

Comptes Rendus Mathématique

Othmane El Moize and Zouhaïr Mouayn

A q-deformation of true-polyanalytic Bargmann transforms when $q^{-1} > 1$

Volume 359, issue 10 (2021), p. 1295-1305

https://doi.org/10.5802/crmath.284

© Académie des sciences, Paris and the authors, 2021. *Some rights reserved.*

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org **2021**, 359, nº 10, p. 1295-1305 https://doi.org/10.5802/crmath.284

Mathematical physics / Physique mathématique

A q-deformation of true-polyanalytic Bargmann transforms when $q^{-1} > 1$

Othmane El Moize a and Zouhaïr Mouayn b, c

 $^{\it a}$ Department of Mathematics, Faculty of Sciences, Ibn Tofaïl University, P.O. Box. 133, Kénitra, Morocco

 b Department of Mathematics, Faculty of Sciences and Technics (M'Ghila), Sultan Moulay Slimane University, P.O. Box. 523, Béni Mellal, Morocco

 $^{\rm c}$ Department of Mathematics, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden

E-mails: elmoize.othmane@gmail.com, mouayn@usms.ma, mouayn@kth.se

Abstract. We combine continuous q^{-1} -Hermite Askey polynomials with new 2D orthogonal polynomials introduced by Ismail and Zhang as q-analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter m. Our construction leads to a new q-deformation of the m-true-polynalytic Bargmann transform on the complex plane. In the analytic case m = 0, the obtained coherent states transform can be associated with the Arïk-Coon oscillator for $q' = q^{-1} > 1$. These result may be used to introduce a q-deformed Ginibre-type point process.

Manuscript received 23rd July 2020, accepted 13th October 2021.

1. Introduction and statement of the results

In [13], Bargmann introduced a transform which maps isometrically the space $L^2(\mathbb{R})$ onto the Fock space $\mathfrak{F}(\mathbb{C})$ of entire functions belonging to $\mathfrak{H}:=L^2\left(\mathbb{C},e^{-z\bar{z}}\mathrm{d}\lambda(z)/\pi\right)$ where $\mathrm{d}\lambda(z)$ is the Lebesgue measure on \mathbb{C} . Since this transform is strongly linked to the Heisenberg group, it can be seen as a windowed Fourier transform [18]. Hence, the important role it plays in signal processing and harmonic analysis on the phase space [16]. It is also possible to interpret the kernel of this transform in terms of coherent states [5] of the quantum harmonic oscillator whose eigenstates are given by Hermite functions

$$\varphi_j(\xi) = \left(\sqrt{\pi} 2^j j!\right)^{-1/2} H_j(\xi) e^{-\frac{1}{2}\xi^2},\tag{1}$$

 $H_j(\cdot)$ being the jth Hermite polynomial ([22, p. 50]). A coherent state can be defined by a normalized vector Ψ_z in $L^2(\mathbb{R})$, as a special superposition with the form

$$\Psi_z := \left(e^{z\bar{z}}\right)^{-1/2} \sum_{j \ge 0} \frac{\bar{z}^j}{\sqrt{j!}} \varphi_j, \quad z \in \mathbb{C}. \tag{2}$$

It turns out that the coefficients

$$h_j(z) := \frac{z^j}{\sqrt{j!}}, \ j = 0, 1, 2, \dots,$$
 (3)

form an orthonormal basis of $\mathfrak{F}(\mathbb{C})$. If we denote by \mathscr{B}_0 the Bargmann transform, the image of an arbitrary function $f \in L^2(\mathbb{R})$ can be written as

$$\mathcal{B}_0[f](z) := \pi^{-\frac{1}{4}} \int_{\mathbb{D}} e^{-\frac{1}{2}z^2 - \frac{1}{2}\xi^2 + \sqrt{2}\xi z} f(\xi) d\xi, \quad z \in \mathbb{C}.$$
 (4)

Otherwise, it was proven [9] that $\mathfrak{F}(\mathbb{C})$ coïncides with the null space

$$\mathcal{A}_0(\mathbb{C}) := \{ F \in \mathfrak{H}, \ \widetilde{\Delta}F = 0 \}$$
 (5)

of the second-order differential operator

$$\widetilde{\Delta} := -\frac{\partial^2}{\partial z \partial \bar{z}} + \bar{z} \frac{\partial}{\partial \bar{z}}.$$
 (6)

The latter one, which acts on the Hilbert space, can be unitarly intertwined to appear as the Schrödinger operator for the motion of a charged particle evolving in a constant and uniform magnetic field normal to the plane. The spectrum of $\widetilde{\Delta}$ in \mathfrak{H} is the set of eigenvalues $m \in \mathbb{Z}_+$, each of which has an infinite multiplicity, usually called Euclidean Landau levels. For $m \in \mathbb{Z}_+$, the associated eigenspace [9]:

$$\mathscr{A}_m(\mathbb{C}) := \left\{ F \in \mathfrak{H}, \ \widetilde{\Delta}F = mF \right\} \tag{7}$$

is also the mth-true-polyanalytic space [4, 27] or the generalized Bargmann space [9]. An orthonormal basis for this space is given by the functions

$$h_{j}^{m}(z) := (-1)^{m \wedge j} \left(m! j! \right)^{-1/2} (m \wedge j)! |z|^{|m-j|} e^{-i(m-j)arg(z)} L_{m \wedge j}^{(|m-j|)}(z\bar{z}), \ j = 0, 1, \dots,$$
 (8)

 $L_n^{(\alpha)}(\cdot)$ being the Laguerre polynomial ([22, p. 47]), $m \wedge j = \min(m,j)$ and $i^2 = -1$. Note that when m=0, $h_j^0(z)$ reduces to $h_j(z)$ in (3). Therefore, we may replace the coefficients $h_j(z)$ by $h_j^m(z)$ to construct a family of coherent states depending on the parameter m. This leads to the coherent states transform $\mathcal{B}_m: L^2(\mathbb{R}) \to \mathcal{A}_m(\mathbb{C})$, defined for any $f \in L^2(\mathbb{R})$ by [24]:

$$\mathscr{B}_{m}[f](z) = (-1)^{m} (2^{m} m! \sqrt{\pi})^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2}z^{2} - \frac{1}{2}\xi^{2} + \sqrt{2}\xi z} H_{m}\left(\xi - \frac{z + \bar{z}}{\sqrt{2}}\right) f(\xi) d\xi, \tag{9}$$

where $H_m(\cdot)$ denotes the Hermite polynomial. This transform, also called m-true-polyanalytic Bargmann transform, has found applications in time-frequency analysis [1], discrete quantum dynamics [2] and determinantal point processes [3]. For more details on (9), see [4] and reference therein.

