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Abstract. In this paper, we introduce a new generalization of Bell numbers, the s-associated r -Dowling
numbers by combining two investigational directions. Here, r distinguished elements have to be in distinct
blocks, some elements are coloured according to a colouring rule, and the cardinality of certain blocks is
bounded from below by s. Along with them, we define some relatives, the s-associated r -Dowling factorials
and the s-associated r -Dowling–Lah numbers, when the underlying set is decomposed into cycles or ordered
blocks. The study of these numbers is based on their combinatorial meaning, and the exponential generating
functions of their sequences derived from the so-called r -compositional formula.
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1. Introduction

Before discussing the topic of the paper, we introduce the notations

(x|m)n =
n−1∏
j=0

(
x + j m

)
, (x|m)n =

n−1∏
j=0

(
x − j m

)
for the nth rising and falling factorials of x with difference m (n ≥ 0, m ≥ 1), where we do not
indicate the difference if m = 1.

Bell numbers Bn are basic objects in enumerative combinatorics, they count the number of
partitions of the set {1, . . . , n}. Specifying certain restrictions on the partitions, we can obtain
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numerous generalizations and variants of these numbers. Here, we give a brief overview of those
ones which will play a crucial role in the rest of the paper.

It is possible to forbid certain elements of the underlying set to belong to the same block.
In this direction, the r -Bell numbers are widely studied. A partition of {1, . . . , n + r } is called
an r -partition if 1, . . . , r belong to distinct blocks. In this situation, 1, . . . , r will be called
distinguished elements, and a block containing a distinguished element will be referred to as a
distinguished block. L. Carlitz [4] and I. Mező [17] defined the r -Bell number Bn,r as the number
of r -partitions of {1, . . . , n+r }. Obviously, 0- and 1-partitions are simply ordinary partitions, there-
fore Bn,0 = Bn and Bn,1 = Bn+1. A graph theoretical treatment of these numbers can be found
in [16].

A further generalization, the r -Dowling numbers were introduced by G.-S. Cheon, J.-H.
Jung [5] and R. B. Corcino, C. B. Corcino, R. Aldema [7] (the latter authors called them (r,β)-Bell
numbers). E. Gyimesi and G. Nyul [11] could describe these numbers through a purely combina-
torial interpretation given in [12]. Namely, we call an r -partition a Whitney coloured r -partition
with m colours if

• the smallest elements of the blocks are not coloured,
• elements in distinguished blocks are not coloured,
• the remaining elements are coloured with m colours.

Then, the r -Dowling number Dn,m,r is the total number of Whitney coloured r -partitions of the
set {1, . . . , n + r } with m colours. As we can immediately see, Dn,1,r = Bn,r .

Another direction is to prescribe restrictions on the cardinality of all or certain blocks. From
our viewpoint, associated Bell numbers are relevant. The s-associated Bell number B≥s

n counts
the number of those partitions of {1, . . . , n}, where each block contains at least s elements.
Obviously, B≥1

n = Bn . These numbers appear with some of their properties by E. A. Enneking,
J. C. Ahuja [8], F. T. Howard [13,14], V. H. Moll, J. L. Ramírez, D. Villamizar [20], and in case of s = 2
by M. Bóna, I. Mező [2], which special case is also mentioned in exercises of [22]. Surprisingly,
B≥2

n is just equal to the Bell number belonging to the n-vertex cycle graph in the sense of [16],
although no bijective proof of this fact is known yet.

Until recently, the only attempt to combine the above two directions was made by F. T.
Howard [15]. The s-associated r -Bell number B≥s

n,r is defined as the number of those r -partitions
of {1, . . . , n + r }, where each non-distinguished block contains at least s elements. We note that
F. T. Howard treated only the case s = 2, and discussed a few of the properties of 2-associated
r -Bell numbers. Again, B≥1

n,r = Bn,r . After the completion of this article, we have learnt about two
very recent papers [1,3] which deal with associated r -Bell numbers, but in an alternative way, see
the closing section of the present paper about alternative definitions.

Now, we turn our attention to the “Bell-like numbers of the first kind”, the permutational
variants of the above numbers. As it is well known, every permutation of {1, . . . , n} can be
decomposed into disjoint cycles. A permutation of {1, . . . , n + r } is called an r -permutation
if 1, . . . , r belong to distinct cycles, and we use again the phrases distinguished element and
distinguished cycle.

