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Abstract. We combine continuous ¢~ !-Hermite Askey polynomials with new 2D orthogonal polynomials
introduced by Ismail and Zhang as g-analogs for complex Hermite polynomials to construct a new set
of coherent states depending on a nonnegative integer parameter m. Our construction leads to a new g-
deformation of the m-true-polyanalytic Bargmann transform on the complex plane. In the analytic case
m = 0, the obtained coherent states transform can be associated with the Arik-Coon oscillator for
¢’ = g~ > 1. These result may be used to introduce a g-deformed Ginibre-type point process.
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1. Introduction and statement of the results

In [13], Bargmann introduced a transform which maps isometrically the space L?(R) onto the
Fock space §(C) of entire functions belonging to $ := L?(C,e **dA(z)/m) where dA(z) is the
Lebesgue measure on C. Since this transform is strongly linked to the Heisenberg group, it can be
seen as a windowed Fourier transform [18]. Hence, the important role it plays in signal processing
and harmonic analysis on the phase space [16]. It is also possible to interpret the kernel of this
transform in terms of coherent states [5] of the quantum harmonic oscillator whose eigenstates
are given by Hermite functions

. -1/2
0@ =(va2ljt) " Hj@e Y, )

H;(-) being the jth Hermite polynomial ( [22, p. 50]). A coherent state can be defined by a
normalized vector ¥ in L?(R), as a special superposition with the form

v,= ()Y

2
jzoﬁ(pj, zeC. (2)
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It turns out that the coefficients
h iy
j(Z)::_'rjzoylrzy---) (3)
il
form an orthonormal basis of F(C). If we denote by 98, the Bargmann transform, the image of an
arbitrary function f € L?(R) can be written as

PBolfl(z):= ﬂ_%fRe_%zz_%fZJrﬂ&f(f)df, zeC. 4)
Otherwise, it was proven [9] that §(C) coincides with the null space
o(C):={Fe$H, AF=0} (5)
of the second-order differential operator
A=- 62_+zi. (6)
0z0z 0z

The latter one, which acts on the Hilbert space, can be unitarly intertwined to appear as the
Schrédinger operator for the motion of a charged particle evolving in a constant and uniform
magnetic field normal to the plane. The spectrum of A in ) is the set of eigenvalues m € 7.,
each of which has an infinite multiplicity, usually called Euclidean Landau levels. For m € Z ., the
associated eigenspace [9] :

Am(C):={FeH, AF=mF} @)
is also the mth-true-polyanalytic space [4, 27] or the generalized Bargmann space [9]. An or-
thonormal basis for this space is given by the functions

W)= (D™ (m )P omo gl Ders@ N 2z, j=0,1,., @)

L(n“) () being the Laguerre polynomial ( [22, p. 47]), mA j = min(m, j) and i® = —1. Note that when
m=0, h?(z) reduces to h;(z) in (3). Therefore, we may replace the coeficients £ (z) by h;"(z) to
construct a family of coherent states depending on the parameter m. This leads to the coherent
states transform %, : L?>(R) — </, (C), defined for any f € L*(R) by [24]:

z+z

1 1 5 1.0
Bl fl(2) = (=)™ 2" m! ‘zf —3#-3¢ +¢25sz( -
[f1(z) = (=D 2" m!V/m) e ¢ 7

where H,,(-) denotes the Hermite polynomial. This transform, also called m-true-polyanalytic
Bargmann transform, has found applications in time-frequency analysis [1], discrete quantum
dynamics [2] and determinantal point processes [3]. For more details on (9), see [4] and reference
therein.

We also observe that the coefficients (8) can be rewritten in terms of 2D complex Hermite
polynomials introduced by Ito [20], as h7"(2) = (mlj !)71/2 Hp,j(z,Z) where

)f(f)df, ©

rAS r s
Hy (2, w) = Z(—l)kk!( )( )zr_kws_k, rs=0,1,2,.... (10)
= k|\k
For the latter ones, Ismail and Zhang have introduced the following g-analogs ( [19, p. 9]) :
rAS
Hys(zwlq):= )} ,rcl ,sc] g 1)k (g gz kWK, Zwe a1
k=0 q q
where
n| __ (49n kez., (a'q)n—,ﬁl(l—aql) and (a;q) —ﬁ(l—aql) (12)
- ’ ’ ] - ’ oo .
kly (@ @Dn-k(q; i 1=0 1=0
The polynomials (11) can also be rewritten in a form similar to (8) as
Hys(z, wlq) = (=1)""(q; @) pslal " 948D LI (700, q) (13)
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in terms of g-Laguerre polynomials le“) (x;q) (122, p. 108]).

