I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Othmane El Moize and Zouhaïr Mouayn

A \boldsymbol{q}-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$

Volume 359, issue 10 (2021), p. 1295-1305
https://doi.org/10.5802/crmath.284
© Académie des sciences, Paris and the authors, 2021.
Some rights reserved.
\leftrightarrow 时 \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

A q-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$

Othmane El Moize ${ }^{a}$ and Zouhaïr Mouayn ${ }^{b, c}$

${ }^{a}$ Department of Mathematics, Faculty of Sciences, Ibn Tofaïl University, P.O. Box. 133, Kénitra, Morocco
${ }^{b}$ Department of Mathematics, Faculty of Sciences and Technics (M'Ghila), Sultan Moulay Slimane University, P.O. Box. 523, Béni Mellal, Morocco
${ }^{c}$ Department of Mathematics, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
E-mails: elmoize.othmane@gmail.com, mouayn@usms.ma, mouayn@kth.se

Abstract

We combine continuous q^{-1}-Hermite Askey polynomials with new $2 D$ orthogonal polynomials introduced by Ismail and Zhang as q-analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter m. Our construction leads to a new q deformation of the m-true-polyanalytic Bargmann transform on the complex plane. In the analytic case $m=0$, the obtained coherent states transform can be associated with the Arïk-Coon oscillator for $q^{\prime}=q^{-1}>1$. These result may be used to introduce a q-deformed Ginibre-type point process.

Manuscript received 23rd July 2020, accepted 13th October 2021.

1. Introduction and statement of the results

In [13], Bargmann introduced a transform which maps isometrically the space $L^{2}(\mathbb{R})$ onto the Fock space $\mathfrak{F}(\mathbb{C})$ of entire functions belonging to $\mathfrak{H}:=L^{2}\left(\mathbb{C}, e^{-z \bar{z}} \mathrm{~d} \lambda(z) / \pi\right)$ where $\mathrm{d} \lambda(z)$ is the Lebesgue measure on \mathbb{C}. Since this transform is strongly linked to the Heisenberg group, it can be seen as a windowed Fourier transform [18]. Hence, the important role it plays in signal processing and harmonic analysis on the phase space [16]. It is also possible to interpret the kernel of this transform in terms of coherent states [5] of the quantum harmonic oscillator whose eigenstates are given by Hermite functions

$$
\begin{equation*}
\varphi_{j}(\xi)=\left(\sqrt{\pi} 2^{j} j!\right)^{-1 / 2} H_{j}(\xi) e^{-\frac{1}{2} \xi^{2}}, \tag{1}
\end{equation*}
$$

$H_{j}(\cdot)$ being the j th Hermite polynomial ([22, p. 50]). A coherent state can be defined by a normalized vector Ψ_{z} in $L^{2}(\mathbb{R})$, as a special superposition with the form

$$
\begin{equation*}
\Psi_{z}:=\left(e^{z \bar{z}}\right)^{-1 / 2} \sum_{j \geq 0} \frac{\bar{z}^{j}}{\sqrt{j!}} \varphi_{j}, \quad z \in \mathbb{C} . \tag{2}
\end{equation*}
$$

It turns out that the coefficients

$$
\begin{equation*}
h_{j}(z):=\frac{z^{j}}{\sqrt{j!}}, j=0,1,2, \ldots, \tag{3}
\end{equation*}
$$

form an orthonormal basis of $\mathfrak{F}(\mathbb{C})$. If we denote by \mathscr{B}_{0} the Bargmann transform, the image of an arbitrary function $f \in L^{2}(\mathbb{R})$ can be written as

$$
\begin{equation*}
\mathscr{B}_{0}[f](z):=\pi^{-\frac{1}{4}} \int_{\mathbb{R}} e^{-\frac{1}{2} z^{2}-\frac{1}{2} \xi^{2}+\sqrt{2} \xi z} f(\xi) \mathrm{d} \xi, \quad z \in \mathbb{C} . \tag{4}
\end{equation*}
$$

Otherwise, it was proven [9] that $\mathfrak{F}(\mathbb{C})$ coïncides with the null space

$$
\begin{equation*}
\mathscr{A}_{0}(\mathbb{C}):=\{F \in \mathfrak{H}, \widetilde{\Delta} F=0\} \tag{5}
\end{equation*}
$$

of the second-order differential operator

$$
\begin{equation*}
\widetilde{\Delta}:=-\frac{\partial^{2}}{\partial z \partial \bar{z}}+\bar{z} \frac{\partial}{\partial \bar{z}} . \tag{6}
\end{equation*}
$$

The latter one, which acts on the Hilbert space, can be unitarly intertwined to appear as the Schrödinger operator for the motion of a charged particle evolving in a constant and uniform magnetic field normal to the plane. The spectrum of $\widetilde{\Delta}$ in \mathfrak{H} is the set of eigenvalues $m \in \mathbb{Z}_{+}$, each of which has an infinite multiplicity, usually called Euclidean Landau levels. For $m \in \mathbb{Z}_{+}$, the associated eigenspace [9] :

$$
\begin{equation*}
\mathscr{A}_{m}(\mathbb{C}):=\{F \in \mathfrak{H}, \widetilde{\Delta} F=m F\} \tag{7}
\end{equation*}
$$

is also the m th-true-polyanalytic space [4,27] or the generalized Bargmann space [9]. An orthonormal basis for this space is given by the functions

$$
\begin{equation*}
h_{j}^{m}(z):=(-1)^{m \wedge j}(m!j!)^{-1 / 2}(m \wedge j)!|z|^{|m-j|} e^{-i(m-j) \arg (z)} L_{m \wedge j}^{(|m-j|)}(z \bar{z}), j=0,1, \ldots, \tag{8}
\end{equation*}
$$

$L_{n}^{(\alpha)}(\cdot)$ being the Laguerre polynomial $([22, \mathrm{p} .47]), m \wedge j=\min (m, j)$ and $i^{2}=-1$. Note that when $m=0, h_{j}^{0}(z)$ reduces to $h_{j}(z)$ in (3). Therefore, we may replace the coefficients $h_{j}(z)$ by $h_{j}^{m}(z)$ to construct a family of coherent states depending on the parameter m. This leads to the coherent states transform $\mathscr{B}_{m}: L^{2}(\mathbb{R}) \rightarrow \mathscr{A}_{m}(\mathbb{C})$, defined for any $f \in L^{2}(\mathbb{R})$ by [24]:

$$
\begin{equation*}
\mathscr{B}_{m}[f](z)=(-1)^{m}\left(2^{m} m!\sqrt{\pi}\right)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{1}{2} z^{2}-\frac{1}{2} \xi^{2}+\sqrt{2} \xi z} H_{m}\left(\xi-\frac{z+\bar{z}}{\sqrt{2}}\right) f(\xi) \mathrm{d} \xi, \tag{9}
\end{equation*}
$$

where $H_{m}(\cdot)$ denotes the Hermite polynomial. This transform, also called m-true-polyanalytic Bargmann transform, has found applications in time-frequency analysis [1], discrete quantum dynamics [2] and determinantal point processes [3]. For more details on (9), see [4] and reference therein.