We also observe that the coefficients (8) can be rewritten in terms of 2D complex Hermite polynomials introduced by Itô [20], as $h_i^m(z) = \left(m! \, j!\right)^{-1/2} H_{m,j}(z,\bar{z})$ where

$$H_{r,s}(z,w) = \sum_{k=0}^{r \wedge s} (-1)^k k! \binom{r}{k} \binom{s}{k} z^{r-k} w^{s-k}, \quad r,s = 0,1,2,\dots$$
 (10)

For the latter ones, Ismail and Zhang have introduced the following q-analogs ([19, p. 9]):

$$H_{r,s}(z,w|q) := \sum_{k=0}^{r \wedge s} \begin{bmatrix} r \\ k \end{bmatrix}_q \begin{bmatrix} s \\ k \end{bmatrix}_q q^{(r-k)(s-k)} (-1)^k q^{\binom{k}{2}} (q;q)_k z^{r-k} w^{s-k}, \ z, w \in \mathbb{C}$$
 (11)

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_{q} = \frac{(q;q)_{n}}{(q;q)_{n-k}(q;q)_{k}}, \ k \in \mathbb{Z}_{+}, \quad (a;q)_{n} = \prod_{l=0}^{n-1} \left(1 - aq^{l}\right) \quad \text{and} \quad (a;q)_{\infty} = \prod_{l=0}^{\infty} \left(1 - aq^{l}\right).$$
 (12)

The polynomials (11) can also be rewritten in a form similar to (8) as

$$H_{r,s}(z, w|q) = (-1)^{r \wedge s} (q;q)_{r \wedge s} |z|^{|r-s|} e^{-i(r-s)arg(z)} L_{r \wedge s}^{(|r-s|)} \left(zw;q\right)$$
(13)

in terms of *q*-Laguerre polynomials $L_n^{(\alpha)}(x;q)$ ([22, p. 108]).

Here, we introduce a new q-deformation of the transform (9) with the parameter range $q^{-1} > 1$. The kernel of such a transform may be obtained, up to a normalization factor depending on z, as the closed form of a generalized coherent state (a special superposition) that we now construct by replacing the coefficients $h_j^m(z)$ by a slight modification of the polynomials $H_{m,j}(z,\bar{z}|q)$. More precisely, our superposition combines the new coefficients with continuous q^{-1} -Hermite Askey functions [8], which are chosen as q-analogs of eigenstates of the harmonic oscillator and may also be associated with the Arik-Coon oscillator for $q' = q^{-1} > 1$ [14]. Precisely, by setting $w = \bar{z}$ in (13), we will be concerned with the following new coefficients

$$\mathfrak{h}_{j}^{m,q}(z) := \frac{(-1)^{m \wedge j} (q;q)_{m \wedge j} \sqrt{q^{-1} (1-q)}^{|m-j|} |z|^{|m-j|} e^{-i(m-j)arg(z)}}{q^{\frac{-1}{4}((m-j)^{2}+m+j)} \sqrt{(q;q)_{m}(q;q)_{j}}} L_{m \wedge j}^{(|m-j|)} \left(q^{-1} \alpha; q\right) \tag{14}$$

where $\alpha=(1-q)z\bar{z}$. Since $\lim_{q\to 1}L_n^{(\alpha)}\left((1-q)x;q\right)=L_n^{(\alpha)}(x)$ it follows, after straightforward calculations, that $\lim_{q\to 1}\mathfrak{h}_j^{m,q}(z)=h_j^m(z)$ which justifies our choice for the functions (14). Next, as q-analogs of eigenstates of the Hamiltonian of the harmonic oscillator, we will be dealing with the functions

$$\varphi_{j}^{q}(\xi) := \sqrt{\omega_{q}(\xi)} \left(\frac{q^{\frac{j(j+1)}{2}}}{(q;q)_{j}} \right)^{\frac{1}{2}} h_{j} \left(\sqrt{\frac{1-q}{2}} \xi | q \right), \ \xi \in \mathbb{R}, \ j = 0, 1, 2, \dots,$$
 (15)

where $h_i(x|q)$ are the continuous q^{-1} -Hermite Askey polynomials [8] defined by

$$h_i(x|q) = i^{-j}H_i(ix|q^{-1}),$$
 (16)

 $H_i(x|p)$ being the continuous p-Hermite polynomial with p > 1 ([22, p. 115]) and

$$\omega_{q}(\xi) = \pi^{-\frac{1}{2}} q^{\frac{1}{8}} \cosh(\sqrt{\frac{1-q}{2}} \xi) e^{-\xi^{2}}.$$
 (17)

Furthermore, in ([10, p. 5]) Atakishiyev showed that the functions (15) satisfy a Ramanujan-type orthogonality relation on the full real line, which translates to

$$\int_{\mathbb{D}} \varphi_j^q(\xi) \varphi_k^q(\xi) d\xi = \delta_{jk}$$
 (18)

in terms of the functions $\{\varphi_j^q\}$. The latter ones also satisfy $\lim_{q\to 1}\varphi_j^q(\xi)=\varphi_j(\xi)$ where $\varphi_j(\xi)$ are the Hermite functions (1). This justifies our choice in (15).

Now, with the above material, we are able to define "à la Iwata" [15, 21] a new family of generalized coherent states belonging to $L^2(\mathbb{R})$ by setting

$$\Psi_{z,m,q} := (\mathcal{N}_{m,q}(z\bar{z}))^{-\frac{1}{2}} \sum_{i>0} \overline{\mathfrak{h}_{j}^{m,q}(z)} \varphi_{j}^{q}, \tag{19}$$

where the normalization factor

$$\mathcal{N}_{m,q}(z\bar{z}) = \frac{q^{2m}((q-1)z\bar{z};q)_{\infty}(q^{-1}(q-1)z\bar{z};q)_{m}}{((q-1)z\bar{z};q)_{m}},$$
(20)

is defined for every $z \in \mathbb{C}$. These states satisfy the resolution of the identity operator on $L^2(\mathbb{R})$ as

$$\int_{\mathbb{C}} |\Psi_{z,m,q}\rangle \langle \Psi_{z,m,q}| d\nu_{m,q}(z) = \mathbf{1}_{L^{2}(\mathbb{R})}.$$
 (21)

