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Abstract. The multigroup neutron SPy equations, which are an approximation of the neutron transport
equation, are used to model nuclear reactor cores. In their steady state, these equations can be written as
a source problem or an eigenvalue problem. We study the resolution of those two problems with an H L
conforming finite element method and a Discontinuous Galerkin method, namely the Symmetric Interior
Penalty Galerkin method.

Résumé. Les équations de la neutronique SPy multigroupe, qui sont une approximation de 1'équation de
transport des neutrons, sont utilisées pour la modélisation des cceurs de réacteurs nucléaires. Dans le cas
stationnaire, ces équations sont soit un probléme a source, soit un probléme aux valeurs propres. Nous
étudions I'approximation de ces deux problemes avec une méthode d’éléments finis conformes dans H'!
et une méthode d’éléments finis discontinus appelée Symmetric Interior Penalty Galerkin.

Manuscript received 4th October 2019, revised 24th August 2020, accepted 11th February 2021.

Version francaise abrégée

La physique d'un cceur de réacteur nucléaire est décrite par’équation de transport des neutrons,
qui dépend du temps et de 6 variables liées aux neutrons : 3 pour leur position, 2 pour la direction
de leur vitesse et 1 pour leur énergie. Nous nous intéressons a la formulation stationnaire de
cette équation (5) ol I'énergie est discrétisée par la méthode multigroupe, et la direction est
discrétisée par la méthode des harmoniques sphériques simplifiées SPy. Cette formulation de
I'équation de transport des neutrons revient a un systeme d’équations de la diffusion couplées.
Nous proposons ’analyse numérique de ces équations discrétisées par une méthode d’éléments
finis conformes dans H* (resp. de Galerkin discontinus).
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534 Erell Jamelot and Frangois Madiot

Nous commencons par I'étude des équations SPy multigroupe pour le probléme a source.
A l'aide du lemme d’Aubin-Nitsche, nous obtenons une estimation d’erreur a priori dans L?
pour le probleme a source discrétisé (12) (resp. (15)), énoncée dans le Théoréme 5 (resp. 11).
Puis nous nous intéressons au probléme aux valeurs propres généralisé. Nous utilisons la théorie
développée par Babuska et Osborn [2] pour obtenir une estimation d’erreur a priori sur la valeur
propre, énoncée dans le Théoreme 12 (resp. 13). Le Théoréeme 13 est obtenu a partir d’'une
généralisation de ces travaux présentée dans [1].

1. Introduction

The neutron transport equation describes the neutron flux density in a reactor core. It depends
on 7 variables: 3 for the space, 2 for the motion direction, 1 for the energy (or the speed), and 1
for the time.

The energy variable is discretized using the multigroup theory [10, 16]. In this method, the
entire range of neutron energies is divided into G intervals, called energy groups. In each
energy group, the neutron flux density is lumped and all parameters are averaged. Let us set
S :=11,...,G}, the set of energy group indices.

Concerning the motion direction, the Py transport equations are obtained by developing
the neutron flux on the spherical harmonics from order 0 to order N. This approach is very
time-consuming. The simplified Py (SPy) transport theory [12] was developed to address this
issue. The two fundamental hypotheses to obtain the SPy; equations are that locally, the angular
flux has a planar symmetry; and that the axis system evolves slowly. The neutron flux and the
scattering cross sections are then developed on the Legendre polynomials. From a mathematical
point of view, SPy equations correspond to tensorized 1D Py transport equations, so that some
couplings are missing. Consequently, the SPy equations do not converge to transport equations.
Nevertheless, they are commonly used by physicists since their resolution is cheap in terms of
computational cost. The order N is odd, and the number of SPy odd (resp. even) moments is
N:= % We will denote by .%, (resp. .%,) the subset of even (resp. odd) integers of the integer
set {0,..., N}.

Finally, the (motion direction and energy) discretization of the neutron flux is such that there
are N x G even and odd moments of the neutron flux.