We also observe that the coefficients (8) can be rewritten in terms of $2 D$ complex Hermite polynomials introduced by Itô [20], as $h_{j}^{m}(z)=(m!j!)^{-1 / 2} H_{m, j}(z, \bar{z})$ where

$$
\begin{equation*}
H_{r, s}(z, w)=\sum_{k=0}^{r \wedge s}(-1)^{k} k!\binom{r}{k}\binom{s}{k} z^{r-k} w^{s-k}, \quad r, s=0,1,2, \ldots . \tag{10}
\end{equation*}
$$

For the latter ones, Ismail and Zhang have introduced the following q-analogs ([19, p. 9]) :

$$
H_{r, s}(z, w \mid q):=\sum_{k=0}^{r \wedge s}\left[\begin{array}{l}
r \tag{11}\\
k
\end{array}\right]_{q}\left[\begin{array}{l}
s \\
k
\end{array}\right]_{q} q^{(r-k)(s-k)}(-1)^{k} q^{(k)}(q ; q)_{k} z^{r-k} w^{s-k}, z, w \in \mathbb{C}
$$

where

$$
\left[\begin{array}{l}
n \tag{12}\\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{n-k}(q ; q)_{k}}, k \in \mathbb{Z}_{+}, \quad(a ; q)_{n}=\prod_{l=0}^{n-1}\left(1-a q^{l}\right) \quad \text { and } \quad(a ; q)_{\infty}=\prod_{l=0}^{\infty}\left(1-a q^{l}\right) .
$$

The polynomials (11) can also be rewritten in a form similar to (8) as

$$
\begin{equation*}
H_{r, s}(z, w \mid q)=(-1)^{r \wedge s}(q ; q)_{r \wedge s}|z|^{|r-s|} e^{-i(r-s) \arg (z)} L_{r \wedge s}^{(|r-s|)}(z w ; q) \tag{13}
\end{equation*}
$$

in terms of q-Laguerre polynomials $L_{n}^{(\alpha)}(x ; q)$ ([22, p. 108]).
Here, we introduce a new q-deformation of the transform (9) with the parameter range $q^{-1}>1$. The kernel of such a transform may be obtained, up to a normalization factor depending on z, as the closed form of a generalized coherent state (a special superposition) that we now construct by replacing the coefficients $h_{j}^{m}(z)$ by a slight modification of the polynomials $H_{m, j}(z, \bar{z} \mid q)$. More precisely, our superposition combines the new coefficients with continuous q^{-1}-Hermite Askey functions [8], which are chosen as q-analogs of eigenstates of the harmonic oscillator and may also be associated with the Arïk-Coon oscillator for $q^{\prime}=q^{-1}>1$ [14]. Precisely, by setting $w=\bar{z}$ in (13), we will be concerned with the following new coefficients

$$
\begin{equation*}
\mathfrak{h}_{j}^{m, q}(z):=\frac{(-1)^{m \wedge j}(q ; q)_{m \wedge j} \sqrt{q^{-1}(1-q)}}{{ }^{|m-j|}|z|^{|m-j|} e^{-i(m-j) \arg (z)}}{q^{-\frac{1}{4}\left((m-j)^{2}+m+j\right)} \sqrt{(q ; q)_{m}(q ; q)_{j}}}^{(|m-j|)}\left(q^{-1} \alpha ; q\right) \tag{14}
\end{equation*}
$$

where $\alpha=(1-q) z \bar{z}$. Since $\lim _{q \rightarrow 1} L_{n}^{(\alpha)}((1-q) x ; q)=L_{n}^{(\alpha)}(x)$ it follows, after straightforward calculations, that $\lim _{q \rightarrow 1} \mathfrak{h}_{j}^{m, q}(z)=h_{j}^{m}(z)$ which justifies our choice for the functions (14). Next, as q-analogs of eigenstates of the Hamiltonian of the harmonic oscillator, we will be dealing with the functions

$$
\begin{equation*}
\varphi_{j}^{q}(\xi):=\sqrt{\omega_{q}(\xi)}\left(\frac{q^{\frac{j(j+1)}{2}}}{(q ; q)_{j}}\right)^{\frac{1}{2}} h_{j}\left(\left.\sqrt{\frac{1-q}{2}} \xi \right\rvert\, q\right), \xi \in \mathbb{R}, \quad j=0,1,2, \ldots \tag{15}
\end{equation*}
$$

where $h_{j}(x \mid q)$ are the continuous q^{-1}-Hermite Askey polynomials [8] defined by

$$
\begin{equation*}
h_{j}(x \mid q)=i^{-j} H_{j}\left(i x \mid q^{-1}\right), \tag{16}
\end{equation*}
$$

$H_{j}(x \mid p)$ being the continuous p-Hermite polynomial with $p>1$ ([22, p. 115]) and

$$
\begin{equation*}
\omega_{q}(\xi)=\pi^{-\frac{1}{2}} q^{\frac{1}{8}} \cosh \left(\sqrt{\frac{1-q}{2} \xi}\right) e^{-\xi^{2}} \tag{17}
\end{equation*}
$$

Furthermore, in ([10, p. 5]) Atakishiyev showed that the functions (15) satisfy a Ramanujan-type orthogonality relation on the full real line, which translates to

$$
\begin{equation*}
\int_{\mathbb{R}} \varphi_{j}^{q}(\xi) \varphi_{k}^{q}(\xi) \mathrm{d} \xi=\delta_{j k} \tag{18}
\end{equation*}
$$

in terms of the functions $\left\{\varphi_{j}^{q}\right\}$. The latter ones also satisfy $\lim _{q \rightarrow 1} \varphi_{j}^{q}(\xi)=\varphi_{j}(\xi)$ where $\varphi_{j}(\xi)$ are the Hermite functions (1). This justifies our choice in (15).

Now, with the above material, we are able to define "à la Iwata" [15,21] a new family of generalized coherent states belonging to $L^{2}(\mathbb{R})$ by setting

$$
\begin{equation*}
\Psi_{z, m, q}:=\left(\mathscr{N}_{m, q}(z \bar{z})\right)^{-\frac{1}{2}} \sum_{j \geq 0} \overline{\mathfrak{h}_{j}^{m, q}(z)} \varphi_{j}^{q} \tag{19}
\end{equation*}
$$

where the normalization factor

$$
\begin{equation*}
\mathscr{N}_{m, q}(z \bar{z})=\frac{q^{2 m}((q-1) z \bar{z} ; q)_{\infty}\left(q^{-1}(q-1) z \bar{z} ; q\right)_{m}}{((q-1) z \bar{z} ; q)_{m}} \tag{20}
\end{equation*}
$$

is defined for every $z \in \mathbb{C}$. These states satisfy the resolution of the identity operator on $L^{2}(\mathbb{R})$ as

$$
\begin{equation*}
\int_{\mathbb{C}}\left|\Psi_{z, m, q}\right\rangle\left\langle\Psi_{z, m, q}\right| \mathrm{d} v_{m, q}(z)=\mathbf{1}_{L^{2}(\mathbb{R})} . \tag{21}
\end{equation*}
$$