Here, we introduce a new g-deformation of the transform (9) with the parameter range g~ >1.
The kernel of such a transform may be obtained, up to a normalization factor depending on z, as
the closed form of a generalized coherent state (a special superposition) that we now construct
by replacing the coefficients h;” (z) by a slight modification of the polynomials Hy;, ;(z, Z|g). More
precisely, our superposition combines the new coefficients with continuous g~!-Hermite Askey
functions [8], which are chosen as g-analogs of eigenstates of the harmonic oscillator and may
also be associated with the Arik-Coon oscillator for ¢’ = g~! > 1 [14]. Precisely, by setting w = z
in (13), we will be concerned with the following new coefficients

b

. — |m-]‘ T .
m,q(z) o (=1)mn (g; q)m/\j q 11- q |Z||m Jlemitm=j)arg(2) L(Im*jl) (q—la. q) (14)
7 - —1 . . i 4
! g7 =D D) D @ D i
where @ = (1 - )zz. Since lim,_; L ((1-q)x;q) = LI (x) it follows, after straightforward
calculations, that limg—. h;."'q(z) = h'""(z) which justifies our choice for the functions (14). Next,

as g-analogs of eigenstates of the Hamiltonian of the harmonic oscillator, we will be dealing with

the functions
1

JG+D \ 2
q [1-4g .

where h;(x|q) are the continuous g~ !'-Hermite Askey polynomials [8] defined by

hj(xlq) =i Hj(ixlg™"), (16)

Hj(x|p) being the continuous p-Hermite polynomial with p > 1 ([22, p. 115]) and

wq® =1L gh coshiy/ - Toe 17)

Furthermore, in ( [10, p. 5]) Atakishiyev showed that the functions (15) satisfy a Ramanujan-type
orthogonality relation on the full real line, which translates to

fR @] Qp{E)ds =51 (18)

in terms of the functions {(p‘?}. The latter ones also satisfy lim,_.; (p;.](f) = ¢;(¢) where @;(¢) are
the Hermite functions (1). lelis justifies our choice in (15).

Now, with the above material, we are able to define “a la Iwata” [15, 21] a new family of
generalized coherent states belonging to L?(R) by setting

1 —
Yemq = (Nnq(22) 2 3 07" (209, (19)
j=0
where the normalization factor
4" (=122 Q)o(q” (= 1D2Z Q)
((g-Dzz;q)m
is defined for every z € C. These states satisfy the resolution of the identity operator on L?(R) as

‘[C|‘I]z,m,q><‘{]z,m,q|dvm,q(z) = lLZ(R)- (21)

a/Vm,q(ZZ) = ) (20)

Here, the Dirac’s bra-ket notation |W¥;m g)(¥;mq|l means the rank-one operator ¢ —
(Yzmaq® - Yzmq ¢ € L*R) and Advin,q(2) := Nm,q(22)dpg(z) where dugy(z) is one of many
orthogonal measures for the polynomials h;.n'q(z) and it is given by ( [19, p. 11]) :

qg-1
qLogq

dpg(2) = (Eq(g'22) " dA(2) /7, (22)
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1298 Othmane El Moize and Zouhair Mouayn

where E4(x) = (9 — 1)X; ) defines a g-exponential function ( [17, p. 11]). Moreover, in the
limit g — 1 the measure du, reduces to the Gaussian measure e **dA(z)/n. Eq. (21) may also
be understood in the weak sense as

fc fr¥oma)¥omg 8dVmg(@=(f, 8, f.ge*®. (23)

Furthermore, straightforward calculations give the overlapping function of two coherent
states (19). See Subsection 2.1 below for the proof.