Here, the Dirac's bra-ket notation $|\Psi_{z,m,q}\rangle\langle\Psi_{z,m,q}|$ means the rank-one operator $\phi\mapsto \langle\Psi_{z,m,q},\phi\rangle\cdot\Psi_{z,m,q},\ \phi\in L^2(\mathbb{R})$ and $\mathrm{d}v_{m,q}(z):=\mathcal{N}_{m,q}(z\bar{z})\mathrm{d}\mu_q(z)$ where $\mathrm{d}\mu_q(z)$ is one of many orthogonal measures for the polynomials $\mathfrak{h}_i^{m,q}(z)$ and it is given by ([19, p. 11]):

$$d\mu_q(z) := \frac{q-1}{q \log q} (E_q(q^{-1}z\bar{z}))^{-1} d\lambda(z)/\pi,$$
(22)

where $E_q(x)=((q-1)x;q)_\infty$ defines a q-exponential function ([17, p. 11]). Moreover, in the limit $q\to 1$ the measure $\mathrm{d}\mu_q$ reduces to the Gaussian measure $e^{-z\bar{z}}\mathrm{d}\lambda(z)/\pi$. Eq. (21) may also be understood in the weak sense as

$$\int_{\mathbb{C}} \langle f, \Psi_{z,m,q} \rangle \langle \Psi_{z,m,q}, g \rangle d\nu_{m,q}(z) = \langle f, g \rangle, \qquad f, g \in L^{2}(\mathbb{R}).$$
 (23)

Furthermore, straightforward calculations give the overlapping function of two coherent states (19). See Subsection 2.1 below for the proof.

Proposition 1. For $m \in \mathbb{Z}_+$ and $q^{-1} > 1$, the following assertion holds true

$$\langle \Psi_{z,m,q}, \Psi_{w,m,q} \rangle_{L^{2}(\mathbb{R})} = \frac{q^{2m}((q-1)z\bar{w};q)_{\infty}}{(\mathcal{N}_{m,q}(z\bar{z})\mathcal{N}_{m,q}(w\bar{w}))^{\frac{1}{2}}} \,_{3}\phi_{2} \left(\begin{array}{c} q^{-m}, q\frac{\bar{w}}{\bar{z}}, q\frac{z}{w} \\ q, (q-1)z\bar{w} \end{array} \right| q; q^{m-1}(q-1)w\bar{z} \right)$$
(24)

for every $z, w \in \mathbb{C}$.

Here, the $_3\phi_2$ *q*-series is defined by ([17, p. 4]):

$${}_{3}\phi_{2}\left(\begin{array}{c}q^{-n},a,b\\c,d\end{array}\middle|q;x\right) = \sum_{k>0}\frac{(q^{-n};q)_{k}(a;q)_{k}(b;q)_{k}}{(c;q)_{k}(d;q)_{k}}\frac{x^{k}}{(q;q)_{k}}.$$
(25)

In particular, for z=w in (24), the condition $\langle \Psi_{z,m,q}, \Psi_{z,m,q} \rangle_{L^2(\mathbb{R})} = 1$ may provide us with the normalization factor (20). Furthermore, (24) gives an explicit expression for the function

$$K_{m,q}(z,w) := \left(\mathcal{N}_{m,q}(z\bar{z})\mathcal{N}_{m,q}(w\bar{w})\right)^{\frac{1}{2}} \langle \Psi_{z,m,q}, \Psi_{w,m,q} \rangle_{L^{2}(\mathbb{R})}$$

$$\tag{26}$$

which satisfies the limit

$$\lim_{q \to 1} K_{m,q}(z, w) = e^{z\bar{w}} L_m^{(0)} (|z - w|^2).$$
(27)

The proof of (27) is given in Subsection 2.2 below. Hence, one can say that the closure in $\mathfrak{H}_q:=L^2(\mathbb{C},\mathrm{d}\mu_q)$ of the linear span of $\{\mathfrak{h}_j^{m,q}\}_{j\geq 0}$ is a Hilbert space whose reproducing kernel is given in (26) and it will be denoted $\mathscr{A}_m^q(\mathbb{C})$. This space can also be viewed as a q-analog of the mth-true-polyanalytic space $\mathscr{A}_m(\mathbb{C})$ in (7) whose reproducing kernel was given by $e^{z\bar{w}}L_m^{(0)}\left(|z-w|^2\right)$, see [9].

Eq. (23) also means that the *coherent states transform* $\mathscr{B}_m^q:L^2(\mathbb{R})\longrightarrow \mathscr{A}_m^q(\mathbb{C})$ defined as usual (see [5, p. 27 for the general theory]) by

$$\mathscr{B}_{m}^{q}[f](z) = (\mathcal{N}_{m,q}(z\bar{z}))^{\frac{1}{2}} \langle f, \Psi_{z,m,q} \rangle_{L^{2}(\mathbb{R})}, z \in \mathbb{C}, \tag{28}$$

is an isometric map for which we establish the following precise result, see Subsection 2.3 below for the proof.

Theorem 2. For $m \in \mathbb{Z}_+$ and $q^{-1} > 1$, the transform (28) is explicitly given by

$$\mathcal{B}_{m}^{q}[f](z) = \gamma_{q,m} \int_{\mathbb{R}} \left(-q^{\frac{1+m}{2}} \sqrt{1 - q} z e^{\operatorname{argsinh}(\sqrt{\frac{1-q}{2}}\xi)}, q^{\frac{1+m}{2}} \sqrt{1 - q} z e^{-\operatorname{argsinh}(\sqrt{\frac{1-q}{2}}\xi)}; q \right)_{\infty} \times \tilde{Q}_{m} \left(\sqrt{\frac{1-q}{2}} \xi; i q^{\frac{m-1}{2}} \sqrt{1 - q} z, i q^{\frac{m-3}{2}} \sqrt{1 - q} \bar{z}; q \right) \sqrt{\omega_{q}(\xi)} f(\xi) d\xi, \quad (29)$$

where $\gamma_{q,m} = \frac{(-1)^m q^{\frac{1}{2}\binom{m}{2}}}{\sqrt{(q;q)_m}}$ and \widetilde{Q}_m denotes the q^{-1} -AL-Salam-Chihara polynomials.

Here, the polynomial \widetilde{Q}_m is defined by ([10, p. 6]):

$$\widetilde{Q}_{n}(\sinh\kappa; t, \tau; q) = q^{-\binom{n}{2}} (it)^{n} (it^{-1}e^{\kappa}, -it^{-1}e^{-\kappa}; q)_{n \, 3} \phi_{2} \begin{pmatrix} q^{-n}, q^{1-n}t\tau, 0 \\ iq^{1-n}te^{\kappa}, -iq^{1-n}te^{\kappa} \end{pmatrix} q; q$$
(30)

where $\kappa \in \mathbb{R}$ and $t, \tau \in \mathbb{C}$. The isometry \mathscr{B}_m^q will be called a q-deformation of the true-polyanalytic Bargmann transform \mathscr{B}_m when $q^{-1} > 1$. Indeed, when $q \to 1$ (29) reduces to (9), see Subsection 2.4 below for the proof.

