injective modules and complexes

According to [4], recall that an R-module M is of type FP∞ if there is an exact sequence of
R-modules · · · → P1 → P0 → M → 0 where each Pi is finitely generated free; a module E is
absolutely clean if Ext1

R (N ,E) = 0 for all modules N of type FP∞; an R-module M is Gorenstein AC-
injective [4] (resp. Gorenstein injective [10]) if there exists an exact complex of injective R-modules
· · · → I1 → I0 → I−1 → I−2 → ··· which remains exact after applying the functor HomR (A, · ) for
each absolutely clean (resp. injective) R-module A such that M ∼= Im(I0 → I−1).

The Gorenstein AC-injective dimension of R-module M , AC-GidR (M), is defined by declaring
that AC-GidR (M) ≤ m if and only if there is an exact sequence 0 → M →G0 → ··· →Gm → 0 with
each Gi Gorenstein AC-injective. The definition of Gorenstein injective dimension, GidR (M), can
be defined similarly.

Definition 11 (cf. [3, Definition 2.1 and Proposition 2.2]). An R-complex T is of type FP∞ if T
is bounded and each component Tm is an R-module of type FP∞.

Definition 12 (cf. [3, Definition 2.4 and Proposition 2.6]). An R-complex A is absolutely clean if
Ext1

Ch(R)(T, A) = 0 for all R-complexes T of type FP∞, or equivalently, if A is exact and each Zi (A) is
an absolutely clean R-module.

Definition 13 (cf. [21, Definition 5.1]). An R-complex X is AC-injective if all its components
Xm are an injective R-module and every morphism A → X is null-homotopic whenever A is an
absolutely clean R-complex.

C. R. Mathématique — 2021, 359, n 5, 593-607
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Definition 14 (cf. [3] and [15]). An R-complex G is Gorenstein AC-injective (resp. Gorenstein
injective) if there exists an exact sequence of injective R-complexes · · ·→ I1 → I0 → I−1 → I−2 →···
which remains exact after applying the functor HomCh(R)(A, · ) for each absolutely clean (resp.
injective) R-complex A such that G ∼= Im(I0 → I−1).

2.4. Compactly-generatedness of triangulated categories

Let T be a triangulated category with small coproducts. Recall that an object C of T is compact
if for each collection {Y j | j ∈ J } of objects of T , the canonical morphism∐

j∈J
HomT (C ,Y j ) → HomT (C ,

∐
j∈J

Y j )

is an isomorphism. The category T is compact generated if there exists a small set S ⊆ T of
compact objects such that for each 0 6= Y ∈ T there is a morphism 0 6= f : ΣmS → Y for some
S ∈S and m ∈Z, where Σ denotes the autofunctor of T .

3. The equivalence between Question 1 and Question 3

In this section, we prove that Question 1 and Question 3, from the introduction, are equivalent
(see Corollary 22). As an application, we obtain some examples to show that there exist non-
Gorenstein-AC-injective Gorenstein injective modules and Gorenstein injective complexes of
modules (see Examples 24 and 25), and give some new homological conditions of rings such that
Krause’s recollement holds (see see Corollaries 22 and 26).

We start with the following result, which is cited from [3, Theorem 3.2], and is useful in the
sequel.

Theorem 15. Let X be an R-complex. Then X is Gorenstein AC-injective if and only if all its com-
ponents Xm are Gorenstein AC-injective R-modules, and H om(A, X ) is acyclic for all absolutely
clean complexes A. Equivalently, each Xm is Gorenstein AC-injective and each morphism of com-
plexes f : A → X with A absolutely clean is null-homotopic.

We consider some immediate applications of Theorem 15.

Lemma 16. The following hold:

(1) Any dg-injective (and hence, any injective) R-complex is Gorenstein AC-injective.
(2) The subcategory of all Gorenstein AC-injective R-complexes is injectively coresolving.

Proof. (1). Clearly holds.

(2). Let 0 → X → Y → Z → 0 be a short exact sequence of R-complexes with X Gorenstein AC-
injective. On the one hand, for any m ∈ Z, we have a short exact sequence 0 → Xm → Ym →
Zm → 0 of R-modules. Besides, each Xm is Gorenstein AC-injective by Theorem 15. It follows
that Ym is Gorenstein AC-injective if and only if so is Zm since the subcategory of all Gorenstein
AC-injective R-modules is injectively coresolving. On the other hand, for any absolutely clean R-
complex A, we have a short exact sequence 0 → H om(A, X ) → H om(A,Y ) → H om(A, Z ) → 0
of Z-complexes. Moreover, H om(A, X ) is acyclic by Theorem 15. It follows that H om(A,Y ) is
acyclic if and only if so is H om(A, Z ). Thus, Y is Gorenstein AC-injective if and only if so is Z
again by Theorem 15. �

In what follows, we denote by G the subcategory of R-Mod consisting of all Gorenstein AC-
injective R-modules, and by W = ⊥G . According to [18, Fact 10.1], (W ,G ) is an injective cotorsion
pair on R-Mod. Thus, we have the notations dgG , G̃ , dgW and W̃ .

