

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Alexei Ya. Kanel-Belov, Igor Melnikov and Ivan Mitrofanov On cogrowth function of algebras and its logarithmical gap

Volume 359, issue 3 (2021), p. 297-303.

<https://doi.org/10.5802/crmath.170>

© Académie des sciences, Paris and the authors, 2021. *Some rights reserved.*

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Algebra / Algèbre

On cogrowth function of algebras and its logarithmical gap

Sur la fonction de co-croissance des algèbres et son écart logarithmique

Alexei Ya. Kanel-Belov^{*a*}, Igor Melnikov^{*b*} and Ivan Mitrofanov^{*, *c*}

^a Bar Ilan University, Ramat-Gan, Israel

 b Moscow Institute of Physics and Technology, Dolgoprudny, Russia

^c C.N.R.S., École Normale Superieur, PSL Research University, France

E-mails: kanelster@gmail.com, melnikov_ig@mail.ru, phortim@yandex.ru

Abstract. Let $A \cong k\langle X \rangle / I$ be an associative algebra. A finite word over alphabet X is *I*-reducible if its image in A is a k-linear combination of length-lexicographically lesser words. An *obstruction* is a subword-minimal *I*-reducible word. If the number of obstructions is finite then I has a finite Gröbner basis, and the word problem for the algebra is decidable. A *cogrowth* function is the number of obstructions of length $\leq n$. We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth.

Résumé. Soit $A \cong k\langle X \rangle / I$ une algèbre associative. Un mot fini sur l'alphabet X est I-réductible si son image dans A est une combinaison linéaire k de mots de longueur lexicographiquement moindre. Une *obstruction* dans un mot minimal I-réductible. Si le nombre d'obstructions est fini, alors I a une base finie Gröbner, et le mot problème pour l'algèbre est décidable. Une fonction *co-croissance* est le nombre d'obstructions de longueur $\leq n$. Nous montrons que la fonction de co-croissance d'une algèbre finement présentée est soit bornée, soit au moins logarithmique. Nous montrons également qu'un mot uniformément récurrent a au moins une co-croissance logarithmique.

Funding. The paper was supported by Russian Science Foundation (grant no. 17-11-01377).

Manuscript received 6th July 2020, revised and accepted 14th December 2020.

^{*} Corresponding author.

1. Cogrowth of associative algebras

Let *A* be a finitely generated associative algebra over a field *k*. Then $A \cong k\langle X \rangle / I$, where $k\langle X \rangle$ is a free algebra with generating set $X = \{x_1, ..., x_s\}$ and *I* is a two-sided *ideal of relations*. Further we assume the generating set is fixed. Let "<" be a well-ordering of *X*, $x_1 < \cdots < x_s$. This order can be extended to a linear order on the set $\langle X \rangle$ of monomials of $k\langle X \rangle$, i.e. finite words in alphabet *X*: $u_1 < u_2$ if $|u_1| < |u_2|$ or $|u_1| = |u_2|$ and $u_1 <_{lex} u_2$. Here $|\cdot|$ denotes the length of a word, i.e. the degree of a monomial, and $<_{lex}$ is the lexicographical order. For $f \in k\langle X \rangle$ we denote by \hat{f} its leading (with respect to <) monomial. An algebra $k\langle X \rangle / I$ is said to be *finitely presented* if *I* is a finitely generated ideal.

We call a monomial $w \in \langle X \rangle$ *I-reducible* if $w = \hat{f}$ for some relation $f \in I$. In the opposite case, we call *w I-irreducible*. Denote the set of all monomials of degree at most *n* by $\langle X \rangle_{\leq n}$. Let $A_n \subseteq A$ be the image of $\langle X \rangle_{\leq n}$ under the canonical map. The *growth* $V_A(n)$ is the dimension of the linear span of A_n . It is easily shown that $V_A(n)$ is equal to the number of *I*-irreducible monomials in $\langle X \rangle_{\leq n}$.

We call a monomial $w \in \langle X \rangle$ an *obstruction* for *I* if *w* is *I*-reducible, but any proper subword of *w* is *I*-irreducible. The *cogrowth* of algebra *A* is defined as the function $O_A(n)$, the number of obstructions of length $\leq n$.

The celebrated Bergman gap theorem says that the growth function $V_A(n)$ is either constant, linear of no less than (n + 1)(n + 2)/2 [2]. In this section we give a non-trivial bound on the cogrowth function for finitely presented algebras.