Corollary 3. For m = 0, the transform (29) reduces to $\mathscr{B}_0^q : L^2(\mathbb{R}) \longrightarrow \mathscr{A}_0^q(\mathbb{C})$, defined by

$$\mathcal{B}_0^q[f](z) = \int_{\mathbb{R}} \left(-\sqrt{q(1-q)} z e^{\operatorname{argsinh}(\sqrt{\frac{1-q}{2}}\xi)}, \sqrt{q(1-q)} z e^{-\operatorname{argsinh}(\sqrt{\frac{1-q}{2}}\xi)}; q \right)_{\infty} \sqrt{\omega_q(\xi)} f(\xi) \mathrm{d}\xi$$

for every $z \in \mathbb{C}$. In particular, when $q \to 1$, \mathcal{B}_0^q goes to the Bargmann transform (4).

Here, $\mathcal{A}_0^q(\mathbb{C})$ is the completed space of entire functions in \mathfrak{H}_q , for which the elements

$$\mathfrak{h}_{j}^{0,q}(z) = ([j]_{q}!)^{-1/2} q^{\frac{1}{2}\binom{j}{2}} z^{j}, \tag{31}$$

where $[j]_q! = \frac{(q;q)_j}{(1-q)^j}$, constitute an orthonormal basis. Note that by replacing in (31) the parameter q by its inverse $q' = q^{-1}$, we recover the well known orthonormal basis $([j]_{q'}!)^{-1/2}z^j$ of the classical Arïk-Coon type space with $q' = q^{-1} > 1$ [25].

Remark 4. For m=0, we recover in $L^2\left(\mathbb{R},\sqrt{\omega_q(\xi)}\,\mathrm{d}\xi\right)$ the state $\langle \xi|z,0,q\rangle\equiv\left(\omega_q(\xi)\right)^{-\frac{1}{2}}\Psi_{z,0,q}(\xi)$ as a coherent state for the Arïk-Coon oscillator with the deformation parameter $q'=q^{-1}>1$, which was constructed by Burban ([14, p. 5]).

Remark 5. In [19, p. 4] Ismail and Zhang have also introduced another class of 2D orthogonal q-polynomials, here denoted by $\widetilde{H}_{m,j}(z,w|q)$, which also generalize the complex Hermite polynomials [20] and are connected to ones in (11) by

$$\widetilde{H}_{m,j}(z,w|q) = q^{mj} i^{m+j} H_{m,j}(z/i,w/i|q^{-1}).$$
 (32)

In our previous joint work with Arjika [7], we have combined the polynomials $\widetilde{H}_{m,j}(z,\bar{z}|q)$ with the continuous q-Hermite polynomials $H_j(\xi|q)$ and we have obtained a q-deformed m-true-polyanalytic Bargmann transform on $L^2\left(\left|\frac{-\sqrt{2}}{\sqrt{1-q}},\frac{\sqrt{2}}{\sqrt{1-q}}\right|,\mathrm{d}\xi\right)$ with $q^{-1}>1$.

Remark 6. The expression (26) may also constitute a starting point to construct a q-deformation for the determinantal point process associated with an mth Euclidean Landau level or Ginibre-type point process in \mathbb{C} as discussed by Shirai [26].

2. Proofs

2.1. Proof of Proposition 1

By (18)-(19), the overlapping function of two coherent states is given by

$$\langle \Psi_{z,m,q}, \Psi_{w,m,q} \rangle_{L^2(\mathbb{R})} = \left(\mathcal{N}_{m,q}(z\bar{z}) \mathcal{N}_{m,q}(w\bar{w}) \right)^{-\frac{1}{2}} \sum_{j=0}^{\infty} \overline{\mathfrak{h}_j^{m,q}(z)} \mathfrak{h}_j^{m,q}(w)$$
(33)

$$= \left(\mathcal{N}_{m,q}(z\bar{z})\mathcal{N}_{m,q}(w\bar{w})\right)^{-\frac{1}{2}} S^{(m)}. \tag{34}$$

Replacing $\mathfrak{h}_j^{m,q}(z)$ by their expressions in (14), we can write $S^{(m)}=S_{<\infty}^{(m)}+S_{\infty}^{(m)}$, where

$$S_{<\infty}^{(m)} = \sum_{j=0}^{m-1} \frac{(q,q;q)_j q^{\frac{(m-j)^2+m+j}{2}} (q^{-1}-1)^{m-j} (\bar{z}w)^{m-j}}{(q;q)_m (q;q)_j} L_j^{(m-j)} \left(q^{-1}\alpha;q\right) L_j^{(m-j)} \left(q^{-1}\beta;q\right)$$

$$- \sum_{j=0}^{m-1} \frac{(q,q;q)_m q^{\frac{(m-j)^2+m+j}{2}} (q^{-1}-1)^{j-m} (z\bar{w})^{j-m}}{(q;q)_m (q;q)_j} L_m^{(j-m)} \left(q^{-1}\alpha;q\right) L_m^{(j-m)} \left(q^{-1}\beta;q\right),$$

and

$$\begin{split} S_{\infty}^{(m)} &= \sum_{j \geq 0} \frac{(q,q;q)_m q^{\frac{(m-j)^2+m+j}{2}} (q^{-1}-1)^{j-m} (z\bar{w})^{j-m}}{(q;q)_m (q;q)_j} L_m^{(j-m)} \left(q^{-1}\alpha;q\right) L_m^{(j-m)} \left(q^{-1}\beta;q\right) \\ &= \frac{q^{\frac{m^2+3m}{2}} (q;q)_m}{\lambda^m} \sum_{i \geq 0} \frac{q^{\binom{j}{2}} \left(\lambda q^{-m}\right)^j}{(q;q)_j} L_m^{(j-m)} \left(q^{-1}\alpha;q\right) L_m^{(j-m)} \left(q^{-1}\beta;q\right), \end{split}$$

where $\lambda = (1-q)z\bar{w}$, $\alpha = (1-q)z\bar{z}$ and $\beta = (1-q)w\bar{w}$. Now, we apply the relation ([23, p. 3]):

$$L_n^{(-N)}(x;q) = (-1)^{-N} x^N \frac{(q;q)_{n-N}}{(q;q)_n} L_{n-N}^{(N)}(x;q)$$
(35)