We will denote by ¢ = ((¢p8,) e I, )gess € RN*G the set of functions containing, for all energy
group g, the even moments of the neutron flux.

d S d
Likewise, we will denote by p = (((p% 1) me.s, )ge.s6) 1 € (RN XG) the set of functions contain-
ing the odd moments of the neutron flux.
Note that while modelling the core of a pressurized water reactor, the number of groups if such
that 2 < G < 30, physicists usually choose N = 1 or 3, more rarely N = 5.

2. Setting of the model

The reactor core is modelled by a bounded, connected and open subset 2 of R?, d = 1,2,3,
having a Lipschitz boundary which is piecewise regular. The coefficients are piecewise regular, so
that we split % into N open disjoint parts (,%,-)f\i , with Lipschitz, piecewise regular boundaries:
R = Ufi 1%. For this reason, we will use the following space of piecewise regular functions:

PW @) = {De L) |VDla, € 1@, i =1,..., N}.

For a set of functions ¢ = (<p§’n)m,g € [RNXG, we make the following abuse of notation: Vi =
d V<o)
(@cwfmeg)emy € RV
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d

le) € (Rﬁxc)d, we make the following

For a set of vector valued functions q = (((qfvm)m,g)
abuse of notation:

d A
divq = (div((qum)ﬁzl )) , qp= (Z a8 m pim) e RNC,
mg x=1 mg
Let us use these notations: for E R, L(E) = L*(E); L:= L*(®); V := Hy (®); V' := H”' (%) its dual
and Q := H(div,%). For W = L(E), L, V or Q we define the product space W := W¥*C endowed
with the following scalar product and associated norm:

@vw= Y Y @hviw, lulf= Y X Il )

geds; meSfe,0 geds meSfe,0
We also set V' := (V/)N*G, L(E) = (L(E))¥ and LP(-) = (LP(-))N*C.
~ d ~ \GxG
Letqe (RNXG) and M € ([RNXN)

d
(qu)x=l’

Given a source term Sy € L, the multigroup SPy equations with zero-flux boundary condi-
tions! read as coupled diffusion-like equations set in a mixed formulation:

Top+V(H®) =0,
'Hdivp+Te¢ = Sy.

When Sy depends on ¢, the steady state multigroup SPy equations read as the following
generalized eigenproblem:

. We set qx = (qim)m_g and we use the notation Mq =

Solve in (¢,p) € V x Q| { )

Top+V(HP) =0,
‘Hdivp+Tep=1""M.
The physical solution to Problem (3) corresponds to the eigenfunction associated with the
smallest eigenvalue, which in addition is simple [8]. In neutronics, the multiplication factor
ke = max) A characterizes the physical state of the core reactor: if kqf = 1: the nuclear chain
reaction is self-sustaining; if k> 1: the chain reaction is diverging; if ko< 1: the chain reaction
vanishes. o GxG

The matrices H, Te, To, My € ([RNXN) are such that V (g, g) € % x .G (8., is the Kronecker
symbol):
o H)gg =0gAeRNN withV (i, j) € {1,..., N2, H; j = 6, + 64,1
e (Telgg:= Té e RV*N denotes the even removal matrix, such that:

Solve in (A, ¢, p) € R* x VxQ| { &)

g _ g g g
T; = dlag(tgar‘o, tzaryz,...),
(To)g,g:= T5 € RV*N denotes the odd removal matrix, such that:

TS = diag(tlafl, t30'§3,...),
where V me %, 0% ,,:= 0% —a$ ¢, and ¥ m >0, t,, > 0.
The coefficient ¢ is the macroscopic total cross section of energy group g, and the
coefficients Uffngt denote the Py moments of the macroscopic self scattering cross
sections from energy group g to itself.
e Forg' #g:
(Teg,g = —§§ —8 € IRN xN denotes the even scattering matrix, such that:

I_, X !, I,
S8 % = diag100%, %, 120%,75,..),

lie: for1< g <G, me %, (¢8I =0.
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, o
(To)e o =-S5 8 e RN*N denotes the odd scattering matrix, such that:
88 0 g
!
§§ g:diag(ﬁafl l30g3 g,...),

where Ug ¢ are the Py moments of the macroscopic scattering cross sections from

energy group g’ to energy group g.
. (Mf)g g = Xgl\/ﬂ]gc e RNV is such that Mg P8 = t(vcr (/)0 ,0,...) where the coefficient

f is the product of the number of neutrons emitted per fission times the macroscopic
ﬁssmn cross section; and the coeflicient y is the fission spectrum of energy group g.