Proposition 1. Forme Z, and g~ > 1, the following assertion holds true
g*" (g = D2W; Qoo g™ q%,q%

1392\ 4 (g-Dzw

(Nm,q(22) Nim,q(Ww)) 2

(“Pz,m,qr‘yw,m,q>L2(R) = q; qm_l(q -Dwz (24)

foreveryz,weC.
Here, the 3¢p» g-series is defined by ( [17, p. 4]) :
qg " ab ) G "D @G Peb; P x
(x| = .
3"’2( cd LT Gondar @

In particular, for z = w in (24), the condition (¥ 2 1,4, ¥ z,m,q) 2@ = 1 may provide us with the
normalization factor (20). Furthermore, (24) gives an explicit expression for the function

k

(25)

1
Km,q (z, w):= (Wm,q (ZZ)JVm,q(WLD)) 2 <\Pz,m,q» q”w,m,q)LZ(R) (26)
which satisfies the limit )
lim Ko, g (2, 1) = VLY (12— wl?). 27
q—>
The proof of (27) is given in Subsection 2.2 below. Hence, one can say that the closure in g =
I? (C,dug) of the linear span of {b;.n’q} j=o0 is a Hilbert space whose reproducing kernel is given
in (26) and it will be denoted <7, (C). This space can also be viewed as a g-analog of the mth-
true-polyanalytic space «7;,(C) in (7) whose reproducing kernel was given by ezwL(,(,)L) (Iz—wl?),
see [9].
Eq. (23) also means that the coherent states transform B} : L*(R) — <f,] (C) defined as usual
(see [5, p. 27 for the general theory]) by

1
B = (N g (2D)2(f, Voo o) 12y Z€C, (28)

is an isometric map for which we establish the following precise result, see Subsection 2.3 below
for the proof.

Theorem 2. Forme Z, and q~' > 1, the transform (28) is explicitly given by
Bl f1(2) = Yq,mf (—qHTm T gzeesinh(/ 510 (B8 T -argsinh/ 540, q)
R oo
~ 1- . m-l ., m=3 _
x Qm (\/ —Zqé;wf T VI-qziq"T mz;q) wq@)fE)dS,  (29)

1mm
wherey gm = M and Q,, denotes the g~ -AL-Salam-Chihara polynomials.

vV @Dm
Here, the polynomial Q,, is defined by ( [10, p. 6]) :
q—n, ql—n 17,0

Quisinhk; 1,7;q) = gD (0" (17 e, ~ it e @) sa (iql—ntek’_iql—nteK

q; q) (30)

where x € R and t,7 € C. The isometry 28, will be called a g-deformation of the true-polyanalytic
Bargmann transform 28,, when ¢! > 1. Indeed, when g — 1 (29) reduces to (9), see Subsec-
tion 2.4 below for the proof.

C. R. Mathématique — 2021, 359, n° 10, 1295-1305
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Corollary 3. For m =0, the transform (29) reduces to 3887 (L2(R) — doq (©), defined by

B f1(2) = fR (—\/q(l—q)zeargsmh(v 0 /g = q)ze rEsinhy kqu’;q) Vg @ f©dE

for every z € C. In particular, when q — 1, ,%g goes to the Bargmann transform (4).
Here, doq (C) is the completed space of entire functions in )4, for which the elements
1(Jj .
h27(2) = (114 2 q2 )2, @31)
(q; q)]

1-q)/
q by its inverse g’ = g~', we recover the well known orthonormal basis ([ lgD™ 1225 of the

classical Arik-Coon type space with ¢’ = g~! > 1 [25].

where [j]4! = , constitute an orthonormal basis. Note that by replacing in (31) the parameter

1
Remark 4. For m = 0, we recover in L? ([R{, \/wg () d{) the state (£|z,0, q) = (wq(&)) 2 W2,0,4(&) as
a coherent state for the Arik-Coon oscillator with the deformation parameter g’ = g~! > 1, which
was constructed by Burban ( [14, p. 5]).