C. R. Mathématique — 2021, 359, n 5, 593-607
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Lemma 17. Let X be an R-complex. If X is in dgG̃ or G̃ , or it is a bounded above R-complex with
all its components Xm in G , then X is Gorenstein AC-injective.

Proof. Note that an R-complex X is in G̃ if and only if X is acyclic and in dgG̃ by [16, Theo-
rem 3.12], and that any bounded above complex with all its components Xm Gorenstein AC-
injective is always in dgG̃ by [16, Lemma 3.4]. Hence, we need only to see the case where X is in
dgG̃ . By the definition, all morphisms of R-complexes f : W → X with W ∈ W̃ are null-homotopic.
But any absolutely clean R-complex is always in W̃ . Thus, X is Gorenstein AC-injective by Theo-
rem 15. �

Let X be a complex with all components Xm a Gorenstein AC-injective R-module. Then the
previous lemma says that X is Gorenstein AC-injective whenever X is bounded above. By the
following two results we consider the case for X to be bounded below.

Lemma 18. Let X be a bounded below complex with all its components Xm Gorenstein AC-
injective. Then there exists a short exact sequence 0 → K → E → X → 0 of R-complexes with the
following:

(1) E is a bounded below complex with each its component Em an injective R-module.
(2) K is an acyclic and bounded below complex with each its component Km a Gorenstein AC-

injective R-module.
(3) K is HomR (M , · )-exact for all absolutely clean R-modules M.

Proof. The proof is similar to the one in [38, Lemma 3.1], which describe any bounded below
complex as a direct limit of its subcomplexes by the hard left-truncation of it, and use the
induction on its degree of bounded below. Besides the induction technology and seeking for
appropriate morphisms of complexes to construct the mapping cone, the key points of the proof
are as follows:

(a) For any Ding injective R-module D , there exists a “left injective resolution” from the
definition which is HomR (M , · )-exact for all FP-injective R-module M , meanwhile, any
kernel of such “left injective resolution” is still Ding injective.

(b) Extk≥1
R (M ,D) = 0 for all Ding injective modules D and all FP-injective modules M .

(c) The class of all Ding injective modules is injective coresolving and closed under finite
direct sums.

(d) The class of all FP-injective modules is closed under (arbitrary) direct sums.

Note that (a)–(d) all have a version for “Gorenstein AC-injective” by replacing “FP-injective”
and “Ding injective” with “absolutely clean” and “Gorenstein AC-injective” respectively (one can
see [4] for the detail). So, one can get the corresponding proof for the case of “Gorenstein AC-
injective”. �

Lemma 19. Let X be a bounded below R-complex with all its components Xm Gorenstein AC-
injective. Then there exists a short exact sequence 0 → K → E → X → 0 of R complexes with K
acyclic and Gorenstein AC-injective and all components of E injective.

Proof. We consider the short exact sequence 0 → K → E → X → 0 established in Lemma 18. Let
A be any absolutely clean R-complex. Then the Z-complex HomR (Am ,K ) is acyclic for all m ∈ Z
by the condition (3) in Lemma 18, also, the abelian group HomR (Am ,Km) is zero for all m ¿ 0
since K is bounded below. So any morphism A → K is null-homotopic by [8, Lemma 2.3]. Thus,
Theorem 15 yields that K is Gorenstein AC-injective since each Km is a Gorenstein AC-injective
R-module. �

According to [41, Proposition 2.8], an R-complex X is Gorenstein injective if and only if all its
components Xm are Gorenstein injective R-modules. Now we consider the version for Gorenstein
AC-injective R-complexes, in other words, it is an answer to Question 3 from the introduction.
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Lemma 20. The following conditions are equivalent for any ring R:

(1) Every bounded below complex of Gorenstein AC-injective modules is Gorenstein AC-
injective.

(2) Every bounded below complex of injective modules is Gorenstein AC-injective.
(3) Every complex of Gorenstein AC-injective modules is Gorenstein AC-injective.
(4) Every complex of injective modules is Gorenstein AC-injective.
(5) Every acyclic complex of Gorenstein AC-injective modules is Gorenstein AC-injective.
(6) Every acyclic complex of injective modules is Gorenstein AC-injective.

Proof. It is trivial that (3) ⇒ (1) ⇒ (2), (3) ⇒ (4) ⇒ (2), (3) ⇒ (4) ⇒ (6) and (3) ⇒ (5) ⇒ (6).