The coefficients of the matrices T, ,, M are supposed to be such that:

0) Vg gedgVmeL,:
(aﬁm,og‘{',;g,mi) € PWLR(R) x [°(R) x L®(R).
() 3 Ore0)e @@ >0V geds,VmeL,,:
A (01 (e,0)% = tmaf,m < (0"@N* ae. in %. 4)
(i) 3 (vo,)">0]Vgess0=vol=(vo) ae ingand 3 g |va¥ £0.
(iii) EIO<£<—|Vm€JeO,Vg,g €568 %8,

IUs,mg | < ea‘;”,m a.e. in %.

It happens that the coefficient va$ vanishes in some regions.

Hypothesis 4 (iii) is valid while modelling the core of a pressurized water reactor: the scattering
cross-sections are weaker than the removal cross-sections of an order 0 < € < 1. Thus, the
matrices ‘T, , are strictly diagonally dominant matrices: they are invertible.

LetussetD="HT,"H.

Problem 2 can be written as a set of coupled primal diffusion-like equations with single
unknown ¢ € V:

Solveinpe V| —div(DV )+ Tep=Sy. (5)
The variational formulation of (5) writes:
Solveinpe VIVweV:clpy) =£C(y), (6)
where:{czZXZ_)R» = ad{kz_}R .
cpy) = OVOVY)IL+Ted,y)L’ () = (Spy)L

Theorem 1. Suppose that D is positive definite. For a given source term Sg € L, it exists a unique
¢ € V that solves Problem 6. In addition, it holds: |plly S ISflL-

Proof. The bilinear form ¢ and the linear form ¢ are continuous and under the hypothesis on D,
the bilinear form c is coercive: we can apply Lax-Milgram theorem to conclude. g

In the same way, Problem 3 can be written as:

Solve in (A,¢p) € R* x V\{0}| —div(D V ) + Tep= 17 'M . (7)
The variational formulation of (7) writes:
Solve in (A, ) € R* x V\{O}| Yy € V: c(,w) = A1 (h, ), ®8)
lp:LxL—R

where: { Zf(d”w) _ (qub,w)g

Theorem 2. Suppose that D is positive definite. There exists a unique compact operator Ty : L — L
such thatV (p, @) € Lx V: c(Trdp,w) = L ().

C. R. Mathématique — 2021, 359, n° 5, 533-545
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Proof. The bilinear form c is a continuous and under the hypothesis on D, it is coercive onto
V x V. The bilinear form ¢ is a continuous onto L x V. Finally, V is a subset of L with a compact
embedding. We can then apply the work of Babuska and Osborn in [2]. g

Thus, the couple (¢,A7}) is a solution to Problem 8 iff the couple (¢, 1) is an eigenpair of
operator Tr. Moreover, Problem 8 admits a countable number of eigenvalues.

We propose first to derive conditions on the macroscopic cross sections so that Problems 5
and 7 are well-posed. Then we obtain a priori error estimates for a discretization performed
with some H'-conforming FEM and a Discontinuous Galerkin method, namely the Symmetric
Interior Penalty Galerkin method (SIPG) [9, Chapter 4]. The outline is as follows: in Section 3, we
exhibit some conditions so that the matrix T,! and T, are positive definite. Then we study the
discretization of the source problem (5) in Section 5, and the discretization of the eigenproblem
in Section 6. Finally, we perform in Section 7 a numerical study of convergence on a benchmark
representative of a nuclear core.

3. Properties of T, and T !
Consider the diagonal matrix containing the even (resp. odd) removal macroscopic cross sec-
tions: Ty (e0) = dlag(TFe o~ Tga). We split T, so that: Ty = Ty (0l — €U, ), where [ €

FxN) 06 . )
R is the identity matrix, and:

!