For the Dowling type generalization, the main difficulty is finding a suitable colouring inter-
pretation. The colouring rule, which was given in [12], is less straightforward. An r -permutation
is called a Whitney coloured r -permutation with m colours if

• the smallest elements of the cycles are not coloured,
• an element in a distinguished cycle is not coloured if there are no smaller numbers on

the arc from the distinguished element to this element,
• the remaining elements are coloured with m colours.

Compared to partitions, these objects can be enumerated easier. Indeed, the total number of
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permutations of {1, . . . , n}, r -permutations and Whitney coloured r -permutations of {1, . . . , n+r }
are simply An = n!, An,r = (r +1)n , D An,m,r = (r +1|m)n , respectively.

Contrary to this, associated factorial numbers are really interesting on their own. The
s-associated factorial number A≥ s

n gives the number of permutations of {1, . . . , n} for which each
cycle is of length at least s. Notice that A≥2

n is commonly known as n subfactorial or the nth de-
rangement number.

We can introduce s-associated r -factorial number A≥ s
n,r as the number of those r -per-

mutations of {1, . . . , n+r }, where each non-distinguished cycle has length at least s. An alternative
variant of this kind of approach appeared recently in [19, 24], see again the closing section.

Finally, we can be interested in partitions into ordered blocks. The number of partitions of
{1, . . . , n} and r -partitions of {1, . . . , n + r } into ordered blocks are counted by the summed Lah
numbers Ln and summed r -Lah numbers Ln,r , respectively, which are studied by G. Nyul and
G. Rácz [21].

According to the colouring rule given in [12], E. Gyimesi [10] introduced r -Dowling–Lah
numbers DLn,m,r as the total number of Whitney–Lah coloured r -partitions of {1, . . . , n + r }
with m colours. Here, an r -partition into ordered blocks is called a Whitney–Lah coloured
r -partition with m colours if

• the smallest elements of the ordered blocks are not coloured,
• an element in a distinguished ordered block is not coloured if there are no smaller

numbers between the distinguished element and this element,
• the remaining elements are coloured with m colours.

The s-associated summed Lah number L≥s
n and s-associated summed r -Lah number L≥ s

n,r can
be defined analogously as the number of those partitions of {1, . . . , n}/r -partitions of {1, . . . , n+r }
into ordered blocks, where each ordered block/each non-distinguished ordered block contains
at least s elements. We know about no attempts in this direction.

In this paper, we combine the most general variants of the above mentioned two directions,
the r -generalized numbers with Whitney colourings and the s-associated numbers. More pre-
cisely, we introduce the s-associated r -Dowling numbers, and in addition, their factorial and Lah
kind relatives. We emphasize that our results are new even in the special cases when we treat
r -partitions or r -permutations without Whitney colourings, that is, for s-associated r -Bell num-
bers and their relatives, the s-associated r -factorials and s-associated summed r -Lah numbers.
The strategy that we follow is to prove a useful tool, the r -compositional formula first. This allows
us to give the exponential generating functions of sequences of the numbers in question. Based
on the exponential generating functions and the combinatorial definitions, we are able to derive
some identities, for instance, recurrence relations, Dobiński type formulas for these numbers.
The proofs are mainly demonstrated through the s-associated r -Dowling numbers, but they can
be performed similarly for the other two relatives.

2. The r -compositional formula

In the following Theorem 1, we give the r -generalization of the well known compositional
formula for exponential generating functions. One might prefer instead the usage of the language
of Flajolet’s symbolic method (see [9]) to derive such exponential generating functions. Here, N0

denotes the set of nonnegative integers,K is a field of characteristic 0.

Theorem 1. Let f1, f2, g : N0 → K be functions such that f2(0) = 0 and g (0) = 1. Denote
their exponential generating functions by F1(x),F2(x) and G(x), respectively. Define the function
h :N0 →K as follows: h(0) = 1, and for n ≥ 1 let

h (n) =
∑

f1 (|Y1|) · · · f1 (|Yr |) f2 (|Z1|) · · · f2 (|Zk |) g (k) ,

C. R. Mathématique, 2021, 359, n 1, 47-55
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where the sum is taken for all r -partitions {Y1 ∪ {1}, . . . , Yr ∪ {r }, Z1, . . . , Zk } of {1, . . . , n + r }. Then
the exponential generating function of h is

H (x) = (F1 (x))r G (F2 (x)) .