(2)⇒(3). Let X be a complex of Gorenstein AC-injective R-modules. Consider the short exact
sequence of R-complexes 0 → X≤0 → X → X≥1 → 0. Then both X≤0 and X≥1 admit all compo-
nents to be Gorenstein AC-injective. Since X≤0 is bounded above, it is Gorenstein AC-injective by
Lemma 17. Applying Lemma 16(2), we need enough to show that X≥1 is Gorenstein AC-injective.
Notice that X≥1 is bounded-below, Lemma 19 yields that there is a short exact sequence of R-
complexes 0 → K → E → X≥1 → 0 with K Gorenstein AC-injective and E admitting all com-
ponents to be injective. By (2) E is a Gorenstein AC-injective R-complex, so is X≥1 again by
Lemma 16(2). �

(6)⇒(4). Let X be a complex of injective R-modules. Consider the short exact sequence 0 → I →
E → X → 0 of R-complexes with I dg-injective and E acyclic. Then E has all components to be an
injective R-module since so do I and X . Hence, by (6) E is a Gorenstein AC-injective R-complex,
so is X by Lemma 16(2) because I is a Gorenstein AC-injective R-complex by Lemma 16(1). �

It is now in a position to give our main result.

Theorem 21. The following conditions are equivalent for any ring R:

(1) Every complex of injective R-modules is AC-injective.
(2) Every acyclic R-complex of injective R-modules is AC-injective.
(3) Every complex of Gorenstein AC-injective R-modules is Gorenstein AC-injective.
(4) Every complex of injective R-modules is Gorenstein AC-injective.
(5) Every acyclic complex of injective R-modules is Gorenstein AC-injective.

Proof. (1) ⇔ (4) and (2) ⇔ (5) follow from Theorem 15; (3) ⇔ (4) ⇔ (5) holds by Lemma 20. �

We denote by K(AC-Inj) the homotopy category of all AC-injective R-complexes and by
Kac(AC-Inj) its homotopy subcategory consisting of all exact AC-injective R-complexes; by
K(R-Inj) the homotopy category of injective R-modules and by Kac(R-Inj) its homotopy subcat-
egory consisting of exact complexes of injective R-modules.

In order to extend Krause’s recollement to an arbitrary ring R, Gillespie [21, Corollary 5.9]
explained how K(R-Inj) and Kac(R-Inj) can be replaced by K(AC-Inj) and Kac(AC-Inj) to get
the same results. For a coherent ring R, the work of Št’ovíček [35, Corollary 6.13] shows that
K(AC-Inj) = K(R-Inj). Gillespie [21, Remark, p. 109] gave an example to show that the equality may
not hold for a non-coherent ring, and then in [21, Introduction] raised the following questions
involving such an equality:

• For what rings R do we have K(AC-Inj) = K(R-Inj)?
• Does K(AC-Inj) = K(R-Inj) characterize thatR is coherent?

Recall that an R-complex C is contractible if the identity endomorphism C → C is null-
homotopic. Note that such a complex is always exact and such a complex of injective modules
is exactly injective complexes. These facts help us to get the next corollary, which provides an
answer to the second question above.
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Corollary 22. The following conditions are equivalent for any ring R:

(1) K(AC-Inj) = K(R- Inj).
(2) Kac(AC-Inj) = Kac(R- Inj).
(3) For any (acyclic) complex X , X is Gorenstein AC-injective if and only if each Xm is a

Gorenstein AC-injective R-module.

Proof. We use the notation Ch(R-Inj) to denote the subcategory of Ch(R) consisting of all
complexes of injective R-modules, similarly for the notations Chac(R-Inj), Ch(AC-Inj) and
Chac(AC-Inj). According to Theorem 21, we know that (3) and the following two conditions are
equivalent:

(4) Ch(AC-Inj) = Ch(R-Inj).
(5) Chac(AC-Inj) = Chac(R-Inj).

Note that (4) ⇒ (1) and (5) ⇒ (2) are trivial.

(1)⇒(4). Suppose that K(AC-Inj) = K(R-Inj). It is trivial that Ch(AC-Inj) ⊆ Ch(R-Inj). Conversely,
let X ∈ Ch(R-Inj). Then there exists a contractible complex Y of injective R-modules such that
X ⊕Y is in Ch(AC-Inj) since K(AC-Inj) = K(R-Inj). Notice that contractible complexes of injective
R-modules are exactly injective R-complexes, and so they are AC-injective. We conclude that X
is in Ch(AC-Inj).

(2)⇒(5). It is similar to (1) ⇒ (4) since any contractible complex is always exact. �

As mentioned above, by replacing K(R-Inj) and Kac(R-Inj) with K(AC-Inj) and Kac(AC-Inj)
respectively, Gillespie [21, Corollary 5.9] extend Krause’s recollement to an arbitrary ring R.
Together with this result and Corollary 22, we have

Corollary 23. If one of the equivalent conditions in Corollary 22 is satisfied, then Krause’s recolle-
ment holds over R; in particular, K(R- Inj) and Kac(R- Inj) are compactly generated.

By the definition, it is trivial that every Gorenstein AC-injective R-module (resp. R-complex) is
always Gorenstein injective. In the following, we give some examples to show that the converse
may be not true in general.

Example 24. Let R be the ring K [x1, x2, . . . ]/(xi x j )i , j≥1, where K is a field. Then [21, Remark,
p. 108] shows that there is a complex X consisting of injective R-modules which is not AC-
injective. Then by Theorem 21, X is not Gorenstein AC-injective. However, according to [41,
Proposition 2.8], X is always a Gorenstein injective R-complex.