Here, the Dirac's bra-ket notation $\left|\Psi_{z, m, q\rangle}\right\rangle\left\langle\Psi_{z, m, q}\right|$ means the rank-one operator $\phi \longmapsto$ $\left\langle\Psi_{z, m, q}, \phi\right\rangle \cdot \Psi_{z, m, q}, \phi \in L^{2}(\mathbb{R})$ and $\mathrm{d} v_{m, q}(z):=\mathscr{N}_{m, q}(z \bar{z}) \mathrm{d} \mu_{q}(z)$ where $\mathrm{d} \mu_{q}(z)$ is one of many orthogonal measures for the polynomials $\mathfrak{h}_{j}^{m, q}(z)$ and it is given by ([19, p. 11]) :

$$
\begin{equation*}
\mathrm{d} \mu_{q}(z):=\frac{q-1}{q \log q}\left(E_{q}\left(q^{-1} z \bar{z}\right)\right)^{-1} \mathrm{~d} \lambda(z) / \pi, \tag{22}
\end{equation*}
$$

where $E_{q}(x)=((q-1) x ; q)_{\infty}$ defines a q-exponential function ($[17, \mathrm{p} .11]$). Moreover, in the limit $q \rightarrow 1$ the measure $\mathrm{d} \mu_{q}$ reduces to the Gaussian measure $e^{-z \bar{z}} \mathrm{~d} \lambda(z) / \pi$. Eq. (21) may also be understood in the weak sense as

$$
\begin{equation*}
\int_{\mathbb{C}}\left\langle f, \Psi_{z, m, q}\right\rangle\left\langle\Psi_{z, m, q}, g\right\rangle \mathrm{d} v_{m, q}(z)=\langle f, g\rangle, \quad f, g \in L^{2}(\mathbb{R}) \tag{23}
\end{equation*}
$$

Furthermore, straightforward calculations give the overlapping function of two coherent states (19). See Subsection 2.1 below for the proof.
Proposition 1. For $m \in \mathbb{Z}_{+}$and $q^{-1}>1$, the following assertion holds true

$$
\left\langle\Psi_{z, m, q}, \Psi_{w, m, q}\right\rangle_{L^{2}(\mathbb{R})}=\frac{q^{2 m}((q-1) z \bar{w} ; q)_{\infty}}{\left(\mathscr{N}_{m, q}(z \bar{z}) \mathscr{N}_{m, q}(w \bar{w})^{\frac{1}{2}}\right.} 3 \phi_{2}\left(\left.\begin{array}{c}
q^{-m}, q \frac{\bar{w}}{\bar{z}}, q \frac{z}{w} \tag{24}\\
q,(q-1) z \bar{w}
\end{array} \right\rvert\, q ; q^{m-1}(q-1) w \bar{z}\right)
$$

for every $z, w \in \mathbb{C}$.
Here, the ${ }_{3} \phi_{2} q$-series is defined by ($\left.[17, ~ p .4]\right)$:

$$
{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, a, b \tag{25}\\
c, d
\end{array} \right\rvert\, q ; x\right)=\sum_{k \geq 0} \frac{\left(q^{-n} ; q\right)_{k}(a ; q)_{k}(b ; q)_{k}}{(c ; q)_{k}(d ; q)_{k}} \frac{x^{k}}{(q ; q)_{k}} .
$$

In particular, for $z=w$ in (24), the condition $\left\langle\Psi_{z, m, q}, \Psi_{z, m, q}\right\rangle_{L^{2}(\mathbb{R})}=1$ may provide us with the normalization factor (20). Furthermore, (24) gives an explicit expression for the function

$$
\begin{equation*}
K_{m, q}(z, w):=\left(\mathscr{N}_{m, q}(z \bar{z}) \mathscr{N}_{m, q}(w \bar{w})\right)^{\frac{1}{2}}\left\langle\Psi_{z, m, q}, \Psi_{w, m, q}\right\rangle_{L^{2}(\mathbb{R})} \tag{26}
\end{equation*}
$$

which satisfies the limit

$$
\begin{equation*}
\lim _{q \rightarrow 1} K_{m, q}(z, w)=e^{z \bar{w}} L_{m}^{(0)}\left(|z-w|^{2}\right) \tag{27}
\end{equation*}
$$

The proof of (27) is given in Subsection 2.2 below. Hence, one can say that the closure in $\mathfrak{H}_{q}:=$ $L^{2}\left(\mathbb{C}, \mathrm{~d} \mu_{q}\right)$ of the linear span of $\left\{\mathfrak{h}_{j}^{m, q}\right\}_{j \geq 0}$ is a Hilbert space whose reproducing kernel is given in (26) and it will be denoted $\mathscr{A}_{m}^{q}(\mathbb{C})$. This space can also be viewed as a q-analog of the m th-true-polyanalytic space $\mathscr{A}_{m}(\mathbb{C})$ in (7) whose reproducing kernel was given by $e^{z \bar{w}} L_{m}^{(0)}\left(|z-w|^{2}\right)$, see [9].

Eq. (23) also means that the coherent states transform $\mathscr{B}_{m}^{q}: L^{2}(\mathbb{R}) \longrightarrow \mathscr{A}_{m}^{q}(\mathbb{C})$ defined as usual (see [5, p. 27 for the general theory]) by

$$
\begin{equation*}
\mathscr{B}_{m}^{q}[f](z)=\left(\mathscr{N}_{m, q}(z \bar{z})\right)^{\frac{1}{2}}\left\langle f, \Psi_{z, m, q}\right\rangle_{L^{2}(\mathbb{R})}, z \in \mathbb{C} \tag{28}
\end{equation*}
$$

is an isometric map for which we establish the following precise result, see Subsection 2.3 below for the proof.
Theorem 2. For $m \in \mathbb{Z}_{+}$and $q^{-1}>1$, the transform (28) is explicitly given by

$$
\begin{align*}
& \mathscr{B}_{m}^{q}[f](z)=\gamma_{q, m} \int_{\mathbb{R}}\left(-q^{\frac{1+m}{2}} \sqrt{1-q} z e^{\operatorname{argsinh}\left(\sqrt{\frac{1-q}{2}} \xi\right)}, q^{\frac{1+m}{2}} \sqrt{1-q} z e^{-\operatorname{argsinh}\left(\sqrt{\frac{1-q}{2}} \xi\right)} ; q\right)_{\infty} \\
& \times \widetilde{Q}_{m}\left(\sqrt{\frac{1-q}{2}} \xi ; i q^{\frac{m-1}{2}} \sqrt{1-q} z, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z} ; q\right) \sqrt{\omega_{q}(\xi)} f(\xi) \mathrm{d} \xi \tag{29}
\end{align*}
$$

where $\gamma_{q, m}=\frac{(-1)^{m} q^{\frac{1}{2}\binom{m}{2}}}{\sqrt{(q ; q)_{m}}}$ and \widetilde{Q}_{m} denotes the $q^{-1}-A L$-Salam-Chihara polynomials.
Here, the polynomial \widetilde{Q}_{m} is defined by ($[10$, p. 6]) :

$$
\widetilde{Q}_{n}(\sinh \kappa ; t, \tau ; q)=q^{-\binom{n}{2}}(i t)^{n}\left(i t^{-1} e^{\kappa},-i t^{-1} e^{-\kappa} ; q\right)_{n_{3}} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, q^{1-n} t \tau, 0 \tag{30}\\
i q^{1-n} t e^{\kappa},-i q^{1-n} t e^{\kappa}
\end{array} \right\rvert\, q ; q\right)
$$

where $\kappa \in \mathbb{R}$ and $t, \tau \in \mathbb{C}$. The isometry \mathscr{B}_{m}^{q} will be called a q-deformation of the true-polyanalytic Bargmann transform \mathscr{B}_{m} when $q^{-1}>1$. Indeed, when $q \rightarrow 1$ (29) reduces to (9), see Subsection 2.4 below for the proof.