§—g
0' ~ ~
Vg g ed,8#8 Weolgy =diag(( e ) )eRNXN;
E0rm MeLe o
vV ge.g, (Ue,o)gg =0 RV,
(13 (e 0) |0'§/;;g()77)\
We have then: |Ug,ll2 < where: as (e,0) := (G — 1) MaXye.g,, MaXgxg'c 7; SUPzc g e
Let us set ar,e,0) = EU:EA) > 1. We have the following properties.
Property 3. Suppose that a, < a_re' The matrix T, is such that:
VXeRVC (T,X|X) > T lIXI5  wheret,=(0re)s (1 - aretse). 9
Proof. We have: V X € [RNXG, (TeXIX) = (TreX|X) — U X|T e X), so that:
(TeXIX) = ((0r,0)« —€lUel2 I Trell2) 1XNl2,  where [ Trell2 < (0r,0)". 0
Property 4. Suppose that ag, < ﬁ, the matrix T, is such that:
VXeR (T, XIX) =21, X15 wheret, = —|1- . (10)
(o ro) 1-a;,
Proof. The Taylor expansion of T, writes: T,! = =(1+Xs0€ lyt o) Tr
We get that V X € RV*G:
(T51X1%) = (Tr0X1X) + Y e (Uh T3 X1 )
>0
1
> —(1-ao Y Ul | 1X12,
(Or0) 1>0
1 €llUoll2
. 1 ( oz g2,
(07,0) —€llUoll2
1 Aol
> - (1 - e ) 1X15. O
(Or0) I-aso

C. R. Mathématique — 2021, 359, n° 5, 533-545
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Under assumptions of Properties 3 and 4 the matrices T, and T,! are positive definite.
Moreover, one can show that [HV ¢|L =V ¢llL [13]. We infer that the matrix D is positive

definite and that there exists a constant Cp > 0 such that forall ¢ € RN xG
(DEIDE) < Cplléll3. an

From now on, we suppose that this property holds.

4. Discretizations

Let 97}, be a shape-regular mesh of 2, with mesh size h. We denote by K its elements and F its
facets. To simplify the presentation, we assume that the meshes are such that in every element,
the cross-sections are regular. We define by 3772 the set of interior faces of 97, 9«"}; the set of
boundary facets and &), = 9}3 U 9}; . We denote by Nj the maximum number of mesh faces
composing the boundary of mesh elements

Nj := max Card{F € &},, F c 0K}.
Kegy,

We will first consider an H* -conforming finite element method (FEM). For k € N*, V}f c Vand
K’;l c V are the finite dimension spaces defined by:

VE= e VY KeTh, mlxePl, VE:= vHN<C,
The discrete variational formulation associated with Problem (6) writes:
Solve in ¢y, EKZ' Yy ezlfl: cln,wn) =L(Wwp), (12)
Similarly, the discrete variational formulation associated with Problem (7) writes:
Solve in (A, ¢p) €R* x VINO} Yy € V2 clpn,win) = A, € (b, wi). (13)
Then, we will consider a non-conforming FEM. We define the broken spaces:

Vac={ve 2@ |VKeTy, ve H(K)}, Vye=oV O

For (¢, 9) € Ve x Vyeyand T € [RNXG, we set:

Vi, Viy)y = Zﬂ_(ﬂweb ) and [yl = (Vaw, Vay)y
KeTy,

ForFe & ;l such that F = dK; N dK;, we define the average {D V;, w} and the jump [y/] as:
- 1, o . xG)?
Oyl = 5 (@ Vyle+ @2 Vya)lr) e (RYVC),

5 d
[WllF = wilpmy +yalpng € ([RNXG) .

where n; is the unit outward normal to K; at face F and D; = D|g;, v; = ¥|g;.
For F € 9}: such that F € K, we set {D V,y}|lgp = Dlg Vylg and [yllg = (wg)|pn, where
Wk = Y|k and n is the unit outward normal to K at face F.