for N = j - m, n = j, $x = \alpha$ in a first time and next for $x = \beta$. To obtain that $S_{<\infty}^{(m)}(z, w; q) = 0$. For the infinite sum, we rewrite the *q*-Laguerre polynomial as ([22, p. 110]):

$$L_n^{(\gamma)}(x;q) = \frac{1}{(q;q)_n} {}_2\phi_1 \begin{pmatrix} q^{-n}, -x \\ 0 \end{pmatrix} q; q^{n+\gamma+1}$$
 (36)

with n=m, $\gamma=j-m$, $x=q^{-1}\alpha$ for $L_m^{(j-m)}\left(q^{-1}\alpha;q\right)$ and $x=q^{-1}\beta$ for $L_m^{(j-m)}\left(q^{-1}\beta;q\right)$. This gives

$$S_{\infty}^{(m)} = \frac{q^{\frac{m^2 + 3m}{2}}}{\lambda^m (q; q)_m} S_q^{(m)}(\alpha; \beta)$$
 (37)

where

$$S_{q}^{(m)}(\alpha;\beta) := \sum_{j\geq 0} \frac{q^{\binom{j}{2}} \left(\lambda q^{-m}\right)^{j}}{(q;q)_{j}} {}_{2}\phi_{1} \begin{pmatrix} q^{-m}, -q^{-1}\alpha \\ 0 \end{pmatrix} q; q^{j+1} \end{pmatrix} {}_{2}\phi_{1} \begin{pmatrix} q^{-m}, -q^{-1}\beta \\ 0 \end{pmatrix} q; q^{j+1} \end{pmatrix}. \tag{38}$$

Recalling ([17, p. 3]):

$${}_{2}\phi_{1}\begin{pmatrix} a,b \\ c \end{pmatrix} | q;x \end{pmatrix} = \sum_{k>0} \frac{(a;q)_{k}(b;q)_{k}}{(c;q)_{k}} \frac{x^{k}}{(q;q)_{k}}, \tag{39}$$

the r.h.s of (38) becomes

$$S_{q}^{(m)}(\alpha;\beta) = \sum_{j\geq 0} \frac{q^{\binom{j}{2}} (\lambda q^{-m})^{j}}{(q;q)_{j}} \sum_{k\geq 0} \frac{(q^{-m}, -q^{-1}\alpha; q)_{k}}{(q;q)_{k}} (q^{j+1})^{k} \sum_{l\geq 0} \frac{(q^{-m}, -q^{-1}\beta; q)_{l}}{(q;q)_{l}} (q^{j+1})^{l}$$
(40)

$$= \sum_{k,l \ge 0} \frac{(q^{-m}, -q^{-1}\alpha; q)_k \, q^k}{(q; q)_k} \, \frac{(q^{-m}, -q^{-1}\beta; q)_l \, q^l}{(q; q)_l} \sum_{j \ge 0} \frac{q^{\binom{j}{2}} \left(q^{-m+k+l}\lambda\right)^j}{(q; q)_j}. \tag{41}$$

Now, by applying the q-binomial theorem ([17, p. 11]):

$$\sum_{n \ge 0} \frac{q^{\binom{n}{2}}}{(q;q)_n} a^n = (-a;q)_{\infty} \tag{42}$$

for $a = q^{-m+k+l}\lambda$, the r.h.s of (40) takes the form

$$\mathsf{S}_{q}^{(m)}(\alpha;\beta) = \sum_{k,l \geq 0} \frac{(q^{-m}, -q^{-1}\alpha; q)_{k} \ q^{k}}{(q;q)_{k}} \frac{(q^{-m}, -q^{-1}\beta; q)_{l} \ q^{l}}{(q;q)_{l}} (-q^{-m+k+l}\lambda; q)_{\infty}. \tag{43}$$

By making use of the identity ([22, p. 9]):

$$(a;q)_{\gamma} = \frac{(a;q)_{\infty}}{(aq^{\gamma};q)_{\infty}} \tag{44}$$

for the factor $(-q^{-m+k+l}\lambda;q)_{\infty}$, (43) transforms to

$$S_q^{(m)}(\alpha;\beta) = (-q^{-m}\lambda;q)_{\infty} \sum_{k\geq 0} \frac{(q^{-m}, -q^{-1}\alpha;q)_k}{(q;q)_k} q^k \sum_{l\geq 0} \frac{(q^{-m}, -q^{-1}\beta;q)_l}{(-q^{-m}\lambda;q)_{k+l}(q;q)_l} q^l. \tag{45}$$

Next, by the fact that $(q^{-m}\lambda;q)_{l+k} = (q^{-m}\lambda;q)_k (q^{k-m}\lambda;q)_l$, it follows that

$$\mathsf{S}_{q}^{(m)}(\alpha;\beta) = (-q^{-m}\lambda;q)_{\infty} \sum_{k \geq 0} \frac{(q^{-m},-q^{-1}\alpha;q)_{k}}{(-q^{-m}\lambda,q;q)_{k}} \, q^{k} \, {}_{2}\phi_{1} \binom{q^{-m},-q^{-1}\beta}{-q^{k-m}\lambda} \bigg| \, q;q \bigg).$$

Using the identity ([17, p. 10]):

$${}_{2}\phi_{1}\left(\begin{array}{c}q^{-n},b\\c\end{array}\middle|q;q\right) = \frac{(b^{-1}c;q)_{n}}{(c;q)_{n}}b^{n}\tag{46}$$

for n = m, $b = -q^{-1}\beta$ and $c = -q^{k-m}\lambda$, leads to

$$\mathsf{S}_{q}^{(m)}(\alpha;\beta) = (-q^{-m}\lambda;q)_{\infty} \sum_{k \geq 0} \frac{(q^{-m},-q^{-1}\alpha;q)_{k}}{(-q^{-m}\lambda,q;q)_{k}} \, q^{k} \, \frac{(q^{k+1-m}\frac{z}{w};q)_{m}}{(-q^{k-m}\lambda;q)_{m}} (-q^{-1}\beta)^{m}.$$

Applying the identity ([22, p. 9]):

$$(aq^{n};q)_{r} = \frac{(a;q)_{r}(aq^{r};q)_{n}}{(a;q)_{n}}$$
(47)

for r = m, n = k, $a = q^{1-m}z/w$ and $a = -q^{-m}\lambda$ in a second time, we arrive at

$$\mathsf{S}_{q}^{(m)}(\alpha;\beta) = \frac{(-q^{-1}\beta)^{m}(q^{1-m}\frac{z}{w};q)_{m}(-q^{-m}\lambda;q)_{\infty}}{(-q^{-m}\lambda;q)_{m}} {}_{3}\phi_{2}\left(\begin{array}{c} q^{-m},-q^{-1}\alpha,q\frac{z}{w} \\ q^{1-m}\frac{z}{w},-\lambda \end{array} \middle| q;q\right). \tag{48}$$