Corollary 3. For $m=0$, the transform (29) reduces to $\mathscr{B}_{0}^{q}: L^{2}(\mathbb{R}) \longrightarrow \mathscr{A}_{0}^{q}(\mathbb{C})$, defined by

$$
\mathscr{B}_{0}^{q}[f](z)=\int_{\mathbb{R}}\left(-\sqrt{q(1-q)} z e^{\operatorname{argsinh}\left(\sqrt{\frac{1-q}{2}} \xi\right)}, \sqrt{q(1-q)} z e^{-\operatorname{argsinh}\left(\sqrt{\frac{1-q}{2}} \xi\right)} ; q\right)_{\infty} \sqrt{\omega_{q}(\xi)} f(\xi) \mathrm{d} \xi
$$

for every $z \in \mathbb{C}$. In particular, when $q \rightarrow 1, \mathscr{B}_{0}^{q}$ goes to the Bargmann transform (4).
Here, $\mathscr{A}_{0}^{q}(\mathbb{C})$ is the completed space of entire functions in \mathfrak{H}_{q}, for which the elements

$$
\begin{equation*}
\mathfrak{h}_{j}^{0, q}(z)=\left([j] q_{q}\right)^{-1 / 2} q^{\frac{1}{2}\binom{j}{2}} z^{j} \tag{31}
\end{equation*}
$$

where $[j]_{q}!=\frac{(q ; q)_{j}}{(1-q)^{j}}$, constitute an orthonormal basis. Note that by replacing in (31) the parameter q by its inverse $q^{\prime}=q^{-1}$, we recover the well known orthonormal basis ([j] $\left.q^{\prime}!\right)^{-1 / 2} z^{j}$ of the classical Arïk-Coon type space with $q^{\prime}=q^{-1}>1$ [25].

Remark 4. For $m=0$, we recover in $L^{2}\left(\mathbb{R}, \sqrt{\omega_{q}(\xi)} \mathrm{d} \xi\right)$ the state $\langle\xi \mid z, 0, q\rangle \equiv\left(\omega_{q}(\xi)\right)^{-\frac{1}{2}} \Psi_{z, 0, q}(\xi)$ as a coherent state for the Arïk-Coon oscillator with the deformation parameter $q^{\prime}=q^{-1}>1$, which was constructed by Burban ([14, p. 5]).

Remark 5. In [19, p. 4] Ismail and Zhang have also introduced another class of $2 D$ orthogonal q-polynomials, here denoted by $\widetilde{H}_{m, j}(z, w \mid q)$, which also generalize the complex Hermite polynomials [20] and are connected to ones in (11) by

$$
\begin{equation*}
\tilde{H}_{m, j}(z, w \mid q)=q^{m j} i^{m+j} H_{m, j}\left(z / i, w / i \mid q^{-1}\right) \tag{32}
\end{equation*}
$$

In our previous joint work with Arjika [7], we have combined the polynomials $\widetilde{H}_{m, j}(z, \bar{z} \mid q)$ with the continuous q-Hermite polynomials $H_{j}(\xi \mid q)$ and we have obtained a q-deformed m-truepolyanalytic Bargmann transform on $L^{2}(] \frac{-\sqrt{2}}{\sqrt{1-q}}, \frac{\sqrt{2}}{\sqrt{1-q}}[, \mathrm{~d} \xi)$ with $q^{-1}>1$.

Remark 6. The expression (26) may also constitute a starting point to construct a q-deformation for the determinantal point process associated with an m th Euclidean Landau level or Ginibretype point process in \mathbb{C} as discussed by Shirai [26].

2. Proofs

2.1. Proof of Proposition 1

By (18)-(19), the overlapping function of two coherent states is given by

$$
\begin{align*}
\left\langle\Psi_{z, m, q}, \Psi_{w, m, q}\right\rangle_{L^{2}(\mathbb{R})} & =\left(\mathscr{N}_{m, q}(z \bar{z}) \mathscr{N}_{m, q}(w \bar{w})\right)^{-\frac{1}{2}} \sum_{j=0}^{\infty} \overline{\mathfrak{h}}_{j}^{m, q}(z) \mathfrak{h}_{j}^{m, q}(w) \tag{33}\\
& =\left(\mathscr{N}_{m, q}(z \bar{z}) \mathscr{N}_{m, q}(w \bar{w})\right)^{-\frac{1}{2}} S^{(m)} \tag{34}
\end{align*}
$$

Replacing $\mathfrak{h}_{j}^{m, q}(z)$ by their expressions in (14), we can write $S^{(m)}=S_{<\infty}^{(m)}+S_{\infty}^{(m)}$, where

$$
\begin{aligned}
S_{<\infty}^{(m)} & =\sum_{j=0}^{m-1} \frac{(q, q ; q)_{j} q^{\frac{(m-j)^{2}+m+j}{2}}\left(q^{-1}-1\right)^{m-j}(\bar{z} w)^{m-j}}{(q ; q)_{m}(q ; q)_{j}} L_{j}^{(m-j)}\left(q^{-1} \alpha ; q\right) L_{j}^{(m-j)}\left(q^{-1} \beta ; q\right) \\
& -\sum_{j=0}^{m-1} \frac{(q, q ; q)_{m} q^{\frac{(m-j)^{2}+m+j}{2}}\left(q^{-1}-1\right)^{j-m}(z \bar{w})^{j-m}}{(q ; q)_{m}(q ; q)_{j}} L_{m}^{(j-m)}\left(q^{-1} \alpha ; q\right) L_{m}^{(j-m)}\left(q^{-1} \beta ; q\right),
\end{aligned}
$$

and

$$
\begin{aligned}
S_{\infty}^{(m)} & =\sum_{j \geq 0} \frac{(q, q ; q)_{m} q^{\frac{(m-j)^{2}+m+j}{2}}\left(q^{-1}-1\right)^{j-m}(z \bar{w})^{j-m}}{(q ; q)_{m}(q ; q)_{j}} L_{m}^{(j-m)}\left(q^{-1} \alpha ; q\right) L_{m}^{(j-m)}\left(q^{-1} \beta ; q\right) \\
& =\frac{q^{\frac{m^{2}+3 m}{2}}(q ; q)_{m}}{\lambda^{m}} \sum_{j \geq 0} \frac{q^{(j)}\left(\lambda q^{-m}\right)^{j}}{(q ; q)_{j}} L_{m}^{(j-m)}\left(q^{-1} \alpha ; q\right) L_{m}^{(j-m)}\left(q^{-1} \beta ; q\right),
\end{aligned}
$$