Example 25. Let R be the ring as in Example 24 and consider the ring S = R[x]/(x2). By virtue
of [22, Section 5.5], we know that there exists an isomorphism between the categories of S-
modules and R-complexes, which restricts to an isomorphism between the subcategories of
Gorenstein AC-injective S-modules and Gorenstein AC-injective R-complexes (resp. between the
subcategories of Gorenstein injective S-modules and Gorenstein injective R-complexes). Thus,
Example 24 shows that there is a Gorenstein injective S-module which is not Gorenstein AC-
injective.

Recall that an acyclic R-complex I of injective R-modules is totally acyclic (resp. totally AC-
acyclic) if HomR (M , I ) remains acyclic for any injective (resp. absolutely clean) R-module M . We
denote by Ktac(R-Inj) (resp. KAC-tac(R-Inj)) the homotopy subcategory of K(R-Inj) consisting of
all totally acyclic (resp. totally AC-acyclic) complexes of injective R-modules; by dwG̃ (resp. acG̃ )
the subcategory of Ch(R) consisting of all (resp. acyclic) complexes with all components Xm to
be Gorenstein AC-injective. By virtue of [13, Theorem 3.4], we know that every acyclic complex
of injective R-modules is totally AC-acyclic if and only if dwG̃ = dgG̃ if and only if acG̃ = G̃ . This
result helps us to get the following proposition.
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Proposition 26. The following conditions are equivalent for any ring R:

(1) Kac(R- Inj) = KAC-tac(R- Inj).
(2) dwG̃ = dgG̃

(3) acG̃ = G̃

If one of the equivalent conditions are satisfied, then the equality K(AC-Inj) = K(R- Inj) and Krause’s
recollement hold over R; in particular, K(R- Inj) and Kac(R- Inj) = Ktac(R- Inj) = KAC-tac(R- Inj) are
compactly generated.

Proof. It is easy to see that (1)–(3) are equivalent and K(AC-Inj) = K(R-Inj) by [13, Theo-
rem 3.4] and the proof in Corollary 22. Now suppose that (1)–(3) holds true. Then the equalities
Kac(R-Inj) = Ktac(R-Inj) = KAC-tac(R-Inj) hold since the implications Kac(R-Inj) ⊇ Ktac(R-Inj) ⊇
KAC-tac(R-Inj) hold. At the same time, any acyclic R-complex X is Gorenstein AC-injective if and
only if each Xm is a Gorenstein AC-injective R-module. Thus the last assertions then follows from
Corollary 23. �

Let R be any ring. Note that, by the definitions, the subcategory G (resp. GI , the subcategory
of R-Mod consisting of all Gorenstein injective R-modules) in R-Mod consists of all modules as
some cycle of a totally AC-acyclic (resp. totally acyclic) R-complex. Furthermore, [27, Proposi-
tion 7.2] yields that there is a triangulated equivalence Ktac(R-Inj) 'GI . One can obtain another
triangulated equivalence KAC-tac(R-Inj) 'G by using the similar method in [27, Proposition 7.2].
Here GI (resp. G ) denotes the stable category with respect to Gorenstein injective (resp. Goren-
stein AC-injective) modules. Hence by Corollary 26, we obtain

Corollary 27. Let R be a ring such that any acyclic complex of injective modules is totally AC-
acyclic. Then G =GI are compactly generated.

4. Counterexamples to Question 2 and Grothendieck duality

In this section, we study some homological properties of rings with finite global Gorenstein AC-
injective dimension (see Lemma 28). As application, we give a new counterexample to Question 2
from the introduction (see Theorem 29 and Example 34), and establish a extended Grothendieck
duality theorem (see Proposition 30 and Corollaries 31 and 33).

Lemma 28. Let R be a ring with sup{AC-GidR (M) | M is an R-module } finite. Then the following
are equivalent for any R-module N :

(1) N is a Gorenstein AC-injective R-module.
(2) N is a Gorenstein injective R-module.
(3) There exists an acyclic complex of injective R-modules I = ·· · → I1 → I0 → I1 → I−2 → ···

such that N ∼= Im(I0 → I−1).

In particular, any acyclic complex of injective R-modules are totally AC-acyclic.