Theorem 1. Let A be a finitely presented algebra. Then the cogrowth function $O_A(n)$ is either constant or no less than logarithmic: $O_A(n) \ge \log_2(n) - C$. The constant C depends only on the maximal length of a relation.

Recall that a *Gröbner basis* of an ideal *I* is a subset $G \subseteq I$ such that for any $f \in I$ there exists $g \in G$ such that the leading monomial of *f* contains the leading monomial of *g* as a subword. One of Gröbner bases can be obtained by taking for each obstruction *u* a relation $f_u \in I$ such that $\widehat{f_u} = u$.

If *f* and *g* are two elements of $k\langle X \rangle$, $g \in I$ and the word \hat{g} is a subword of \hat{f} , then *f* can be replaced by *f'* such that $f' - f \in I$ and $\hat{f'} \prec \hat{f}$. This operation is called a *reduction*.

Let *f* and *g* be two elements of $k\langle X \rangle$. If $u_1u_2 = \hat{f}$ and $u_2u_3 = \hat{g}$ for some $u_1, u_2, u_3 \in \langle X \rangle$, then the word $u_1u_2u_3$ is called a *composition* of *f* and *g*, and the normed element $fu_3 - u_1g$ is the *result of this composition*.

Lemma 2 (Diamond Lemma [3]). Let two-sided ideal I be generated by a subset U of a free associative algebra $k\langle X \rangle$. Suppose that

- (i) there are no $f, g \in U$ such that \hat{g} is a proper subword of \hat{f} , and
- (ii) for any two elements $f, g \in U$ the result of any their composition can be reduced to 0 after finitely many reductions with elements from U.

Then the set U is a Gröbner basis of I.

Example. Consider the associative algebra $A \cong k\langle x, y \rangle / I$, where *I* is a two-sided ideal generated by $f = x^2 - yx$. It can be shown that the set $\{xy^ix - y^{i+1}x \mid i \ge 0\}$ is a Gröbner basis of *I*, so $O_A(n) = n - 1$ for $n \ge 2$. A monomial is *I*-irreducible if and only if it contains at most one letter *x*, hence $V_A(n) = (n+1)(n+2)/2$.

Theorem 1 directly follows from

Lemma 3. Let $A \cong k\langle X \rangle / I$ be a finitely presented algebra and let N be greater than the maximal length of its defining relation. Suppose there are no obstructions of length from the interval [N, 2N]. Then I has a finite Gröbner basis.

Proof. Let *S* be the set of all obstructions in $\langle X \rangle_{\leq N}$. Take for each monomial $w \in S$ a relation f_w such that $\widehat{f_w} = w$. Let us show that this set $\{f_w \mid s \in S\}$ forms a Gröbner basis for *I*. Indeed, *I* is generated by the set $\{f_w \mid w \in S\}$. The condition (i) of the Diamond Lemma holds automatically because no obstruction can be a proper subword of another obstruction. Let us check the condition (ii).

Let $u, v \in S$ and let h be the result of some composition of f_u and f_v . It is clear that the leading monomial of h has length less then 2N. We start reducing h with elements from $\{f_w | w \in S\}$. After finally many steps we obtain either 0 or an element h' such that \hat{h}' does not contain subwords from S. But since there are no obstructions from [N, 2N], the second case is impossible.

The *word problem* for a finitely presented algebra, i.e. the question whether a given element $f \in k\langle X \rangle$ lies in *I*, is undecidable in the general case. But if *I* has a finite Gröebner basis *G*, then *A* has a decidable word problem. Note also that the problem whether a given element in a finitely presented associative algebra is a zero divisor (or is it nilpotent) is undecidable, even if we are given a finite Gröebner basis [6]. But if the ideal of relations is generated by monomials and has a finite Gröebner basis, the nilpotency problem is algorithmically decidable [2].

2. Colength of a period

A monomial algebra is a finitely generated associative algebra whose defining relations are monomials. Let u be a finite word in alphabet X and let A_u be the algebra $k\langle X \rangle / I$, where I is generated by the set of monomials that are not subwords of the periodic sequence u^{∞} . Such algebras A_u play important role in the study of monomial algebras [2].

Let *W* be a sequence on alphabet *X*, i.e. a map $X^{\mathbb{N}}$. A finite word *v* is an *obstruction* for *W* if *v* is not a subword of *W* but any proper subword v' of *v* is a subword of *W*. If *u* is a finite word, the number of obstructions for u^{∞} is always finite. We call this number the *colength* of the period *u*. We say that the period is *defined by* the set of obstructions.