where $\lambda=(1-q) z \bar{w}, \alpha=(1-q) z \bar{z}$ and $\beta=(1-q) w \bar{w}$. Now, we apply the relation ([23, p.3]):

$$
\begin{equation*}
L_{n}^{(-N)}(x ; q)=(-1)^{-N} x^{N} \frac{(q ; q)_{n-N}}{(q ; q)_{n}} L_{n-N}^{(N)}(x ; q) \tag{35}
\end{equation*}
$$

for $N=j-m, n=j, x=\alpha$ in a first time and next for $x=\beta$. To obtain that $S_{<\infty}^{(m)}(z, w ; q)=0$. For the infinite sum, we rewrite the q-Laguerre polynomial as ([22, p. 110]):

$$
L_{n}^{(\gamma)}(x ; q)=\frac{1}{(q ; q)_{n}}{ }^{2} \phi_{1}\left(\left.\begin{array}{c}
q^{-n},-x \tag{36}\\
0
\end{array} \right\rvert\, q ; q^{n+\gamma+1}\right)
$$

with $n=m, \gamma=j-m, x=q^{-1} \alpha$ for $L_{m}^{(j-m)}\left(q^{-1} \alpha ; q\right)$ and $x=q^{-1} \beta$ for $L_{m}^{(j-m)}\left(q^{-1} \beta ; q\right)$. This gives

$$
\begin{equation*}
S_{\infty}^{(m)}=\frac{q^{\frac{m^{2}+3 m}{2}}}{\lambda^{m}(q ; q)_{m}} S_{q}^{(m)}(\alpha ; \beta) \tag{37}
\end{equation*}
$$

where

$$
\mathrm{S}_{q}^{(m)}(\alpha ; \beta):=\sum_{j \geq 0} \frac{q^{\left(\frac{1}{2}\right)}\left(\lambda q^{-m}\right)^{j}}{(q ; q)_{j}}{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
q^{-m},-q^{-1} \alpha \tag{38}\\
0
\end{array} \right\rvert\, q ; q^{j+1}\right){ }_{2} \phi_{1}\left(\left.\begin{array}{c}
q^{-m},-q^{-1} \beta \\
0
\end{array} \right\rvert\, q ; q^{j+1}\right) .
$$

Recalling ([17, p. 3]):

$$
{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
a, b \tag{39}\\
c
\end{array} \right\rvert\, q ; x\right)=\sum_{k \geq 0} \frac{(a ; q)_{k}(b ; q)_{k}}{(c ; q)_{k}} \frac{x^{k}}{(q ; q)_{k}},
$$

the r.h.s of (38) becomes

$$
\begin{align*}
\mathrm{S}_{q}^{(m)}(\alpha ; \beta) & =\sum_{j \geq 0} \frac{q^{\left(\frac{j}{2}\right)}\left(\lambda q^{-m}\right)^{j}}{(q ; q)_{j}} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{(q ; q)_{k}}\left(q^{j+1}\right)^{k} \sum_{l \geq 0} \frac{\left(q^{-m},-q^{-1} \beta ; q\right)_{l}}{(q ; q)_{l}}\left(q^{j+1}\right)^{l} \tag{40}\\
& =\sum_{k, l \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k} q^{k}}{(q ; q)_{k}} \frac{\left(q^{-m},-q^{-1} \beta ; q\right)_{l} q^{l}}{(q ; q)_{l}} \sum_{j \geq 0} \frac{q^{(j)}\left(q^{-m+k+l} \lambda\right)^{j}}{(q ; q)_{j}} . \tag{41}
\end{align*}
$$

Now, by applying the q-binomial theorem ($[17$, p. 11]):

$$
\begin{equation*}
\sum_{n \geq 0} \frac{q^{\binom{n}{2}}}{(q ; q)_{n}} a^{n}=(-a ; q)_{\infty} \tag{42}
\end{equation*}
$$

for $a=q^{-m+k+l} \lambda$, the r.h.s of (40) takes the form

$$
\begin{equation*}
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\sum_{k, l \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k} q^{k}}{(q ; q)_{k}} \frac{\left(q^{-m},-q^{-1} \beta ; q\right)_{l} q^{l}}{(q ; q)_{l}}\left(-q^{-m+k+l} \lambda ; q\right)_{\infty} \tag{43}
\end{equation*}
$$

By making use of the identity ([22, p. 9]):

$$
\begin{equation*}
(a ; q)_{\gamma}=\frac{(a ; q)_{\infty}}{\left(a q^{\gamma} ; q\right)_{\infty}} \tag{44}
\end{equation*}
$$

for the factor $\left(-q^{-m+k+l} \lambda ; q\right)_{\infty}$, (43) transforms to

$$
\begin{equation*}
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\left(-q^{-m} \lambda ; q\right)_{\infty} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{(q ; q)_{k}} q^{k} \sum_{l \geq 0} \frac{\left(q^{-m},-q^{-1} \beta ; q\right)_{l}}{\left(-q^{-m} \lambda ; q\right)_{k+l}(q ; q)_{l}} q^{l} . \tag{45}
\end{equation*}
$$

Next, by the fact that $\left(q^{-m} \lambda ; q\right)_{l+k}=\left(q^{-m} \lambda ; q\right)_{k}\left(q^{k-m} \lambda ; q\right)_{l}$, it follows that

$$
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\left(-q^{-m} \lambda ; q\right)_{\infty} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{\left(-q^{-m} \lambda, q ; q\right)_{k}} q^{k}{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
q^{-m},-q^{-1} \beta \\
-q^{k-m} \lambda
\end{array} \right\rvert\, q ; q\right)
$$

Using the identity ([17, p. 10]):

$$
{ }_{2} \phi_{1}\left(\left.\begin{array}{c}
q^{-n}, b \tag{46}\\
c
\end{array} \right\rvert\, q ; q\right)=\frac{\left(b^{-1} c ; q\right)_{n}}{(c ; q)_{n}} b^{n}
$$

for $n=m, b=-q^{-1} \beta$ and $c=-q^{k-m} \lambda$, leads to

$$
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\left(-q^{-m} \lambda ; q\right)_{\infty} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{\left(-q^{-m} \lambda, q ; q\right)_{k}} q^{k} \frac{\left(q^{k+1-m} \frac{z}{w} ; q\right)_{m}}{\left(-q^{k-m} \lambda ; q\right)_{m}}\left(-q^{-1} \beta\right)^{m}
$$