Finally, by the finite Heine transformation ([6, p. 2]):

$${}_{3}\phi_{2}\begin{pmatrix} q^{-n}, \xi, \sigma \\ \gamma, q^{1-n}/\tau \end{vmatrix} q; q = \frac{(\xi\tau; q)_{n}}{(\tau; q)_{n}} {}_{3}\phi_{2}\begin{pmatrix} q^{-n}, \gamma/\sigma, \xi \\ \gamma, \xi\tau \end{vmatrix} q; \sigma\tau q^{n}$$

$$(49)$$

for parameters $\xi = q \frac{z}{w}$, $\sigma = -q^{-1}\alpha$, $\gamma = -\lambda$ and $\tau = \frac{w}{z}$, (48) reads

$$\mathsf{S}_{q}^{(m)}(\alpha;\beta) = \frac{(-q^{-1}\beta)^{m}(q^{1-m}\frac{z}{w},q;q)_{m}(-q^{-m}\lambda;q)_{\infty}}{(-q^{-m}\lambda,\frac{w}{z};q)_{m}} {}_{3}\phi_{2}\left(\begin{array}{c}q^{-n},q\frac{\bar{w}}{\bar{z}},q\frac{z}{w}\\q,-\lambda\end{array}\middle| q;-q^{m-1}(1-q)w\bar{z}\right). \tag{50}$$

Summarizing the above calculations and taking into account the previous prefactors, we arrive at the announced result (24).

2.2. Proof of the limit (27)

Recalling that $E_q(x) = ((q-1)x; q)_{\infty}$, then we get that

$$\lim_{q \to 1} q^{2m} ((q-1)z\bar{w};q)_{\infty} = e^{z\bar{w}}.$$
 (51)

By another side, using (25) together with the fact that $(q^{-n};q)_k = 0, \forall k > n$, the series $_3\phi_2$ in (24) terminates as

$$\sigma_{m,q}(z,w) := \sum_{k=0}^{m} \frac{(q^{-m}, q\frac{\bar{w}}{\bar{z}}, q\frac{z}{w}; q)_k}{((q-1)z\bar{w}, q; q)_k} \frac{\left(q^{m-1}(q-1)w\bar{z}\right)^k}{(q; q)_k}.$$
 (52)

Thus, from the identity ([22, p. 10]):

$$\begin{bmatrix} \gamma \\ k \end{bmatrix}_{q} = (-1)^{k} q^{k\gamma - \binom{k}{2}} \frac{(q^{-\gamma}; q)_{k}}{(q; q)_{k}},$$

we, successively, have

$$\lim_{q \to 1} \sigma_{m,q}(z, w) = \sum_{k=0}^{m} \lim_{q \to 1} \left(\frac{(q^{-m}; q)_k}{(q; q)_k} \frac{(q\frac{\bar{w}}{\bar{z}}, q\frac{z}{w}; q)_k}{((q-1)z\bar{w}; q)_k} \frac{(1-q)^k}{(q; q)_k} (-1)^k (q^{m-1}w\bar{z})^k \right)$$
(53)

$$= \sum_{k=0}^{m} \lim_{q \to 1} \left(\begin{bmatrix} m \\ k \end{bmatrix}_{q} q^{\binom{k}{2} - mk} \frac{(q \frac{\bar{w}}{\bar{z}}, q \frac{z}{\bar{w}}; q)_{k}}{((q-1)z\bar{w}; q)_{k}} \frac{(q^{m-1} w \bar{z})^{k}}{[k]_{q}!} \right)$$
(54)

$$=\sum_{k=0}^{m} {m \choose k} (-1)^k \frac{|z-w|^{2k}}{k!}.$$
 (55)

By noticing that the sum in (55) is the evaluation of the Laguerre polynomial $L_m^{(0)}$ at $|z-w|^2$, the proof of the limit (27) is completed.

2.3. Proof of Theorem 2

To apply (28), we seek for a closed form for the following series

$$\left(\mathcal{N}_{m,q}(z\bar{z}) \right)^{\frac{1}{2}} \Psi_{z,m,q}(\xi) = \sum_{j\geq 0} \frac{(-1)^{m\wedge j} q^{\frac{(m-j)^2 + (m+j)}{4}} (q;q)_{m\wedge j} \sqrt{q^{-1}(1-q)}^{|m-j|}}{\sqrt{(q;q)_m (q;q)_j}} \times |z|^{|m-j|} e^{-i(m-j)arg(z)} L_{m\wedge j}^{(|m-j|)} \left(q^{-1}(1-q)z\bar{z};q \right) \varphi_j^q(\xi)$$
 (56)

which may also be written as

$$\frac{(-1)^m q^{\frac{m^2 + 3m}{4}} \sqrt{\omega_q(\xi)(q;q)_m}}{(z\sqrt{1-q})^m} \eta^{m,q}(\xi,z),\tag{57}$$

with

$$\eta^{m,q}(\xi,z) = \sum_{j\geq 0} \frac{q^{\frac{-2mj+2j^2}{4}} (\sqrt{1-q}z)^j}{(q;q)_j} L_m^{(j-m)} \left(q^{-1}\alpha;q\right) h_j \left(\sqrt{\frac{1-q}{2}}\xi\right|q\right)$$
(58)

where $\alpha = (1 - q)z\bar{z}$. Next, replacing the *q*-Laguerre polynomial by its expression (36), (58) becomes

$$\eta^{m,q}(\xi,z) = \sum_{j\geq 0} \frac{q^{\frac{-2mj+2j^2}{4}} (\sqrt{1-q}z)^j}{(q;q)_j} h_j \left(\sqrt{\frac{1-q}{2}}\xi \middle| q\right) \frac{1}{(q;q)_m} {}_2\phi_1 \left(q^{-m}, -q^{-1}\alpha \middle| q;q^{j+1}\right) \\
= \frac{1}{(q;q)_m} \sum_{j\geq 0} \frac{q^{\frac{-2mj+2j^2}{4}} (\sqrt{1-q}z)^j}{(q;q)_j} h_j \left(\sqrt{\frac{1-q}{2}}\xi \middle| q\right) \sum_{k\geq 0} \frac{(q^{-m}, -q^{-1}\alpha;q)_k}{(q;q)_k} q^{k(j+1)} \\
= \frac{1}{(q;q)_m} \sum_{k>0} \frac{(q^{-m}, -q^{-1}\alpha;q)_k}{(q;q)_k} q^k \sum_{j\geq 0} \frac{q^{\binom{j}{2}} (q^{\frac{1-m}{2}+k}\sqrt{1-q}z)^j}{(q;q)_j} h_j \left(\sqrt{\frac{1-q}{2}}\xi \middle| q\right). \tag{59}$$