Proof. We need only to prove (3) ⇒ (1) since (1) ⇒ (2) ⇒ (3) are trivial. To this end, we let A
be any absolutely clean R-module and we prove that HomR (A, I ) is acyclic, or equivalently, all
Hk (HomR (A, I )) = 0. For each R-module M , one has AC-GidR (M) ≤ m <∞ for some nonnegative
integer m by assumption. So there is an exact sequence of R-modules

0 → M →G0 →···→Gm → 0

with each Gi Gorenstein AC-injective. Thus Extm+1
R (A, M) ∼= Ext1

R (A,Gm) = 0. This yields that A
satisfies pdR (A) ≤ m. We want to prove that Sk A belongs to ⊥X for all k ∈ Z by induction on
pdR (A). Here we denote by X the class of all acyclic complexes consisting of injective R-modules.
Notice first from [18, Proposition 7.2] that (⊥X ,X ) is an injective cotorsion pair on Ch(R) since
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the pair (R-Mod, R-Inj) forms an injective cotorsion pair on R-Mod. If pdR (A) = 0, then Sk A
belongs to ⊥X by [20, Corollary 3.4(2)]. Now let pdR (A) > 0. Consider the short exact sequence of
R-modules

0 → K → P → A → 0

with P projective. Then Sk P belongs to ⊥X by what we have proved, at the same time, pdR (K ) ≤
pdR (A)−1 and so Sk K belongs to ⊥X by induction. We conclude that Sk A belongs to ⊥X since
⊥X is thick. Thus we have Hk (HomR (A, I )) ⊆ Ext1

Ch(R)(Sk A, I ) = 0. �

The following theorem is our main result in this section, where K(R-Proj) denotes the homo-
topy category of projective R-modules.

Theorem 29. Let R be a ring with sup{AC-GidR (M) | M is an R-module } finite. Then

(1) The equality K(AC-Inj) = K(R- Inj) and Krause’s recollement hold. In particular, K(R- Inj)
and Kac(R- Inj) are compactly generated.

(2) There exists a triangulated equivalence K(R-Proj) ' K(R- Inj) in which two triangulated
categories are compactly generated.

Proof. The assertions in (1) hold by Lemma 28 and Corollary 26.
For the assertions in (2), we note that the existence of the triangulated equivalence is guar-

anteed by [5, Theorem B] since sup{AC-GidR (M) | M is an R-module } <∞ implies that R is left
Gorenstein in the sense [5]. Moreover, two triangulated categories being compactly generated fol-
lows from (1). �

As usual, the notation Db(R-mod) (resp. Db(Rop -mod)op ) denotes the bounded derived
category of finitely presented left R-modules (resp. the oppositive category of the bounded
derived category of finitely presented right R-module). Let us denote by Db(R-tmod) (resp.
Db(Rop -tmod)op ) the bounded derived category of left R-modules of type FP∞ (resp. the oppos-
itive category of the bounded derived category of right R-modules of type FP∞); by K(R-Proj)c

(resp. K(R-Inj)c , K(AC-Inj)c ) the full triangulated subcategory of K(R-Proj) (resp. K(R-Proj),
K(AC-Inj)) consisting of all compact objects.

Proposition 30. Let R be a ring.

(1) If K(R-Proj) is compactly generated, then there exists a triangulated equivalence
K(R-Proj)c ' Db(Rop -tmod)op .

(2) If K(AC-Inj) = K(R- Inj), then there exists a triangulated equivalence K(R- Inj)c '
Db(R-tmod).

Proof. (1). According to [34, Proposition 7.12], we know that an object X in K(R-Proj) is compact
if and only if there is a complex Y satisfying

(I) Y is a bounded-below complex of finitely generated projective modules.
(II) Y ∗ = HomR (Y ,R) is also a bounded-below complex.

such that X is isomorphic to Y in K(R-Proj). Let U be the full subcategory of K(R-Proj) consisting
of objects which are finitely built from objects Y as above, using suspensions, distinguished
triangles, retractions and homotopy colimits; V be the full subcategory of K(Rop -Proj) consisting
of objects which are finitely built from objects Y ∗ with Y as above. Since Y is a complex of finitely
generated projective R-modules, the canonical morphisms of complexes Y → Y ∗ and Y ∗ → Y ∗∗∗

are isomorphisms. It follows that

U
( · )∗ // V op

( · )∗
oo
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are quasi-inverse equivalences of triangulated categories. Thus, we are done once we obtain the
triangulated equivalences

U = K(R-Proj)c and V ' Db(Rop -tmod).

Firstly, since K(R-Proj)c is compactly generated and the category U consists of objects finitely
built from a set of compact generators of K(R-Proj), the equality holds by [33, Theorem 2.1.3].

Secondly, for any Rop -module N of type FP∞, by the definition, there is an exact sequence

· · ·→ P2 → P1 → P0 → N → 0

of Rop -modules with each Pi finitely generated free. Consider the Rop -complex P = ·· · → P2 →
P1 → P0 → 0 and the direct system {(P (i ),αi j ) | 0 ≤ i ≤ j } in Ch(Rop ), where

P (i ) =: · · ·→ 0 → Pi →···→ P1 → P0 → 0

and αi j : X (i ) → X ( j ) is the following natural injection of the form

P (i ) =: · · ·
αi j

��

// 0 //

0

��

0 //

0

��

· · · // Pi
//

=
��

· · · // P1

=
��

// P0
//

=
��

0

P ( j ) =: · · · // 0 // P j
// · · · // Pi

// · · · // P1
// P0

// 0

for all i ≤ j . Note that the homotopy colimit of all P (i )s is just P . It is a standard way to see that
each P (i ) has the form P (i ) = Y ∗ with Y satisfying both conditions (I) and (II) above, and so does
P . Hence, the category V consists of the objects finitely built from projective resolutions all Rop -
modules of type FP∞, and so it is classical that V is equivalent to Db(Rop -tmod).