Applying the identity ([22, p. 9]):

$$
\begin{equation*}
\left(a q^{n} ; q\right)_{r}=\frac{(a ; q)_{r}\left(a q^{r} ; q\right)_{n}}{(a ; q)_{n}} \tag{47}
\end{equation*}
$$

for $r=m, n=k, a=q^{1-m} z / w$ and $a=-q^{-m} \lambda$ in a second time, we arrive at

$$
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\frac{\left(-q^{-1} \beta\right)^{m}\left(q^{1-m} \frac{z}{w} ; q\right)_{m}\left(-q^{-m} \lambda ; q\right)_{\infty}}{\left(-q^{-m} \lambda ; q\right)_{m}} \phi_{2}\left(\left.\begin{array}{c}
q^{-m},-q^{-1} \alpha, q \frac{z}{w} \tag{48}\\
q^{1-m} \frac{z}{w},-\lambda
\end{array} \right\rvert\, q ; q\right)
$$

Finally, by the finite Heine transformation ([6, p. 2]):

$$
{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, \xi, \sigma \tag{49}\\
\gamma, q^{1-n} / \tau
\end{array} \right\rvert\, q ; q\right)=\frac{(\xi \tau ; q)_{n}}{(\tau ; q)_{n}}{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, \gamma / \sigma, \xi \\
\gamma, \xi \tau
\end{array} \right\rvert\, q ; \sigma \tau q^{n}\right)
$$

for parameters $\xi=q \frac{z}{w}, \sigma=-q^{-1} \alpha, \gamma=-\lambda$ and $\tau=\frac{w}{z}$, (48) reads

$$
\mathrm{S}_{q}^{(m)}(\alpha ; \beta)=\frac{\left(-q^{-1} \beta\right)^{m}\left(q^{1-m} \frac{z}{w}, q ; q\right)_{m}\left(-q^{-m} \lambda ; q\right)_{\infty}}{\left(-q^{-m} \lambda, \frac{w}{z} ; q\right)_{m}}{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-n}, q \frac{\bar{w}}{\bar{z}}, q \frac{z}{w} \tag{50}\\
q,-\lambda
\end{array} \right\rvert\, q ;-q^{m-1}(1-q) w \bar{z}\right)
$$

Summarizing the above calculations and taking into account the previous prefactors, we arrive at the announced result (24).

2.2. Proof of the limit (27)

Recalling that $E_{q}(x)=((q-1) x ; q)_{\infty}$, then we get that

$$
\begin{equation*}
\lim _{q \rightarrow 1} q^{2 m}((q-1) z \bar{w} ; q)_{\infty}=e^{z \bar{w}} \tag{51}
\end{equation*}
$$

By another side, using (25) together with the fact that $\left(q^{-n} ; q\right)_{k}=0, \forall k>n$, the series ${ }_{3} \phi_{2}$ in (24) terminates as

$$
\begin{equation*}
\sigma_{m, q}(z, w):=\sum_{k=0}^{m} \frac{\left(q^{-m}, q \frac{\bar{w}}{\bar{z}}, q \frac{z}{w} ; q\right)_{k}}{((q-1) z \bar{w}, q ; q)_{k}} \frac{\left(q^{m-1}(q-1) w \bar{z}\right)^{k}}{(q ; q)_{k}} \tag{52}
\end{equation*}
$$

Thus, from the identity ([22, p. 10]):

$$
\left[\begin{array}{l}
\gamma \\
k
\end{array}\right]_{q}=(-1)^{k} q^{k \gamma-\binom{k}{2}} \frac{\left(q^{-\gamma} ; q\right)_{k}}{(q ; q)_{k}}
$$

we, successively, have

$$
\begin{align*}
\lim _{q \rightarrow 1} \sigma_{m, q}(z, w) & =\sum_{k=0}^{m} \lim _{q \rightarrow 1}\left(\frac{\left(q^{-m} ; q\right)_{k}}{(q ; q)_{k}} \frac{\left(q \frac{\bar{w}}{\bar{z}}, q \frac{z}{w} ; q\right)_{k}}{((q-1) z \bar{w} ; q)_{k}} \frac{(1-q)^{k}}{(q ; q)_{k}}(-1)^{k}\left(q^{m-1} w \bar{z}\right)^{k}\right) \tag{53}\\
& =\sum_{k=0}^{m} \lim _{q \rightarrow 1}\left(\left[\begin{array}{c}
m \\
k
\end{array}\right]_{q} q^{k}{ }^{k}-m k \frac{\left(q \frac{\bar{w}}{\bar{z}}, q \frac{z}{w} ; q\right)_{k}}{((q-1) z \bar{w} ; q)_{k}} \frac{\left(q^{m-1} w \bar{z}\right)^{k}}{[k]_{q}!}\right) \tag{54}\\
& =\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \frac{|z-w|^{2 k}}{k!} . \tag{55}
\end{align*}
$$

By noticing that the sum in (55) is the evaluation of the Laguerre polynomial $L_{m}^{(0)}$ at $|z-w|^{2}$, the proof of the limit (27) is completed.

2.3. Proof of Theorem 2

To apply (28), we seek for a closed form for the following series

$$
\begin{align*}
\left(\mathscr{N}_{m, q}(z \bar{z})\right)^{\frac{1}{2}} \Psi_{z, m, q}(\xi)=\sum_{j \geq 0} \frac{(-1)^{m \wedge j} q^{\frac{(m-j)^{2}+(m+j)}{4}}(q ; q)_{m \wedge j}{\sqrt{q^{-1}(1-q)}}^{|m-j|}}{\sqrt{(q ; q)_{m}(q ; q)_{j}}} \\
\quad \times|z|^{|m-j|} e^{-i(m-j) a r g(z)} L_{m \wedge j}^{(|m-j|)}\left(q^{-1}(1-q) z \bar{z} ; q\right) \varphi_{j}^{q}(\xi) \tag{56}
\end{align*}
$$

which may also be written as

$$
\begin{equation*}
\frac{(-1)^{m} q^{\frac{m^{2}+3 m}{4}} \sqrt{\omega_{q}(\xi)(q ; q)_{m}}}{(z \sqrt{1-q})^{m}} \eta^{m, q}(\xi, z) \tag{57}
\end{equation*}
$$

with

$$
\begin{equation*}
\eta^{m, q}(\xi, z)=\sum_{j \geq 0} \frac{q^{\frac{-2 m j+2 j^{2}}{4}}(\sqrt{1-q} z)^{j}}{(q ; q)_{j}} L_{m}^{(j-m)}\left(q^{-1} \alpha ; q\right) h_{j}\left(\left.\sqrt{\frac{1-q}{2}} \xi \right\rvert\, q\right) \tag{58}
\end{equation*}
$$

where $\alpha=(1-q) z \bar{z}$. Next, replacing the q-Laguerre polynomial by its expression (36), (58) becomes

$$
\begin{align*}
\eta^{m, q}(\xi, z) & =\sum_{j \geq 0} \frac{q^{\frac{-2 m j+2 j^{2}}{4}}(\sqrt{1-q} z)^{j}}{(q ; q)_{j}} h_{j}\left(\left.\sqrt{\frac{1-q}{2}} \xi \right\rvert\, q\right) \frac{1}{(q ; q)_{m}}{ }_{2} \phi_{1}\binom{q^{-m},-q^{-1} \alpha \mid q ; q^{j+1}}{0} \\
& =\frac{1}{(q ; q)_{m}} \sum_{j \geq 0} \frac{q^{\frac{-2 m j+2 j^{2}}{4}}(\sqrt{1-q} z)^{j}}{(q ; q)_{j}} h_{j}\left(\left.\sqrt{\frac{1-q}{2}} \xi \right\rvert\, q\right) \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{(q ; q)_{k}} q^{k(j+1)} \\
& =\frac{1}{(q ; q)_{m}} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{(q ; q)_{k}} q^{k} \sum_{j \geq 0} \frac{q^{\left(\frac{j}{2}\right)}\left(q^{\frac{1-m}{2}+k} \sqrt{1-q} z\right)^{j}}{(q ; q)_{j}} h_{j}\left(\left.\sqrt{\frac{1-q}{2}} \xi \right\rvert\, q\right) \tag{59}
\end{align*}
$$