Remark 5. In [19, p. 4] Ismail and Zhang have also introduced another class of 2D orthogonal
g-polynomials, here denoted by H;;,j(z, w|q), which also generalize the complex Hermite poly-
nomials [20] and are connected to ones in (11) by

Hpm,j(z, wlq) = ™ i"™ Hyp, (2] i, wlilg™). 32)

In our previous joint work with Arjika [7], we have combined the polynomials H m,j (2, Z|q) with
the continuous g-Hermite polynomials H; i & Iq) and we have obtained a g-deformed m-true-

polyanalytic Bargmann transform on Lz( \/_ \/_ ,dé ) with g7 > 1.

Remark 6. The expression (26) may also constitute a starting point to construct a g-deformation
for the determinantal point process associated with an mth Euclidean Landau level or Ginibre-
type point process in C as discussed by Shirai [26].

2. Proofs
2.1. Proof of Proposition 1
By (18)-(19), the overlapping function of two coherent states is given by

<‘I/z,m,q,\I]w,m,q>L2(R) (e/Vm q(ZZ)e/Vm q(ww) Z bmq(z)hmq(w) (33)
j=
= (Wm,q(zz)wm,q(ww))‘i s, 34)

Replacing f)?'q(z) by their expressions in (14), we can write S = Si’g + ngf), where

m—j)2+m+j

( —7 :
m g, qq)q z (g -D""@w)m L)

§im _ g 1m0 (-1 ,
- ;go (@ Dm(q; q) j (4" aaq) j (a7 B;a)
m=j)%+m+j : X
O I R S B VU 1 U G-m) [U=m (-1
B L @; B;a),
];) (@ Dm(d; D) m (@ aa) Ly ™ (a7 B a)

C. R. Mathématique — 2021, 359, n° 10, 1295-1305
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and

m=p2emj j-m, i
= (g -0 =) o

LS (g7 asq) L ™ (g7 B a)

sy (4. 9;9)mq
© 5 (@ Dm(d:9)

m +3
(@ Dm ()(/157 ) (-m) (-1 (-m) -1
= > L ;q)L 3q),
A,m j20 (q’ q)] m (q a q) m (q ﬁ q)

where A = (1-q)zw, a =(1-q)zzand B = (1 — q) ww. Now, we apply the relation ( [23, p. 3]):

LM q) = () Vx N%mex,q) (35)

for N=j—m, n=j, x = ain a first time and next for x = . To obtain that S(m) (z,w; q) = 0. For
the infinite sum, we rewrite the g-Laguerre polynomial as ( [22, p. 110]):

—-n
(q; Q)n2¢l( 0
withn=m,y=j-m,x=q 'afor LY ™ (¢ a;q) and x = g~ f for LY, ™ (¢~ ; ¢). This gives

L(y)

(x;q) = g q””“) (36)

+3m

o0 —)Lm(q ) (a; B) 37
where
@) (Ag—m)/ -m _ -1 . -m _ -1 .
Sf]””(a;ﬁ) =y a9 (.q ) 2$1 (q ’Oq ¢ q; 67]+1)2¢1 (q ’Oq p q;qf“). (38)
j=0 (q; q)j

Recalling ([17, p. 3]):
k

ab ) (@ @b x
x| = , (39)
2¢1( c "’ L Gar @an

the r.h.s of (38) becomes

() 1 —-m\J |
S(qm)(a;ﬁ)zqu( ") « @™ -q RL) ,+1)k2(q CHDL g g

= @a; iz (q Dk 1=0 (g a)1
_ Z (q—my_q—la;q)qu (q_m,—q_lﬁ;bﬂl ql Z q(é) (q—m+k+la)] )
k,1>0 (@ @k (@91 20 (@9 '
Now, by applying the g-binomial theorem ( [17, p. 11]):
a"=(-a;,q)w (42)
n2>:0 (q; q)n 9

fora= q’m*k”/l, the r.h.s of (40) takes the form

G " -q"'Gkd" @ —a'BDid e
S (a; B) = g7 " @)oo (43)
7 P k,lzzo (@ Dk (@ 9 q
By making use of the identity ( [22, p. 9]):
(& @)oo
a; = — 44
(a;9)y @q’; ) (44)

for the factor (—g~""***!1; g)0, (43) transforms to

_ G " -q & a7 -q7 ' B qn
SU (@; B) = (=™ A; @)oo q* ! 45)
g (@p 1 q ,CZEO (q,q)k l;)( a " @i1(q; q)zq