Proof. First, we define functions hk :N0 →K (k ≥ 0). Let

h0 (n) =
{

1 if n = 0

0 if n ≥ 1
.

For k ≥ 1, let hk (0) = 0 and

hk (n) =
∑

f1 (|Y1|) · · · f1 (|Yr |) f2 (|Z1|) · · · f2 (|Zk |) g (k)

for n ≥ 1, where the sum is taken for all (k+r )-element r -partitions {Y1∪{1}, . . . , Yr ∪{r }, Z1, . . . , Zk }
of {1, . . . , n + r }. Since f2(0) = 0, we can allow here the sets Z j ( j = 1, . . . , k) to be empty, therefore

hk (n) = g (k)

k !

∑
f1 (|Y1|) · · · f1 (|Yr |) f2 (|Z1|) · · · f2 (|Zk |) ,

where the sum is taken for all (k + r )-element weak ordered partitions (Y1, . . . , Yr , Z1, . . . , Zk ) of
{r +1, . . . , n+r }. Now, from the so-called product formula we have that the exponential generating
function of hk is

Hk (x) = g (k)

k !
(F1 (x))r (F2 (x))k .

Finally, we can observe that h(n) =
∞∑

k=0
hk (n) (in fact, this sum is a finite sum for all n), hence

H (x) =
∞∑

k=0
Hk (x) = (F1 (x))r

∞∑
k=0

g (k)

k !
(F2 (x))k = (F1 (x))r G (F2 (x)) . �

This formula seems to be very useful in the study of r -generalization of various previ-
ously known combinatorial numbers. Indeed, for instance, it immediately implies the exponen-
tial generating functions of the sequences of r -Bell, summed r -Lah, r -Fubini, r -Dowling and
r -Dowling–Lah numbers which were obtained by other means in [4, 17], [21], [18], [5–7, 11, 25],
[10] respectively. The application of the r -compositional formula will be demonstrated for
s-associated r -Dowling numbers and their relatives in the next Section 3.

3. The s-associated r -Dowling type numbers

Now, we define the subjects of this paper, the s-associated r -Dowling numbers and their relatives,
which will be jointly referred to as s-associated r -Dowling type numbers.

Definition. For n,r ≥ 0, n+r ≥ 1 and s,m ≥ 1, denote by D≥s
n,m,r , D A≥ s

n,m,r , DL≥ s
n,m,r the total num-

ber of Whitney coloured r -partitions/Whitney coloured r -permutations/Whitney–Lah coloured
r -partitions of {1, . . . , n + r } with m colours, where each non-distinguished block/cycle/ordered
block contains at least s elements. In addition, let D≥ s

0,m,0 = D A≥ s
0,m,0 = DL≥ s

0,m,0 = 1. We call
these numbers s-associated r -Dowling numbers, s-associated r -Dowling factorials, s-associated
r -Dowling–Lah numbers, respectively.

Remark. In particular, D≥1
n,m,r = Dn,m,r , D≥ s

n,1,r = B≥ s
n,r , and they hold similarly for the other

two s-associated r -Dowling type numbers. This also means that if m = 1 is substituted to
the identities below, we obtain the corresponding formulas for s-associated r -Bell numbers,
s-associated r -factorials and s-associated summed r -Lah numbers, as well.

As it was mentioned before, the r -compositional formula is our main tool to derive the
exponential generating functions of the sequences of s-associated r -Dowling type numbers.
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Theorem 2. If r ≥ 0 and s,m ≥ 1, then

∞∑
n=0

D≥ s
n,m,r

n!
xn = exp

(
r x + exp(mx)−1

m

)
exp

(
− 1

m

s−1∑
j=1

1

j !
(mx) j

)
,

∞∑
n=0

D A≥ s
n,m,r

n!
xn = (1−mx)−

r+1
m exp

(
− 1

m

s−1∑
j=1

1

j
(mx) j

)
,

∞∑
n=0

DL≥ s
n,m,r

n!
xn = (1−mx)−

2r
m exp

(
1

m

(
1

1−mx
−1

))
exp

(
− 1

m

s−1∑
j=1

(mx) j

)
.