By using the generating function of the q^{-1}-Hermite polynomials ($[10$, p. 6]) :

$$
\begin{equation*}
\sum_{n \geq 0} \frac{t^{n} q^{\binom{n}{2}}}{(q ; q)_{n}} h_{n}(x \mid q)=\left(-t e^{\theta}, t e^{-\theta} ; q\right)_{\infty}, \quad \sinh \theta=x \tag{60}
\end{equation*}
$$

for the parameters $t=q^{\frac{1-m}{2}+k} \sqrt{1-q} z$ and

$$
\begin{equation*}
\sinh \theta=\sqrt{\frac{1-q}{2}} \xi \tag{61}
\end{equation*}
$$

the r.h.s of (59) takes the form

$$
\begin{equation*}
\eta^{m, q}(\xi, z)=\frac{1}{(q ; q)_{m}} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{(q ; q)_{k}} q^{k}\left(-y e^{\theta} q^{k}, y e^{-\theta} q^{k} ; q\right)_{\infty} \tag{62}
\end{equation*}
$$

where $y=q^{\frac{1-m}{2}} \sqrt{1-q} z$. By applying (44), it follows that

$$
\begin{equation*}
\eta^{m, q}(\xi, z)=\frac{\left(-y e^{\theta}, y e^{-\theta} ; q\right)_{\infty}}{(q ; q)_{m}} \sum_{k \geq 0} \frac{\left(q^{-m},-q^{-1} \alpha ; q\right)_{k}}{\left(-y e^{\theta}, y e^{-\theta} ; q\right)_{k}} \frac{q^{k}}{(q ; q)_{k}} \tag{63}
\end{equation*}
$$

which can also be expressed as

$$
\eta^{m, q}(\xi, z)=\frac{\left(-y e^{\theta}, y e^{-\theta} ; q\right)_{\infty}}{(q ; q)_{m}}{ }_{3} \phi_{2}\left(\left.\begin{array}{c}
q^{-m},-q^{-1} \alpha, 0 \tag{64}\\
-y e^{\theta}, y e^{-\theta}
\end{array} \right\rvert\, q ; q\right) .
$$

Next, recalling the definition of the q^{-1}-Al-Salam-Chihara polynomials in (30) for $\kappa=\theta, t=$ $i q^{m-1} y$ and $\tau=i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z}$, (64) reads

$$
\begin{equation*}
\eta^{m, q}(\xi, z)=\frac{(-1)^{m} q^{\binom{m}{2}}\left(-y e^{\theta}, y e^{-\theta} ; q\right)_{\infty} \widetilde{Q}_{m}\left(\sinh \theta ; i q^{\frac{m-1}{2}} y, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z} ; q\right)}{\left(y q^{m-1}\right)^{m}\left(q^{1-m} y^{-1} e^{\theta},-q^{1-m} y^{-1} e^{-\theta} ; q\right)_{m}(q ; q)_{m}} \tag{65}
\end{equation*}
$$

After some simplifications, we arrive at the following form for the series (56)

$$
\begin{align*}
& \sqrt{\omega_{q}(\xi)}\left(-q^{\frac{1+m}{2}} \sqrt{1-q} z e^{\theta}, q^{\frac{1+m}{2}} \sqrt{1-q} z e^{-\theta} ; q\right)_{\infty} \\
& \times \frac{(-1)^{m} q^{\frac{1}{2}\binom{m}{2}}}{\sqrt{(q ; q)_{m}}} \widetilde{Q}_{m}\left(\sqrt{\frac{1-q}{2}} \xi ; i q^{\frac{m-1}{2}} \sqrt{1-q} z, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z} ; q\right) \tag{66}
\end{align*}
$$

This ends the proof.

2.4. Proof of the limit in (29)

To compute the limit of the quantity in (66) as $q \rightarrow 1$, we first observe that

$$
\begin{equation*}
\lim _{q \rightarrow 1} \sqrt{\omega_{q}(\xi)}=\lim _{q \rightarrow 1}\left(\pi^{-\frac{1}{2}} q^{\frac{1}{8}} \cosh \left(\sqrt{\frac{1-q}{2}} \xi\right) e^{-\xi^{2}}\right)^{1 / 2}=\pi^{-\frac{1}{4}} e^{-\xi^{2} / 2} \tag{67}
\end{equation*}
$$

Next, we denote

$$
\begin{equation*}
G_{q}(z ; \xi):=\left(-q^{\frac{1+m}{2}} \sqrt{1-q} z e^{\theta}, q^{\frac{1+m}{2}} \sqrt{1-q} z e^{-\theta} ; q\right)_{\infty} . \tag{68}
\end{equation*}
$$

Then by (12), we successively obtain

$$
\begin{aligned}
\log G_{q}(z ; \xi) & =\sum_{k \geq 0} \log \left(1-q^{\frac{1+m}{2}+k} \sqrt{1-q} z e^{-\theta}+q^{\frac{1+m}{2}+k} \sqrt{1-q} z e^{\theta}-q^{m+1+2 k}(1-q) z^{2}\right) \\
& =q^{\frac{1+m}{2}} \sqrt{1-q} z\left(e^{\theta}-e^{-\theta}\right) \sum_{k \geq 0} q^{k}-q^{m+1}(1-q) z^{2} \sum_{k \geq 0} q^{2 k}+o(1-q) \\
& =q^{\frac{1+m}{2}} z\left(e^{\theta}-e^{-\theta}\right) \frac{1}{\sqrt{1-q}}-q^{m+1} z^{2} \frac{1}{1+q}+o(1-q) .
\end{aligned}
$$

Thus, form (61) the last equality also reads

$$
\begin{equation*}
\log G_{q}(z ; \xi)=q^{\frac{1+m}{2}} \sqrt{2} z \xi-q^{m+1} z^{2} \frac{1}{1+q}+o(1-q) . \tag{69}
\end{equation*}
$$