By using the generating function of the q^{-1} -Hermite polynomials ([10, p. 6]):

$$\sum_{n\geq 0} \frac{t^n q^{\binom{n}{2}}}{(q;q)_n} h_n(x|q) = (-te^{\theta}, te^{-\theta}; q)_{\infty}, \quad \sinh \theta = x$$
 (60)

for the parameters $t = q^{\frac{1-m}{2}+k} \sqrt{1-q}z$ and

$$\sinh \theta = \sqrt{\frac{1-q}{2}}\xi,\tag{61}$$

the r.h.s of (59) takes the form

$$\eta^{m,q}(\xi,z) = \frac{1}{(q;q)_m} \sum_{k\geq 0} \frac{(q^{-m}, -q^{-1}\alpha; q)_k}{(q;q)_k} q^k (-ye^{\theta}q^k, ye^{-\theta}q^k; q)_{\infty}, \tag{62}$$

where $y = q^{\frac{1-m}{2}} \sqrt{1-q}z$. By applying (44), it follows that

$$\eta^{m,q}(\xi,z) = \frac{(-ye^{\theta}, ye^{-\theta}; q)_{\infty}}{(q;q)_{m}} \sum_{k \ge 0} \frac{(q^{-m}, -q^{-1}\alpha; q)_{k}}{(-ye^{\theta}, ye^{-\theta}; q)_{k}} \frac{q^{k}}{(q;q)_{k}}$$
(63)

which can also be expressed as

$$\eta^{m,q}(\xi,z) = \frac{(-ye^{\theta}, ye^{-\theta}; q)_{\infty}}{(q;q)_{m}} {}_{3}\phi_{2} \begin{pmatrix} q^{-m}, -q^{-1}\alpha, 0 \\ -ye^{\theta}, ye^{-\theta} \end{pmatrix} q; q \end{pmatrix}. \tag{64}$$

Next, recalling the definition of the q^{-1} -Al-Salam-Chihara polynomials in (30) for $\kappa = \theta$, $t = iq^{m-1}y$ and $\tau = iq^{\frac{m-3}{2}}\sqrt{1-q}\bar{z}$, (64) reads

$$\eta^{m,q}(\xi,z) = \frac{(-1)^m q^{\binom{m}{2}} (-ye^{\theta}, ye^{-\theta}; q)_{\infty} \widetilde{Q}_m(\sinh\theta; iq^{\frac{m-1}{2}}y, iq^{\frac{m-3}{2}}\sqrt{1-q\bar{z}}; q)}{(yq^{m-1})^m (q^{1-m}y^{-1}e^{\theta}, -q^{1-m}y^{-1}e^{-\theta}; q)_m (q; q)_m}.$$
 (65)

After some simplifications, we arrive at the following form for the series (56)

$$\sqrt{\omega_{q}(\xi)} (-q^{\frac{1+m}{2}} \sqrt{1-q} z e^{\theta}, q^{\frac{1+m}{2}} \sqrt{1-q} z e^{-\theta}; q)_{\infty} \\
\times \frac{(-1)^{m} q^{\frac{1}{2} {m \choose 2}}}{\sqrt{(q;q)_{m}}} \widetilde{Q}_{m} \left(\sqrt{\frac{1-q}{2}} \xi; i q^{\frac{m-1}{2}} \sqrt{1-q} z, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z}; q \right).$$
(66)

This ends the proof.

2.4. Proof of the limit in (29)

To compute the limit of the quantity in (66) as $q \rightarrow 1$, we first observe that

$$\lim_{q \to 1} \sqrt{\omega_q(\xi)} = \lim_{q \to 1} \left(\pi^{-\frac{1}{2}} q^{\frac{1}{8}} \cosh(\sqrt{\frac{1-q}{2}} \xi) e^{-\xi^2} \right)^{1/2} = \pi^{-\frac{1}{4}} e^{-\xi^2/2}.$$
 (67)

Next, we denote

$$G_q(z;\xi) := (-q^{\frac{1+m}{2}}\sqrt{1-q}ze^{\theta}, q^{\frac{1+m}{2}}\sqrt{1-q}ze^{-\theta}; q)_{\infty}.$$
 (68)

Then by (12), we successively obtain

$$\begin{split} \operatorname{Log} G_q(z;\xi) &= \sum_{k \geq 0} \operatorname{Log} \left(1 - q^{\frac{1+m}{2} + k} \sqrt{1 - q} z e^{-\theta} + q^{\frac{1+m}{2} + k} \sqrt{1 - q} z e^{\theta} - q^{m+1+2k} (1 - q) z^2 \right) \\ &= q^{\frac{1+m}{2}} \sqrt{1 - q} z (e^{\theta} - e^{-\theta}) \sum_{k \geq 0} q^k - q^{m+1} (1 - q) z^2 \sum_{k \geq 0} q^{2k} + o(1 - q) \\ &= q^{\frac{1+m}{2}} z (e^{\theta} - e^{-\theta}) \frac{1}{\sqrt{1 - q}} - q^{m+1} z^2 \frac{1}{1 + q} + o(1 - q). \end{split}$$

Thus, form (61) the last equality also reads

$$\operatorname{Log} G_q(z;\xi) = q^{\frac{1+m}{2}} \sqrt{2} z \xi - q^{m+1} z^2 \frac{1}{1+q} + o(1-q).$$
 (69)

Therefore, when $q \to 1$, we have $\lim_{q \to 1} G_q(z;\xi) = e^{\sqrt{2}z\xi - \frac{1}{2}z^2}$. To obtain the limit of the polynomial quantity in (66) as $q \to 1$, we recall that the q^{-1} -Al-Salam-Chihara polynomials can be expressed as ([11, p. 6]):

$$\widetilde{Q}_n(s; a, b|q) = q^{-\binom{n}{2}} \sum_{k=0}^n {n \brack k}_q q^{\binom{k}{2}} (ia)^{n-k} h_k(s; b|q)$$
(70)

in terms of the continuous big q^{-1} -Hermite polynomials. The latter ones satisfy the limit ([12, p. 4]):

$$\lim_{q\to 1} \kappa^{-n} h_n(\kappa s; 2\kappa b|q) = H_n(s+ib),$$

and from (70) we conclude that

$$\lim_{q \to 1} \kappa^{-n} \widetilde{Q}_n(\kappa s; 2i\kappa a, 2i\kappa b; q) = H_n(s - a - b). \tag{71}$$