In [5], G. R. Chelnokov proved that a sequence of minimal period *n* cannot be defined by fewer than $\log_2 n + 1$ obstructions. G. R. Chelnokov also gave for infinitely many n_i an example of a binary sequence with minimal period n_i and colength of the period $\log_{\varphi} n_i$, where $\varphi = \frac{\sqrt{5}+1}{2}$. P. A. Lavrov found the precise lower estimation for colength of period.

Theorem 4 (cf. [7]). Let $A = \{a, b\}$ be a binary alphabet. Let u be a word of length n and colength c, then $\varphi_c \ge n$, where φ_c is the c-th Fibonacci number ($\varphi_1 = 1$, $\varphi_2 = 2$, $\varphi_3 = 3$, $\varphi_4 = 5$ etc.).

The case of an arbitrary alphabet was considered in [8] by P.A. Lavrov and independently in [4] by I. I. Bogdanov and G. R. Chelnokov.

3. Cogrowth function for an uniformly recurrent sequence

A sequence of letters W on a finite alphabet is called *uniformly recurrent* (u.r. for brevity) if for any finite subword u of W there exists a number C(u, W) such that any subword of W having length C(u, W) contains u as a subword. This property can be considered as a generalization of periodicity [9].

For a sequence of letters W denote by A_W the algebra $k\langle X \rangle / I_W$, where I_W is generated by the set of monomials that are not subwords of W. A monomial algebra A is called *almost simple* if each of its proper factor algebras B = A/I is nilpotent. In [2] it was shown that almost simple monomial algebras are algebras of the form A_W , where W is an u.r. sequence.

Again, a finite word *u* is an *obstruction* for *W* if it is not a subword of *W* but any its proper subword is a subword of *W*. The *cogrowth function* $O_W(n)$ is the number of obstructions with length $\leq n$.

Theorem 5. Let W be an u.r. non-periodic sequence on a binary alphabet. Then $\overline{\lim_{n\to\infty}}O_W(n)/\log_3 n \ge 1$.

A *factorial language* is a set \mathscr{U} of finite words such that for any $u \in \mathscr{U}$ all subwords of u also belong to \mathscr{U} . Denote by \mathscr{U}_k the words of \mathscr{U} having length k. A finite word u is called an *obstruction* for \mathscr{U} if $u \notin \mathscr{U}$, but any proper subword belongs to \mathscr{U} . Denote the factorial language consisting of all subwords of a given sequence W by $\mathscr{L}(W)$. To prove Theorem 5 we will assume the contrary and construct an infinite factorial language that is a proper subset of $\mathscr{L}(W)$.

Let \mathscr{U} be a factorial language and k be an integer. The *Rauzy graph* $R_k(\mathscr{U})$ of order k is the directed graph with vertex set \mathscr{U}_k and edge set \mathscr{U}_{k+1} . Two vertices u_1 and u_2 of $R_k(\mathscr{U})$ are connected by an edge u_3 if and only if $u_3 \in \mathscr{U}$, u_1 is a prefix of u_3 , and u_2 is a suffix of u_3 .

For a sequence *W* we denote the graph $R_k(\mathcal{L}(W))$ by $R_k(W)$. Further the word *graph* will always mean a directed graph, the word *path* will always mean a *directed path* in a directed graph. The *length* |p| of a path *p* is the number of its vertices, i.e. the number of edges plus one. If a path p_2 starts at the end of a path p_1 , we denote their concatenation by p_1p_2 . Recall that a directed graph is *strongly connected* if for every pair of vertices $\{v_1, v_2\}$ it contains a directed path from v_1 to v_2 and a directed path from v_2 to v_1 . It is clear that any Rauzy graph of an u.r. non-periodic sequence is a strongly connected digraph and is not a cycle.

Given a directed graph H, its *directed line graph* L(H) is a directed graph such that each vertex of L(H) represents an edge of H, and two vertices of L(H) that represent edges e_1 and e_2 of H are connected by an arrow from e_1 to e_2 if and only if the head of e_1 meets the tail of e_2 . For any k > 0there is one-to-one correspondence between paths of length k in L(H) and paths of length k + 1in H.