Therefore, when $q \rightarrow 1$, we have $\lim _{q \rightarrow 1} G_{q}(z ; \xi)=e^{\sqrt{2} z \xi-\frac{1}{2} z^{2}}$. To obtain the limit of the polynomial quantity in (66) as $q \rightarrow 1$, we recall that the q^{-1}-Al-Salam-Chihara polynomials can be expressed as ($[11, p .6])$:

$$
\widetilde{Q}_{n}(s ; a, b \mid q)=q^{-\binom{n}{2}} \sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{70}\\
k
\end{array}\right]_{q} q^{\binom{k}{2}}(i a)^{n-k} h_{k}(s ; b \mid q)
$$

in terms of the continuous big q^{-1}-Hermite polynomials. The latter ones satisfy the limit ([12, p. 4]) :

$$
\lim _{q \rightarrow 1} \kappa^{-n} h_{n}(\kappa s ; 2 \kappa b \mid q)=H_{n}(s+i b),
$$

and from (70) we conclude that

$$
\begin{equation*}
\lim _{q \rightarrow 1} \kappa^{-n} \widetilde{Q}_{n}(\kappa s ; 2 i \kappa a, 2 i \kappa b ; q)=H_{n}(s-a-b) . \tag{71}
\end{equation*}
$$

By applying (71) for $n=m, s=\xi, a=q^{\frac{m-1}{2}} z / \sqrt{2}, b=q^{\frac{m-3}{2}} \bar{z} / \sqrt{2}$ and $\kappa=\sqrt{\frac{1-q}{2}}$, we establish the following

$$
\begin{array}{r}
\lim _{q \rightarrow 1} \frac{(-1)^{m} q^{\frac{1}{2}\binom{m}{2}}}{\sqrt{(q ; q)_{m}}} \widetilde{Q}_{m}\left(\sqrt{\frac{1-q}{2}} \xi ; i q^{\frac{m-1}{2}} \sqrt{1-q} z, i q^{\frac{m-3}{2}} \sqrt{1-q} \bar{z} ; q\right) \\
=(-1)^{m}\left(2^{m} m!\right)^{-\frac{1}{2}} H_{m}\left(\xi-\frac{z+\bar{z}}{\sqrt{2}}\right)
\end{array}
$$

Finally, by grouping the obtained three limits, we arrive at the assertion in (29).

Acknowledgments

The authors would like to thank the Moroccan Association of Harmonic Analysis \& Spectral Geometry.

References

[1] L. D. Abreu, "Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions", Appl. Comput. Harmon. Anal. 29 (2010), no. 3, p. 287-302.
[2] L. D. Abreu, P. Balázs, M. de Gosson, Z. Mouayn, "Discrete coherent states for higher Landau levels", Ann. Phys. 363 (2015), p. 337-353.
[3] L. D. Abreu, J. M. Pereira, J. L. Romero, S. Torquato, "The Weyl-Heisenberg ensemble: hyperuniformity and higher Landau levels", J. Stat. Mech. Theory Exp. 2017 (2017), no. 4, article no. 043103 (16 pages).
[4] L. D. Abreu, H. G. Feichtinger, "Function spaces of polyanalytic functions", in Harmonic and complex analysis and its applications, Trends in Mathematics, Birkhäuser, 2014, p. 1-38.
[5] S. T. Ali, J.-P. Antoine, J.-P. Gazeau, Coherent states, Wavelets and their Generalizations, 2nd ed., Theoretical and Mathematical Physics, Springer, 2014.
[6] G. E. Andrews, "The finite Heine transformation", in Combinatorial number theory, Walter de Gruyter, 2009, p. 1-6.
[7] S. Arjika, O. El Moize, Z. Mouayn, "Une q-déformation de la transformation de Bargmann vraie-polyanalytique", C. R. Math. Acad. Sci. Paris 356 (2018), no. 8, p. 903-910.
[8] R. Askey, "Continuous q-Hermite polynomials when $q>1 . q$-Series and Partitions", in q-Series and partitions (IMA, Minneapolis, 1988), The IMA Volumes in Mathematics and its Applications, vol. 18, Springer, 1989, p. 151-158.
[9] N. Askour, A. Intissar, Z. Mouayn, "Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants", C. R. Math. Acad. Sci. Paris 325 (1997), no. 7, p. 707-712.
[10] N. M. Atakishiev, "Orthogonality of Askey-Wilson polynomials with respect to a measure of Ramanujan type", Theor. Math. Phys. 102 (1995), no. 1, p. 23-28, translated from Teoret. Mat. Fiz 104 (1995), no. 1, p. 32-39.
[11] M. K. Atakishiyeva, N. M. Atakishiev, "Fourier-Gauss transforms of the Al-Salam-Chihara polynomials", J. Phys. A, Math. Gen. 30 (1997), no. 19, p. 655-661.
[12] , "Fourier-Gauss transforms of the continuous big q-Hermite polynomials", J. Phys. A, Math. Gen. 30 (1997), no. 16, p. 559-565.
[13] V. Bargmann, "On a Hilbert space of analytic functions and an associated integral transform", Commun. Pure Appl. Math. 14 (1961), p. 174-187.
[14] I. M. Burban, "Arik-Coon oscillator with $q>1$ in the framework of unified ($q ; \alpha, \beta, \gamma ; v$)-deformation", J. Phys. A, Math. Theor. 43 (2010), no. 62, article no. 305204 (9 pages).
[15] V. V. Dodonov, "Nonclassical states in quantum optics: a 'squeezed' review of the first 75 years", J. Opt. B: Quantum Semiclassical Opt. 4 (2002), p. 1-33.
[16] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, 1989, x+277 pages.
[17] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and Its Applications, vol. 96, Cambridge University Press, 2004.
[18] B. C. Hall, "Bounds on the Segal-Bargmann transform of L_{p} functions", J. Fourier Anal. Appl. 7 (2001), no. 6, p. 553569.
[19] M. E. H. Ismail, R. Zhang, "On some $2 D$ Orthogonal q-polynomials", Trans. Am. Math. Soc. 369 (2017), no. 10, p. 67796821.
[20] K. Itô, "Complex multiple Wiener integral", Jap. J. Math. 22 (1952), p. 63-86.
[21] G. Iwata, "Transformation functions in the complex domain", Prog. Theor. Phys. 6 (1951), p. 524-528.
[22] R. Koekoek, R. F. Swarttouw, "The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogues", 1998, Delft University of Technology.
[23] S. G. Moreno, E. M. García-Caballero, " q-Sobolev orthogonality of the q-Laguerre polynomials $\left\{L_{n}^{(-N)}(\cdot, q)\right\}_{n=0}^{\infty}$ for positive integers $N "$ " J. Korean Math. Soc. 48 (2011), no. 5, p. 913-926.
[24] Z. Mouayn, "Coherent state transforms attached to generalized Bargmann spaces on the complex plane", Math. Nachr. 284 (2011), no. 14-15, p. 1948-1954.
[25] C. Quesne, K. A. Penson, V. M. Tkachuk, "Maths-type q-deformed coherent states for $q>1$ ", Phys. Lett., A 33 (2003), no. 1-2, p. 29-36.
[26] T. Shirai, "Ginibre-type point processes and their asymptotic behavior", J. Math. Soc. Japan 67 (2015), no. 2, p. 763787.
[27] N. L. Vasilevski, "Poly-Fock spaces", in Differential operators and related topics, Operator Theory: Advances and Applications, vol. 117, Birkhäuser, 2000, p. 371-386.