For ke N*, V¥ < H'(J},) and VX _ are the finite dimension spaces defined by:

h,NC —h,NC

NxG
Vive={ome L' @Y Ke T, il ePi}, Vo= (Viye)

For ¢p, wp, EKh,NC’ we set: ({D Vy, ¢p}, [[1//;1]])3(;;‘l = Zpeg;il (D Vi ﬂil/h]])L(F)-
Let us set

cn(Pn,wn) = gy, (P, W) + ¢z, (Pn, Yh), (14)

C. R. Mathématique — 2021, 359, n° 5, 533-545
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with
¢z, @nwn) = (O Vidn, Y wn) g + (Tepnvn),,

a - -
ez, Py = Y. — (Ionl, IIWh]])L(p) — (D Vawnt [Pn]) i — (ID Vi [wnl) 5,

FEgh hF - h h
where «a is a stabilization parameter.

The Symmetric Interior Penalty Galerkin method (SIPG) associated with Problem (6) writes:

Solve in ¢y, € Vi (o | VY € Vi« cn(@nwp) = Cwp). (15)
Similarly, the SIPG method associated with Problem (8) writes:
Solve in (A, p) € R* x Vi (MO Y € V)i vt cn(boWn) = A3 € p (i) (16)

5. The source problem

5.1. Conforming discretization

Theorem 5. Suppose that there exists rmax in [0,1] such that ¥V r € [0, rmax|, ¢ € (H”r(.%))NXG
(cf. [6, Proposition 1]). Let us set {1 = min(rmax, k). The solution of (12), ¢y, is such that: ||p—dplly S
RISl and i — ppll S HPHISII L.

Proof. From Céa’s lemma and Aubin-Nitsche lemma as detailed in [11, Section 2.3]. O

5.2. SIPG discretization

Assumption 6 (Regularity of exact solution and space V*). Let us denote by W>P (J7},) the broken
Sobolev space spanned by those functions v such that for all K € Iy, vig € W2P(K). We set

wZvP(PTh) = (Wzvl’(g‘h))NXG. We assume that d = 2 and that there is 2d/(d + 2) < p < 2 such that,
for the exact solution ¢ € V* := V. n W?P(Jy,). This holds for our assumptions on the coefficients,
which are piecewise constant with respect to the triangulation [17].

This assumption requires p > 1 for d = 2 and p > 6/5 for d = 3. In particular, we observe
that, in two space dimensions, ¢ € W>P(J7},) in polygonal domains. Moreover, using Sobolev
embeddings [4, Section IX.3] [7], this implies

NxG d+2 d
D )

1+a
e (H" Y (R) 7 7

We state the following lemma [9, Lemma 1.46, p. 27].

Lemma7. Suppose that (93)y, is a shape- and contact-regular mesh sequence. Then, we have for
allh > 0:

VypeVh o VKeTnYFedK, h* vl pg < Corlynl 2, 17)
where hy is the diameter of element K.

We aim at asserting the discrete coercivity using the following norm:

YyneVine Mwalls, = canyn +lyal,
with the jump semi-norm

1
lyolys= % 5Nyl

Fe%y,
Under assumption (4), there exists § > 0 we have for all y, € Z’l; NC
= 2
C;’ﬂ‘h(Wh»Wh)Eﬁ(”thh”gh"‘”u/h”i), (18)

C. R. Mathématique — 2021, 359, n° 5, 533-545
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so that ,
lwallz, = B(19nvnlz, + 1wl +lwnl3).

Lemma 8 (Discrete coercivity). Leta:=C? N, % where

o Cyr results from the discrete trace inequality (17),
o Nj is defined in Section 4,
e Cp isdefined in (11).

For all a = a, the SIP bilinear form defined by (14) is coercive on KZ Ne With respect to the |l - Il sip-
norm, i.e.,

ch(Wn,yp) = Cam‘l/h”ﬁip’
with C, —(a C2 N, ﬂ)mm{Z,ﬁ(ch Na/;) 1}-
Proof. We follow the proof of [9, Lemma 4.12]. For all v, € vk

W W) = Ca;, W, Wp) + ¢, Wi, W)

a -
=cq,Wnyw+ Y = Ilwallie =20 Viyah [yal) 5
Fe%y, F - h

—h,NC’

= g, Wi wn) + @llynlf —2Ce (N) 2 DV w7 1wl

where we used Cauchy-Schwarz and Lemma 7 in the last line. Using the inequality 2ab <
ea+ & 'bforany £ > 0, we obtain