Let \mathcal{U} be a factorial language and let $m \ge n$. A word $a_1 \dots a_m \in \mathcal{U}_m$ corresponds to a path of length m - n + 1 in $R_n(\mathcal{U})$, this path visits vertices $a_1 \dots a_n$, $a_2 \dots a_{n+1}, \dots, a_{m-n+1} \dots a_m$. The graph $R_m(\mathcal{U})$ can be considered as a subgraph of $L^{m-n}(R_n(\mathcal{U}))$. Moreover, the graph $R_{n+1}(\mathcal{U})$ is obtained from $L(R_n(\mathcal{U}))$ by removing edges that correspond to obstructions of length n + 1.

We call a vertex v of a directed graph H a fork if v has out-degree more than one. Furthermore we assume that all forks have out-degrees exactly 2 (this is the case of a binary alphabet). For a directed graph H we define its *entropy regulator*: er(H) is the minimal integer such that any directed path of length er(H) in H contains at least one vertex that is a fork in H.

Proposition 6. Let *H* be a strongly connected digraph that is not a cycle. Then $er(H) < \infty$.

Proof. Assume the contrary. Let *n* be the total number of vertices in *H*. Consider a path of length n + 1 in *H* that does not contain forks. Note that this path visits some vertex *v* at least twice. This means that starting from *v* it is possible to obtain only vertices of this cycle. Since the graph *H* is strongly connected, *H* coincides with this cycle.

Lemma 7. Let *H* be a strongly connected digraph, er(H) = K. Then er(L(H)) = K.

Proof. The forks of the digraph L(H) are edges in H that end at forks. Consider K vertices forming a path in L(H). This path corresponds to a path of length K + 1 in H. Since $er(H) \le K$, there exists an edge of this path that ends at a fork.

Lemma 8. Let *H* be a strongly connected digraph, er(H) = K, let *v* be a fork in *H*, the edge *e* starts at *v*. Let the digraph H^* be obtained from *H* by removing the edge *e*. Let *G* be a subgraph of H^* that consists of all vertices and edges reachable from *v*. Then *G* is a strongly connected digraph. Also *G* is either a cycle of length at most *K*, or $er(G) \le 2K$.

Proof. First we prove that the digraph *G* is strongly connected. Let v' be an arbitrary vertex of *G*, then there is a path in *G* from v to v'. Consider a path p of minimum length from v' to v in *H*. Such a path exists, for otherwise *H* is not strongly connected. The path p does not contain the

edge e, for otherwise it could be shortened. This means that p connects v' to v in the digraph G. From any vertex of G we can reach the vertex v, hence G is strongly connected.

Consider an arbitrary path *p* of length 2*K* in the digraph *G*, suppose that *p* does not have forks. Since er(H) = K, then in *p* there are two vertices v_1 and v_2 which are forks in *H* and there are no forks in *p* between v_1 and v_2 . The out-degrees of all vertices except *v* coincide in *H* and *G*. If $v_1 \neq v$ or $v_2 \neq v$, then we find a vertex of *p* that is a fork in *G*. If $v_1 = v_2 = v$, then there is a cycle *C* in *G* such that $|C| \leq K$ and *C* does not contain forks of *G*. Since *G* is a strongly connected graph, it coincides with this cycle *C*.

Corollary 9. Let W be a binary u.r. non-periodic sequence, then for any n $\operatorname{er}(R_{n-1}(W)) \leq 2^{O_W(n)}.$

Proof. We prove this by induction on *n*. The base case n = 0 is obvious. Let $er(R_{n-1}(W)) = K$ and suppose *W* has exactly *a* obstructions of length n + 1. These obstructions correspond to paths of length 2 in the graph $R_{n-1}(W)$, i.e. edges of the graph $H := L(R_{n-1}(W))$. From Lemma 7 we have that er(H) = K. The graph $R_n(W)$ is obtained from the graph *H* by removing some edges e_1, e_2, \ldots, e_a . Since *W* is a u.r. sequence, the digraphs *H* and $H - \{e_1, e_2, \ldots, e_a\}$ are strongly connected. This means that the edges e_1, \ldots, e_a start at different forks of *H*. We also know that $R_n(W)$ is not a cycle. The graph $R_n(W)$ can be obtained by removing edges e_i from *H* one by one. Applying Lemma 8 *a* times, we show that $er(R_n(W)) \le 2^a K$, which completes the proof.

Lemma 10. Let *H* be a strongly connected digraph, er(H) = K, $k \ge 3K$. Let *u* be an arbitrary edge of the graph $L^k(H)$. Then the digraph $L^k(H) - u$ contains a strongly connected subgraph *B* such that $er(B) \le 3K$.