C. R. Mathématique — 2021, 359, n° 10, 1295-1305
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Next, by the fact that (g7 A; )1+ = (g7 A; @)k (G " A; @), it follows that

- G" -Gk ¢ (a7 -q'B
S ;)= (- " Poo Y, —— 2 TK _ iq].
g (@p)=(-qg""q ;é) Comtaar 120 _gemy |54
Using the identity ([17, p. 10]):
g " b ) b Dn
il =——b 46
2"’1( c (& Dn 0
forn=m,b=-qg 'fand c = —gF ™A, leads to
_ G- G r @ E P
SU(@; )= (=" Poo e ) K
q p a 1 ,é (=q7 ™A, q; Pk 1 (=g "X @) m 7°F
Applying the identity ( [22, p. 9]):
(@ q)(aq”; @)
ag’; = 47
(aq™; @)y @D (47)
forr=m,n=k,a= ql‘mz/w and a = —g~ "1 in a second time, we arrive at
a7 @ TS Dm0 Do (g7 -q ', g2
(m) . _ w ) ) .
Sq (a; B) = Ca A dm <p2( 6717’"%,—/1 wlgs 6/). (48)
Finally, by the finite Heine transformation ( [6, p. 2]):
qg"¢o ) CT;9)n (q‘”,}//o,f n)
_ ;g = ;0T (49)
3(P2(,y,q1 nyr q,9 (T;q)n 3(P ,y,(f.[ q q
for parameters ¢ = g%, 0 = g 'a,y=-Aand1= ~, (48) reads

=g B " E, G D (—q7" A Doo gl gz
Su(a; B) = - = 3¢2(q 929

a7 "N m q,—A

aG-9" 1 -q) wZ). (50)
Summarizing the above calculations and taking into account the previous prefactors, we arrive at
the announced result (24). O
2.2. Proof of the limit (27)
Recalling that E;(x) = ((g — 1) X; )0, then we get that
lim 7" (g -1)zw; q)oo = €°7. (51)
qa

By another side, using (25) together with the fact that (g7"; q)x =0,V k > n, the series 3¢, in (24)
terminates as

m —m’ _“:/’ £; m—1 Y ~k
Omyq(z,w):= ) (q - q7% _qw' Dk (q (q' YwZ) |
k=0 ((g—-Dzw,q; q)k (q; Px

Thus, from the identity ( [22, p. 10]):

(52)

Y| Z k-G @Dk
=(-=1 T2 ,
k]q D (T D

C. R. Mathématique — 2021, 359, n° 10, 1295-1305
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we, successively, have

. gk WL a5r A-@F ol Lk
1 » 1 — -1 53
gl 1;)‘71“1( G @-Dzway Gar DA o9

w z. m-1,,5\k
_ Z lim [ ( )-mk (q 704 w_’ Dk (q wz) (54)
a1 k q ((g—Dzw; q)x [klq!
m lz— w|?k
=3 (-1 ——. (55)
L{) v
By noticing that the sum in (55) is the evaluation of the Laguerre polynomial LY at|z— w?, the
proof of the limit (27) is completed. U

2.3. Proof of Theorem 2
To apply (28), we seek for a closed form for the following series
. (m=j)2+0m ) Im—jl|
1 D™ g T (@G PmaiVaT A= q)
(./Vm,q(ZZ))Z \Pz,m,q(‘f) = Z 3 maj

=0 VG D@ D;

><|Z|Im Jlg—itm= ])arg(z)L(Im ]|)( *1(1—q)zZ;q) (P?(f) (56)

mAj

which may also be written as

m2+ m
=D™Mg"F" 0, O @m
™9, 2), 57)
(z4/1— q)m

—2m] 2]

(/1 z)] m
n"™9&, z) = Z G 4 L ) a;q) hj (\/ ‘f
j j

j=0
where a = (1 — q)zZz. Next, replacing the g-Laguerre polynomial by its expression (36), (58)

becomes
qum{;rz]'z 1_qz)j = . . .
nl (q =4«
= @ q); ’( 2 5‘67) @ w2 0

with

) (58)

TIFIEDY

q qj+1)