2C1 (N9 [DVnyn| g, 1wl < eCENa [D Vi a5, + 2 Iyl
<eC3NyCo [Viwnll, + & lyall.
Using (18), we obtain that there exists a constant § > 0 such that
Wy = -ca)||V), U/hnzgh + ﬁllll/hlli+ (a— 8_1)||1Wz||§-
Choosing & = 2(a + @) ! yields the assertion. O

Thus, it only remains to prove boundedness. To this purpose, we need to define V*" =

V*+ V’IZ e and the following norm
1/p
|Hw|“31p* “|w”|31p Z h?—}/p ”ﬁle'nKHy’(aK) ’
Kegy,
where y, = d(’jzfz) and ng is the unit outward normal to K. Following [9, Section 4.2], we obtain

the following results.
Lemma 9 (Boundedness). There is Cp,4, independent of h, such that for all (¢, vy,) € K*’h xV,
cn@¥n) = Conall6llsip« vl i

Theorem 10 (Convergence). Suppose that there exists rmax in (0,1] such that ¥ r € [0, 'max],
pe (H“’(%))NXG (cf. [6, Proposition 1]). Then the solution of (15), ¢y, is such that:

|”(P (Ph|||ssz 1€i§£,1\1c”|¢_w}1|“3ip’*’

where C is a constant independent of h. Moreover, under Assumption 6, there holds
ll¢=énlllsip = Clelwen () B*,

where |1 = rmax, C is a constant independent of h and p is such that = % - %.

C. R. Mathématique — 2021, 359, n° 5, 533-545
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Theorem 11 (L2-norm estimate). Suppose that there exists rmax in (0,1] such thatV r € [0, rmaxl,
¢%, € H'*"(R) (cf [6, Proposition 1]). Under Assumption 6, the solution of (15), ¢y, is such that:
lp—PnllL S H?H1S¢ll L, where p = Fma.

Proof. We apply the Aubin-Nitsche similarly as in [9, Theorem 4.25]. g

6. The eigenproblem
6.1. Conforming discretization

Theorem 12. Let u be the regularity of the eigenfunction ¢ associated with A, and w = min(y, k).
Let Ay, be the discrete eigenvalue associated with Problem (13). The following a priori error estimate
holds: A — Ap| < h?@.

Proof. As in the continuous case (Theorem 2), since the discretization is conforming, there ex-
ists a unique compact operator Tp, : K’; — K’;l such that V (¢p,yp) € Z’ﬁ X Z’;l: c(Tppp,wp) =
£ ¢(¢bp,wp). According to Theorem 5, the sequence of the operators (1},)j, is pointwise converging
towards T. As T}, and T are compact operators, the sequence of operators (73)y, is then converg-
ing in £ (V) towards T: || T, — Tl ¢, — 0. The norm convergence guarantees that there is no
spectral pollution (see [18]). Morevover, we can apply Theorem 8.3 in [2] to state the error esti-
mate on the eigenvalue. We remark that (M ¢, ) isanormover V, :={pe V| Vy eV, c(p,y) =
AL (¢, )} [13, Section 5.2.2 p. 78]. U

6.2. SIPG discretization

We recall that, in this section, we work under the assumption 6.

Theorem 13. Let u be the regularity of the eigenfunction ¢ associated with A, and w = min(y, k).
Let Ay, be the discrete eigenvalue associated with Problem (16). The following a priori error estimate
holds: |1A — 4| < h2w,

Proof. We apply the theory developed in [1]. The proof is decomposed as follows. We first show
that there is no spectral pollution. Then, we derive the error estimate.