By applying (71) for n=m, $s=\xi$, $a=q^{\frac{m-1}{2}}z/\sqrt{2}$, $b=q^{\frac{m-3}{2}}\bar{z}/\sqrt{2}$ and $\kappa=\sqrt{\frac{1-q}{2}}$, we establish the following

$$\lim_{q \to 1} \frac{(-1)^m q^{\frac{1}{2} \binom{m}{2}}}{\sqrt{(q;q)_m}} \widetilde{Q}_m \left(\sqrt{\frac{1-q}{2}} \xi; i q^{\frac{m-1}{2}} \sqrt{1-q} z, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z}; q \right)$$

$$= (-1)^m (2^m m!)^{-\frac{1}{2}} H_m \left(\xi - \frac{z+\bar{z}}{\sqrt{2}} \right).$$

Finally, by grouping the obtained three limits, we arrive at the assertion in (29).

Acknowledgments

The authors would like to thank the *Moroccan Association of Harmonic Analysis* & *Spectral Geometry*.

References

- [1] L. D. Abreu, "Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions", *Appl. Comput. Harmon. Anal.* **29** (2010), no. 3, p. 287-302.
- [2] L. D. Abreu, P. Balázs, M. de Gosson, Z. Mouayn, "Discrete coherent states for higher Landau levels", Ann. Phys. 363 (2015), p. 337-353.
- [3] L. D. Abreu, J. M. Pereira, J. L. Romero, S. Torquato, "The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels", J. Stat. Mech. Theory Exp. 2017 (2017), no. 4, article no. 043103 (16 pages).
- [4] L. D. Abreu, H. G. Feichtinger, "Function spaces of polyanalytic functions", in *Harmonic and complex analysis and its applications*, Trends in Mathematics, Birkhäuser, 2014, p. 1-38.
- [5] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, *Coherent states, Wavelets and their Generalizations*, 2nd ed., Theoretical and Mathematical Physics, Springer, 2014.
- [6] G. E. Andrews, "The finite Heine transformation", in Combinatorial number theory, Walter de Gruyter, 2009, p. 1-6.
- [7] S. Arjika, O. El Moize, Z. Mouayn, "Une *q*-déformation de la transformation de Bargmann vraie-polyanalytique", *C. R. Math. Acad. Sci. Paris* **356** (2018), no. 8, p. 903-910.
- [8] R. Askey, "Continuous *q*-Hermite polynomials when *q* > 1. *q*-Series and Partitions", in *q*-Series and partitions (IMA, Minneapolis, 1988), The IMA Volumes in Mathematics and its Applications, vol. 18, Springer, 1989, p. 151-158.
- [9] N. Askour, A. Intissar, Z. Mouayn, "Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants", C. R. Math. Acad. Sci. Paris 325 (1997), no. 7, p. 707-712.
- [10] N. M. Atakishiev, "Orthogonality of Askey–Wilson polynomials with respect to a measure of Ramanujan type", *Theor. Math. Phys.* **102** (1995), no. 1, p. 23-28, translated from *Teoret. Mat. Fiz* **104** (1995), no. 1, p. 32-39.
- [11] M. K. Atakishiyeva, N. M. Atakishiev, "Fourier–Gauss transforms of the Al-Salam-Chihara polynomials", *J. Phys. A, Math. Gen.* **30** (1997), no. 19, p. 655-661.
- [12] ——, "Fourier–Gauss transforms of the continuous big *q*-Hermite polynomials", *J. Phys. A, Math. Gen.* **30** (1997), no. 16, p. 559-565.
- [13] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform", *Commun. Pure Appl. Math.* **14** (1961), p. 174-187.
- [14] I. M. Burban, "Arik–Coon oscillator with q > 1 in the framework of unified $(q; \alpha, \beta, \gamma; \nu)$ -deformation", *J. Phys. A, Math. Theor.* **43** (2010), no. 62, article no. 305204 (9 pages).
- [15] V. V. Dodonov, "Nonclassical states in quantum optics: a 'squeezed' review of the first 75 years", *J. Opt. B: Quantum Semiclassical Opt.* **4** (2002), p. 1-33.
- [16] G. B. Folland, *Harmonic analysis in phase space*, Annals of Mathematics Studies, vol. 122, Princeton University Press, 1989, x+277 pages.
- [17] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, vol. 96, Cambridge University Press, 2004.
- [18] B. C. Hall, "Bounds on the Segal-Bargmann transform of L_p functions", J. Fourier Anal. Appl. 7 (2001), no. 6, p. 553-569.

- [19] M. E. H. Ismail, R. Zhang, "On some 2D Orthogonal q-polynomials", Trans. Am. Math. Soc. 369 (2017), no. 10, p. 6779-6821.
- [20] K. Itô, "Complex multiple Wiener integral", Jap. J. Math. 22 (1952), p. 63-86.
- [21] G. Iwata, "Transformation functions in the complex domain", Prog. Theor. Phys. 6 (1951), p. 524-528.
- [22] R. Koekoek, R. F. Swarttouw, "The Askey-scheme of hypergeometric orthogonal polynomials and its *q*-analogues", 1998, Delft University of Technology.
- [23] S. G. Moreno, E. M. García-Caballero, "q-Sobolev orthogonality of the q-Laguerre polynomials $\{L_n^{(-N)}(\cdot,q)\}_{n=0}^{\infty}$ for positive integers N", J. Korean Math. Soc. **48** (2011), no. 5, p. 913-926.
- [24] Z. Mouayn, "Coherent state transforms attached to generalized Bargmann spaces on the complex plane", *Math. Nachr.* **284** (2011), no. 14-15, p. 1948-1954.
- [25] C. Quesne, K. A. Penson, V. M. Tkachuk, "Maths-type q-deformed coherent states for q > 1", *Phys. Lett.*, A **33** (2003), no. 1-2, p. 29-36.
- [26] T. Shirai, "Ginibre-type point processes and their asymptotic behavior", *J. Math. Soc. Japan* **67** (2015), no. 2, p. 763-787
- [27] N. L. Vasilevski, "Poly-Fock spaces", in Differential operators and related topics, Operator Theory: Advances and Applications, vol. 117, Birkhäuser, 2000, p. 371-386.