Proof. Consider in *H* the path p_u of length k + 2, corresponding to *u*. Divide first *k* vertices of p_u into three subpaths of length at least *K*. Since er(H) = K, each of these subpaths contains a fork (some of these forks can coincide). Next, we consider three cases.

Case 1. Assume that the path p_u visits at least two different forks of H. Then p_u contains a subpath of the form pe, where p is a path connecting two different forks v_1 and v_2 (and not containing other forks) and e is an edge starting at v_2 . It is clear that the length of p_1 does not exceed K + 1. Lemma 8 implies that there is a strongly connected subgraph G of H such that G contains the vertex v_2 but does not contain the edge e_2 .

If *G* is not a cycle, then $er(G) \le 2K$. Hence, the graph $B := L^k(G)$ is a subgraph of $L^k(H)$, and from Lemma 7 we have $er(B) \le 2K$. It is also clear that the digraph *B* does not contain the edge *u*.

If *G* is a cycle, we denote it by p_1 and denote its first edge by e_1 (we assume that v_2 is the first and last vertex of p_1). The length of p_1 does not exceed *K*. Among the vertices of p_1 there are no forks of *H* besides v_2 . Therefore, $v_1 \notin p_1$. Call a path *t* in *H* good, if *t* does not contain the subpath *pe*. Let us show that for any good path *s* in *H* there are two different paths s_1 and s_2 starting at the end of *s* such that $|s_1| = |s_2| = 3K$ and the paths ss_1 , ss_2 are also good.

It is clear that for any good path we can add an edge such that the new path is also good. There is a path t_1 , $|t_1| < K$ such that st_1 is a good path and ends at some fork v. If $v \neq v_2$, then two edges e_i , e_j start at v, the paths st_1e_i and st_2e_j are good, and each of them can be prolonged further to a good path of arbitrary length. If $v = v_2$, then the paths st_1p_1e and $st_2p_1e_1$ are good and can be extended.

Consider in $L^k(H)$ a subgraph that consists of all vertices and edges that are good paths in H, let B be a strongly connected component of this subgraph. It is clear that $er(B) \le 3K$ and the digraph B does not contain the edge u.

Case 2. Assume that the path p_u visits exactly one fork v_1 (at least 3 times), but there are forks besides v_1 in *H*. There are two edges e_1 and e_2 that start at v_1 . Starting with these edges and

moving until forks, we obtain two paths p_1 and p_2 . The edge e_1 is the first edge of p_1 , the edge e_2 is the first of p_2 , and $|p_1|, |p_2| \le K$. We can assume that p_1 is a subpath of p_u . Then p_1 ends at v_1 (and is a cycle) and p_2 ends at some fork $v_2 \ne v_1$ (if $v_1 = v_2$, then v_1 is the only fork reachable from v_1). We complete the proof as in the previous case: p_1e_1 is a subpath of p_u . We call a path *good* if it does not contain p_1e_1 . As above, we can show that if *s* is a good path in *H*, then there are two different paths s_1 and s_2 such that $|s_1| = |s_2| = 3L$ and the paths ss_1 , ss_2 are also good.

As above, *B* will be a strongly connected component in the subgraph of $L^{k}(H)$ that consists of vertices and edges corresponding to good paths in *H*.

Case 3. Assume that there is only one fork v in H. Then there are two cycles p_1 and p_2 of length $\leq K$ that start and end at v. Let e_1 be the first edge of p_1 and let e_2 be the first edge of p_2 . The path p_u contains one of the following subpaths: p_1e_1 , p_2e_2 , $p_1p_1e_2$ or $p_2p_2e_1$. Denote this path by t. Call a path *good* if it does not contain t. A simple check shows that we can complete the proof as in the previous cases.

Proof of Theorem 5. Arrange all the obstructions u_i of the u.r. binary sequence W by their length in non-descending order. If $\underline{\lim_{k\to\infty}} \frac{\log_3|u_k|}{k} \le 1$, then the statement of the Theorem holds. If $\underline{\lim_{k\to\infty}} \frac{\log_3|u_k|}{k} > 1$ then the sequence $|u_k|/3^k$ tends to infinity. Hence, there exists n_0 such that $|u_{n_0}|/3^{n_0} > 10$ and $|u_n|/3^n > |u_{n_0}|/3^{n_0}$ for all $n > n_0$. In this situation, $|u_{n_0+k}| > |u_{n_0}| + 4 \cdot 2^{n_0} \cdot 3^k$ for any k > 0.