LetE:V +Z’;LNC -V +Z’}CL,NC be the continuous spectral projector relative to A defined by

1 -1
E= i e (z— T|Z+Z§,Nc) dz,
where I' is a circle in the complex plane centred at A which lies in p(T| v ZZ,NC) and encloses no
other points of o(T| v +Kﬁ,Nc)' The absence of spectral pollution relies on two properties. First,
using interpolation results [9, Assumption 4.31] we have forall ¢ € E (Z+Z£’NC),
inf [0~ vl =Ccn,
Yre€V)ne

where C is a constant independent of k. Second, we have for all ¢}, € V¥

—h,NC’
e = Tipnllly < CHITGulwer s
< ChM|I Tl

(Hh_ap (@))ﬂ/xc ’

< Ch*l¢nlL,

= Ch¥|lpnlll g3
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where we used Theorem 10 in the second line and regularity results [17] in the third line.
Applying [1, Theorem 3.7], we obtain that there is no spectral pollution.
Moreover, we apply [1, Theorem 3.14] to state the error estimate on the eigenvalue,

[A=Anl < C6pb . py

where
Op=Yr+||(T-T )
h=Yh ( h)|E(Z+Z)hC,NC) sip
5*,h=}/*,h+ (T*_T*’h”E(V"'VﬁNC) ’
I sip
with
Yh=8EV+Vi o) Vo)
Yen=8E.(V+VE 0, VE O,
where

O i (i“fllly—ZIH-),
y€Y,|||y|||Sip:1 zeZ sip

and E. : Z+Z§’NC - V+ Z’];'NC is the continuous spectral projector of the adjoint operator

Tily e relative to A.
— —h)NC
Using again elliptic regularity results [17] and Theorem 10, we obtain
<ChH,

sip

< Cht.
sip

T-T
( h)lE(Z_FZﬁ,NC)

H'(T" ~ Teanlpavt o

Using elliptic regularity results, we get

||(p"(H1+ap(%))NxG =Clolr=Clely.
Applying Theorem 10, we infer that
Yn < Ch*,
Yan < Ch*.
This concludes the proof. O

7. Numerical Results

We consider the test case Model 2, case 1 from the benchmark of Takeda and Ikeda [20]. The
geometry of the core is three-dimensional and the domain is {(x, y, z) € R3,0 < x <140 cm;0 <
¥ <140 cm;0 < z < 150 cm}. This test is defined with 4 energy groups, isotropic scattering and
vacuum boundary conditions. Figure 1 represents the cross-sectional geometry on the plane
z="75cm.

Since the scattering is isotropic, the SP; formulation can easily be reformulated as a multi-
group diffusion problem with 8 energy groups and an isotropic albedo boundary condition [3].
We then made the computations with the PRIAM solver from the code CRONOS2 [14] for the
conforming case and with the MINARET solver [15] from the APOLLO3® code [19] for the SIPG
discretization.

C. R. Mathématique — 2021, 359, n° 5, 533-545



Erell Jamelot and Frangois Madiot 543

Bl Core
Hl Radial Blanket
1 Reflector

Figure 1. Cross-sectional view of the core (z =75 cm).

In Figure 2, we consider the convergence of the fundamental mode where we used the SP;
formulation with Q! finite elements and a regular cartesian mesh of size h. The approximated
order of convergence is 2.22.

102

‘keff - keff,h'

1073

| | | | |
10—0.4 10—0.2 100 100.2 100.4
1/h

Figure 2. Error on the discrete eigenvalue for the SP3 formulation with Q! finite elements

In Figure 3, we consider the convergence of the fundamental mode for different the SPy for-
mulations with discontinuous P! finite elements and a prismatic mesh of size h. The approxi-
mated orders of convergence are given in Table 1.
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T T
—o—SP;
- SP;
1073 1 —o— SP; |
= L |
=) | |
<
I L |
%
= 1074} E
! ! ! ! !

10706 1074 107%2 10° 1072
1/h

Figure 3. Error on the discrete eigenvalue for the SP; formulation with discontinuous
linear finite elements

Table 1. Approximated order of convergence associated with Figure 3

SP3 | SPs | SP;
1.88 | 1.96 | 1.92

8. Conclusion

We did the numerical analysis of the approximation with an H'-conforming finite element
method of the neutron multigroup SPy equations. We also studied the numerical analysis of
the approximation with the Symmetric Interior Penalty Galerkin method of the neutron multi-
group SPy equations. We then illustrated numerically the convergence results on a benchmark
representative of a nuclear core. Those results can be extended to a mixed finite element method,
see [5] for the diffusion case with an H' -conforming finite element method.
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