(2). Let F be an R-module of type FP∞ and I = 0 → I0 → I−1 → I−2 → ··· the injective res-
olution of F , that is, each Ii is an R-module and there is an exact sequence of R-modules
0 → F → I−1 → I−2 → ··· . Then I is a compact object in K(AC-Inj) with an isomorphism
HomK(AC-Inj)(F, X ) ∼= HomK(AC-Inj)(I , X ) for all X ∈ K(AC-Inj) by applying [31, Theorem 2.29] to
such a homotopy category. By virtue of [21, Theorems 4.4 and 5.2] and their proof, one can see
that, for any non-zero object X in K(AC-Inj), there exists an R-module F of type FP∞ such that
HomK(AC-Inj)(F,Σm X ) 6= 0 for some m ∈ Z. Hence, [32, Lemma 2.2] shows that K(AC-Inj)c equals
the thick subcategory of R-modules of type FP∞. A standard argument shows that the canonical
functor K(AC-Inj) → D(R) (see [21, Corollary 5.9]) induces a triangulated equivalence

K(AC-Inj)c ' Db(R-tmod).

Thus, the desired triangulated equivalence holds by the equality K(AC-Inj) = K(R-Inj). �

Corollary 31. Let R be a ring such that K(R-Proj) is compactly generated and that the equality
K(AC-Inj) = K(R- Inj) holds. Then the triangulated equivalence K(R-Proj) ' K(R- Inj) implies an-
other one Db(Rop -tmod)op ' Db(R-tmod). In particular, the two triangulated equivalences hold
provided that sup{AC-GidR (M) | M is an R-module } is finite.

Proof. By the assumption K(R-Proj) and K(R-Inj) are compactly generated. Suppose that there
is a triangulated equivalence K(R-Proj) ' K(R-Inj). Then it restricts to the one K(R-Proj)c '
K(R-Inj)c . Thus Proposition 30 yields another triangulated equivalence Db(Rop -tmod)op '
Db(R-tmod). The last assertion holds by Theorem 29 and what we have proved. �

As we all know, the finiteness of sup{AC-GidR (M) | M is an R-module } implies the finiteness
of sup{GidR (M) | M is an R-module }. The next lemma consider the converse.

Lemma 32. Let R be a coherent ring. If sup{GidR (M) | M is an R-module } is finite, then so is
sup{AC-GidR (M) | M is an R-module }.
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Proof. It suffices to prove G = GI . By [4, remarks in p. 17], we need enough to show that any
absolutely clean R-module has finite injective dimension. For this, let A be an absolutely clean
R-module, and let sup{GidR (M) | M is an R-module } = m <∞. Then [4, Corollary 2.9] yields that
A is FP-injective since R is left coherent. Hence, there is a pure exact sequence 0 → A → I →C → 0
of R-modules with I injective. By [7, Corollary 4.3], one has fdR I ≤ m. It follows that fdR A ≤ fdR I ≤
m, and hence one has idR A ≤ m again by [7, Corollary 4.3]. �

According to [19, Theorem 3.21], we know that the two subcategories Rop -mod and Rop -tmod
(resp. R-mod and R-tmod) coincide whenever R is right (resp. left) coherent. Using these facts
and Theorem 29, Lemma 32 and Corollary 31, we have

Corollary 33. Let R be a left and right coherent ring. Then the triangulated equivalence
K(R-Proj) ' K(R- Inj) implies another one Db(Rop -mod)op ' Db(R-mod). In particular, the two
triangulated equivalences hold provided that sup{GidR (M) | M is an R-module } is finite.

Let R = ∏k
i=1 Ri be a finite direct product of rings and M = M1 ⊕·· ·⊕Mk , N = N1 ⊕·· ·⊕Nk be

decompositions of R-modules into Ri -modules. Then following from [1, Theorem 3.1], we know
that there is a natural isomorphism of abelian groups

HomR (M , N )
∼=→ HomR1 (M1, N1)⊕·· ·⊕HomRk (Mk , Nk ) (\)

which is given by α 7→ α1 ⊕ ·· · ⊕ αk , where the homomorphism α1 ⊕ ·· · ⊕ αk is defined as
(α1 ⊕ ·· ·⊕αk )(m1 ⊕ ·· ·⊕mk ) = (α1m1, . . . ,αk mk ). Furthermore, α is injective (resp. surjective) if
and only if each αi is injective (resp. surjective). By such an isomorphism one can easily verify
that

Fact 1. A sequence E = 0 → M 1 → M 2 → M 3 → 0 of R-modules is a short exact sequence if and
only if so is each sequence Ei = 0 → M 1

i → M 2
i → M 3

i → 0 in Ri -Mod, and hence a sequence
M = ·· · → M n → M n−1 → ··· → M 0 → ··· of R-modules is an exact sequence if and only if so is
each Mi = ·· ·→ M n

i → M n−1
i →···→ M 0

i →··· in Ri -Mod.