1

—2mj+2j?
_ Z q S (\/l—qz)l ( 1 5 ) (q -q- La; D quH)
(@ Dm ;= (q;9) =0 (q Dk

1 @) gtk /1= z)f
_ v "= La; gk 32 q k=g (/ q, ) 59)
(G Dm =0 (q; Dk (q:q);

j=0

By using the generating function of the g~!-Hermite polynomials ( [10, p. 6]) :

)3

n>0( ) )I’l

t”q( )

hn(xlg) = (- re¥ te” ,q)oo, sinh 0 = x (60)
for the parameters ¢ = qT k/T=qgzand

sinh @ =/ —1¢, (61)
the r.h.s of (59) takes the form

e =y @Dk ek 0k g 62)
(G Dm =0 (F Pk

C. R. Mathématique — 2021, 359, n° 10, 1295-1305
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where y = qkTm /1 - qz. By applying (44), it follows that

—ye’,ye % oo Mg ¢
nm,q(é’z):( ye,ye i q) (q a q ¢ Dk 4 63)
(@ Dm =0 (=ye,ye Usq)r (@ @k
which can also be expressed as
-y’ ye oo (q‘m,—q‘la,o )
mag z) = - i q|. (64)
e Gam 02 -yl et |1

Next, recalling the dg:ﬁnition of the g~!-Al-Salam-Chihara polynomials in (30) for x = 0, t =

ig" lyandt=iq 7 \/I-qz (64) reads

1)™q(2) (—ye?, ye0; G)oo QOm(sinh0;ig"T y,iq"T \/1=GZ q)
g hmgt-mytel,—q = my e 0 @) (q; @ '

After some simplifications, we arrive at the following form for the series (56)

0O (-q 7 VT=qz¢®,q 2" V/T=qz¢ %; oo

(—1)m6]%(72n) ~ ( 1-q, . m , m=3 _
x ———Q —&iq 7 \J/1-qziq ? \/1-qzq|. (66)
(q; Dm " 2 i q q =4

This ends the proof. g

n"™9(¢&, z) = (65)

2.4. Proof of the limitin (29)

To compute the limit of the quantity in (66) as g — 1, we first observe that

1/2
]__
lim /w4 (&) = lim (n; qé cosh(y/ =4 E)efz) —gie 2, (67)
g—1 g—1 2

Next, we denote . X
G4(z:8):=(-q 2 \/l—qzeg,qT \/l—qze_g;q)oo. (68)

Then by (12), we successively obtain
Loqu(z;f) = Z Log(l_qHTm‘*'k /l_qze—ﬁ +ql+Tm+k /l_qzeﬁ_qm+l+2k(1_q)zz)

k=0
_ q“Tm /—l_qz(ee_e—e) Z qk_qm+1(l_q)zz Z q2k+0(1_q)
k=0 k=0
+m 1 1
=g 2 —e ) —— — g™ E——+ 01— ).

,/1—q_q 1+qg

Thus, form (61) the last equality also reads

+m 1
LogGy(z;&)=q' 2" \/Ezf—q’”“zzmw(l—q). (69)

Therefore, when g — 1, we have lim, .1 G4(z;¢) = eV2 ‘%ZZ. To obtain the limit of the polynomial
quantity in (66) as ¢ — 1, we recall that the g~!-Al-Salam-Chihara polynomials can be expressed
as ([11,p.6)):

~ n n
Qu(s;a,blg) = g~ )
k=0

k
Z] q@)ia)"* hy(s;bl) (70)
q
in terms of the continuous big g~!'-Hermite polynomials. The latter ones satisfy the limit ( [12,

p-4D):
lim1 Kk "hp(xs;2xblq) = Hy(s+ ib),
q—»
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and from (70) we conclude that

lile*”an(Ks;ZiKa,ZiKb; q) = Hy(s—a-Db). (71D
q—>

By applying (71) forn=m, s=¢,a= qm%l zIV2,b = quf3 Z/v2and x = \/ 1;_q, we establish the
following

(- l)mq2 /1
im ———— §,zq o V1-qziq z - vV1-9zq
q—1 (6/ q)m
1
=(=D"2"m)"2 Hy (5—

z+2z
V2

Finally, by grouping the obtained three limits, we arrive at the assertion in (29). g
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