Let $v_i = u_i$ if $1 \le i \le n_0$ and let v_i be a subword of u_i of length $|u_{n_0}| + 4 \cdot 2^{n_0} \cdot 3^{i-n_0}$ if $i > n_0$. Denote by \mathscr{U} the set of all finite binary words that do not contain subwords from $\{v_i\}$. It is clear that \mathscr{U} is a proper subset of $\mathscr{L}(W)$. We get a contradiction with the uniform recurrence of W if we show that the language \mathscr{U} is infinite. The Rauzy graph $R_{u_{n_0}-1}(\mathscr{U})$ is equal to $R_{u_{n_0}-1}(W)$, and from Corollary 9 we have $\operatorname{er}(R_{u_{n_0}-1}(\mathscr{L})) \le 2^{n_0}$.

By induction on *n* we show that for all $n \ge n_0$ the graph $R_{|v_n|-1}(\mathcal{U})$ contains a strongly connected subgraph H_n such that $\operatorname{er}(H_n) \le 3^{n-n_0} \cdot 2^{n_0}$. We already have the base case $n = n_0$. The graph $R_{|v_{n+1}|-1}(\mathcal{U})$ is obtained from $L^{|v_{n+1}|-|v_n|}(R_{|v_n|-1})$ by removing at most one edge. Note that $|v_{n+1}| - |v_n| > 3 \cdot \operatorname{er}(H_n)$, so we can use Lemma 10 for the digraph H_n and $k = |v_{n+1}| - |v_n|$. This completes the inductive step.

All the graphs $R_{|v_n|-1}(\mathcal{U})$ are nonempty and, therefore, the language \mathcal{U} is infinite.

For a sequence W over an alphabet $A = \{a_1, ..., a_k\}$ of size k, we replace in W each letter a_i by $0^i 1$ and obtain a binary sequence W'. If W is u.r. and non-periodic, then W' is also u.r. and non-periodic. It is clear that all long enough obstructions of W' correspond to some of the obstructions of W, so we obtain

Corollary 11. Let W be an u.r. non-periodic sequence on a finite alphabet. Then $\lim_{n\to\infty} O_W(n)/\log_3 n \ge 1$.

Example. Consider a finite alphabet {0,1} and the sequence of words u_i , defined recursively as $u_0 = 0$, $u_1 = 01$, $u_k = u_{k-1}u_{k-2}$ for $k \ge 2$. Since u_i is a prefix of u_{i+1} , the sequence (u_i) has a limit, called a *Fibonacci word* F = 0100101001001... In Example 25 of [1] the set {11,000,10101,00100100,...} of obstructions of F is described. These words have lengths equal to Fibonacci numbers. Since the Fibonacci word is u.r., in Theorem 5 we cannot replace the constant 3 by a number smaller than $\frac{\sqrt{5}+1}{2}$.

References

M.-P. Béal, F. Mignosi, A. Restivo, M. Sciortino, "Forbidden Words in Symbolic Dynamics", Adv. Appl. Math. 25 (2020), no. 2, p. 163-193.

^[2] A. Y. Belov, V. V. Borisenko, V. N. Latyshev, "Monomial algebras", J. Math. Sci., New York 87 (1997), no. 3, p. 3463-3575.

- [3] G. M. Bergman, "The diamond lemma for ring theory", Adv. Math. 29 (1978), no. 2, p. 178-218.
- [4] I. I. Bogdanov, G. R. Chelnokov, "The maximal length of the period of a periodic word defined by restrictions", https://arxiv.org/abs/1305.0460, 2013.
- [5] G. R. Chelnokov, "On the number of restrictions defining a periodic sequence", *Model and Analysis of Inform. Systems* 14 (2007), no. 2, p. 12-16, in Russian.
- [6] I. Ivanov-Pogodaev, S. Malev, "Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem", J. Algebra 508 (2018), p. 575-588.
- [7] P. A. Lavrov, "Number of restrictions required for periodic word in the finite alphabet", https://arxiv.org/abs/1209. 0220, 2012.
- [8] ______, "Minimal number of restrictions defining a periodic word", https://arxiv.org/abs/1412.5201, 2014.
- [9] A. A. Muchnik, Y. L. Pritykin, A. L. Semenov, "Sequences close to periodic", Russ. Math. Surv. 64 (2009), no. 5, p. 805-871.