Combining Fact 1 with the isomorphism (\), one can check that

Fact 2. An R-module M is (finitely generated) projective if and only if each Mi is a (finitely
generated) projective Ri -module. This induces conventionally that, on the one hand, an R-
module M is of type FP∞ if and only if so is each Mi as Ri -modules; on the other hand, there
is a natural isomorphism

Ext1
R (N , M)

∼=→ Ext1
R1

(N1, M1)⊕·· ·⊕Ext1
Rk

(Nk , Mk ). (†)

Using Fact 2, one can prove that

Fact 3. An R-module M is absolutely clean if and only if so is each Mi as Ri -modules.

This is in parallel to:

Fact 4. An R-module M is injective if and only if so is each Mi as Ri -modules.

Here we give a proof for Fact 3 as follows: “only if” part: Let M = M1⊕·· ·⊕Mk be an absolutely
clean R-module. Let T ′ be any Ri -module of FP∞, where 1 ≤ i ≤ k. Consider the R-module
L = 01 ⊕ ·· · ⊕ 0i−1 ⊕T ′ ⊕ 0i+1 ⊕ ·· · ⊕ 0k . Then L is an R-module of FP∞, and so 0 = Ext1

R (L, M) ∼=
Ext1

Ri
(T ′, Mi ) (see (†)). Thus Mi is absolutely clean. “if”part: Let M = M1⊕·· ·⊕Mk be an R-module

such that each Mi is an absolutely clean Ri -module. Let T = T1 ⊕ ·· · ⊕Tk be any R-module of
FP∞. Then each Ti is an Ri -module of type FP∞ (see Fact 2), and hence Ext1

Ri
(Ti , Mi ) = 0 for all

1 ≤ i ≤ k. So again by the isomorphism (†), we have Ext1
R (T, M) ∼= Ext1

R1
(T1, M1)⊕Ext1

R2
(T2, M2)⊕

·· ·⊕Ext1
R1

(T1, Mk ) = 0. This shows that R-module M is absolutely clean.
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Combining with Facts 3, 4 and 1 one can check that M (as in Fact 1) is an totally AC-acyclic
complex of injective R-modules if and only if so is each Mi in Ri -Mod. In particular, an R-module
M is Gorenstein AC-injective if and only if so is each Mi in Ri -Mod, and hence, by the definition
of the Gorenstein AC-injective dimension of R-modules, one can check that

AC-GidR (M) = sup{AC-GidRi (Mi ) | i = 1, . . . ,k}. (‡)

This is in parallel to the following equality

idR (M) = sup{idRi (Mi ) | i = 1, . . . ,k}. (])

Meanwhile, the following fact is followed from [1, Example 3.6(3)]:

Fact 5. The ring R =∏k
i=1 Ri is coherent if and only if each Ri is coherent.

At the end of the paper, we will apply Fact 5 and the equalities (‡) and (]) to give an example to
show the result in Theorem 7(2) (from the introduction) holds.

Example 34. Let R = Z/4Z and S = D + (x1, x2)K [x1, x2], where D is a Dedekind do-
main and K its quotient field. Then by [6, Example 2.18 and Remark 3.3] R is a com-
mutative QF ring of infinite global dimension; by [26, Example in p. 128] S is a commu-
tative non-coherent ring of finite global dimension. Consider R × S, the product of rings
R and S. Note that sup{AC-GidR (M) | M is an R-module } = 0 since R is QF, and that
sup{AC-GidS (M) | M is an S-module } < ∞ since global dimension of S is finite. We have
sup{AC-GidR×S (M) | M is an R × S-module } < ∞ by the equality (‡). However, by applying the
equality (]), the global dimension of R ×S is the value sup{idR×S (M) | M is an R ×S-module } =∞
since R has infinite global dimension. On the other hand, Fact 5 yields that R ×S is non-coherent
since so is S.

Acknowledgments

We extend our gratitude to the referee for valuable comments that have improved the presenta-
tion at several points.

References

[1] D. Bennis, “Rings over which the class of Gorenstein flat modules is closed under extensions”, Commun. Algebra 37
(2009), no. 3, p. 855-868.

[2] D. Bennis, N. Mahdou, “Strongly Gorenstein projective, injective and flat modules”, J. Pure Appl. Algebra 210 (2007),
no. 2, p. 437-445.

[3] D. Bravo, J. Gillespie, “Absolutely clean, level, and Gorenstein AC-injective complexes”, Commun. Algebra 44 (2016),
no. 5, p. 2213-2233.

[4] D. Bravo, J. Gillespie, M. Hovey, “The stable module category of a general ring”, https://arxiv.org/abs/1405.5768,
2014.

[5] X.-W. Chen, “Homotopy equivalences induced by balanced pairs”, J. Algebra 324 (2010), no. 10, p. 2718-2731.
[6] N. Ding, Y. Li, L. Mao, “Strongly Gorenstein flat modules”, J. Aust. Math. Soc. 86 (2009), no. 3, p. 323-338.
[7] I. Emmanouil, “On the finiteness of Gorenstein homological dimensions”, J. Algebra 372 (2012), p. 376-396.
[8] ——— , “On pure acyclic complexes”, J. Algebra 465 (2016), p. 190-213.
[9] E. E. Enochs, O. M. G. Jenda, “Gorenstein injective and projective modules”, Math. Z. 220 (1995), no. 4, p. 611-633.

[10] ——— , Relative Homological Algebra, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter, 2000.
[11] E. E. Enochs, O. M. G. Jenda, B. Torrecillas, “Gorenstein flat modules”, J. Nanjing Univ., Math. Biq. 10 (1993), no. 1,

p. 1-9.
[12] S. Estrada, J. Gillespie, “The projective stable category of a coherent scheme”, Proc. R. Soc. Edinb., Sect. A, Math. 149

(2019), no. 1, p. 15-43.
[13] S. Estrada, A. Iacob, H. Zolt, “Acyclic complexes and Gorenstein rings”, Algebra Colloq. 27 (2020), no. 3, p. 575-586.
[14] N. Gao, P. Zhang, “Gorenstein derived categories”, J. Algebra 323 (2010), no. 7, p. 2041-2057.

C. R. Mathématique — 2021, 359, n 5, 593-607

https://arxiv.org/abs/1405.5768


Junpeng Wang, Zhongkui Liu and Gang Yang 607

[15] J. R. García Rozas, Covers and Envelopes in the Category of Complexes of Modules, CRC Research Notes in Mathemat-
ics, vol. 407, Chapman & Hall/CRC, 1999.

[16] J. Gillespie, “The flat model structure on Ch(R)”, Trans. Am. Math. Soc. 356 (2004), no. 8, p. 3369-3390.
[17] ——— , “Model Structures on Modules over Ding-Chen rings”, Homology Homotopy Appl. 12 (2010), no. 1, p. 61-73.
[18] ——— , “Gorenstein complexes and recollements from cotorsion pairs”, Adv. Math. 291 (2016), p. 859-911.
[19] ——— , “Models for homotopy categories of injectives and Gorenstein injectives”, Commun. Algebra 45 (2017), no. 6,

p. 2520-2545.
[20] ——— , “On Ding injective, Ding projective, and Ding flat modules and complexes”, Rocky Mt. J. Math. 47 (2017),

no. 8, p. 2641-2673.
[21] ——— , “On the homotopy category of AC-injective complexes”, Front. Math. China 12 (2017), no. 1, p. 97-115.
[22] ——— , “AC-Gorenstein rings and their stable module categories”, J. Aust. Math. Soc. 107 (2019), no. 2, p. 181-198.
[23] H. Holm, “Gorenstein homological dimensions”, J. Pure Appl. Algebra 189 (2004), no. 1-3, p. 167-193.
[24] S. Iyengar, H. Krause, “Acyclicity versus total acyclicity for complexes over noetherian rings”, Doc. Math. 11 (2006),

p. 207-240.
[25] P. Jørgensen, “The homotopy category of complexes of projective modules”, Adv. Math. 193 (2005), no. 1, p. 223-232.
[26] E. Kirkman, J. Kuzmanovich, “On the global dimension of fibre products”, Pac. J. Math. 134 (1988), no. 1, p. 121-132.
[27] H. Krause, “The stable derived category of a Noetherian scheme”, Compos. Math. 141 (2005), no. 5, p. 1128-1162.
[28] Z. Liu, C. Zhang, “Gorenstein injective complexes of modules over Noetherian rings”, J. Algebra 321 (2009), no. 5,

p. 1546-1554.
[29] B. Lu, Z. Di, “Gorenstein cohomology of N -complexes”, J. Algebra Appl. 19 (2020), no. 9, article no. 2050174 (14 pages).
[30] L. Mao, N. Ding, “Gorenstein FP-injective and Gorenstein flat modules”, J. Algebra 7 (2008), no. 4, p. 497-506.
[31] D. Murfet, “The mock homotopy category of projectives and Grothendieck duality”, PhD Thesis, Australian National

University (Australia), 2007, available at www.therisingsea.org.
[32] A. Neeman, “The connection between the K -theory localisation theorem of Thomason, Trobaugh and Yao and the

smashing subcategories of Bousfield and Ravenel”, Ann. Sci. Éc. Norm. Supér. 25 (1992), p. 547-566.
[33] ——— , “The Grothendieck duality theorem via Bousfield’s techniques and Brown representability”, J. Am. Math.

Soc. 9 (1996), no. 1, p. 205-236.
[34] ——— , “The homotopy category of flat modules, and Grothendieck duality”, Invent. Math. 174 (2008), no. 2, p. 255-

308.
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