Proof. In this proof, we use the notations of Theorem 1.
First, by the definition of s-associated r -Dowling numbers, if

f1 (n) = 1, f2 (n) =
{

0 if n ≤ s −1

mn−1 if n ≥ s
, g (n) = 1,

then h(n) = D≥s
n,m,r . For these sequences, we have

F1 (x) = exp(x) , F2 (x) = 1

m

(
exp(mx)−

s−1∑
j=0

1

j !
(mx) j

)
, G (x) = exp(x) ,

and Theorem 1 gives the desired exponential generating function.
Similarly, h(n) = D A≥s

n,m,r for

f1 (n) = (1|m)n , f2 (n) =
{

0 if n ≤ s −1

(n −1)!mn−1 if n ≥ s
, g (n) = 1

and

F1 (x) =
∞∑

n=0

(1|m)n

n!
xn =

∞∑
n=0

(
− 1

m

n

)
(−mx)n = (1−mx)−

1
m ,

F2 (x) = 1

m

(
ln

(
1

1−mx

)
−

s−1∑
j=1

1

j
(mx) j

)
, G (x) = exp(x) .

Finally, h(n) = DL≥s
n,m,r if

f1 (n) = (2|m)n , f2 (n) =
{

0 if n ≤ s −1

n!mn−1 if n ≥ s
, g (n) = 1

and

F1 (x) = (1−mx)−
2
m , F2 (x) = 1

m

(
1

1−mx
−

s−1∑
j=0

(mx) j

)
, G (x) = exp(x) . �

The following recurrences for s-associated r -Dowling type numbers can be obtained by
differentiating the above exponential generating functions.

Theorem 3. If r ≥ 0, s,m ≥ 1 and n ≥ s −1, then

D≥ s
n+1,m,r = r D≥ s

n,m,r +
n−s+1∑

j=0

(
n

j

)
D≥ s

j ,m,r mn− j ,

D A≥ s
n+1,m,r = r

n∑
j=0

(
n

j

)
D A≥ s

j ,m,r mn− j (
n − j

)
!+

n−s+1∑
j=0

(
n

j

)
D A≥ s

j ,m,r mn− j (
n − j

)
!,

DL≥ s
n+1,m,r = 2r

n∑
j=0

(
n

j

)
DL≥ s

j ,m,r mn− j (
n − j

)
!+

n−s+1∑
j=0

(
n

j

)
DL≥ s

j ,m,r mn− j (
n − j +1

)
!.
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Proof. Denote by d≥ s
m,r (x) the exponential generating function of the sequence (D≥ s

n,m,r )∞n=0 given
in Theorem 2. Its formal derivative is

∞∑
n=0

D≥ s
n+1,m,r

n!
xn = d≥ s

m,r (x)

(
r +exp(mx)−

s−1∑
j=1

1(
j −1

)
!

(mx) j−1

)

= r d≥ s
m,r (x)+d≥ s

m,r (x)

( ∞∑
j=s−1

1

j !
(mx) j

)

= r
∞∑

n=0

D≥ s
n,m,r

n!
xn +

∞∑
n=s−1

(
n−s+1∑

j=0

D≥s
j ,m,r

j !

1(
n − j

)
!
mn− j

)
xn ,

from which the assertion follows.
In the case of s-associated r -Dowling numbers, we provide an additional combinatorial proof

of this recurrence. Unfortunately, this argument fails to work for s-associated r -Dowling factorials
or s-associated r -Dowling–Lah numbers.

We need to count Whitney coloured r -partitions of {1, . . . , n+r +1} with m colours, where each
non-distinguished block contains at least s elements. We examine two cases.

If n + r +1 is contained in a distinguished block, then without it we have a Whitney coloured
r -partition of {1, . . . , n + r } with m colours, where each non-distinguished block contains at least
s elements, and n + r +1 can be put back to any of the r distinguished blocks.

If n + r + 1 is contained in a non-distinguished block, then let j be the number of non-
distinguished elements outside this block ( j = 0, . . . , n − s + 1). These elements can be chosen
in

(n
j

)
ways, and there are D≥s

j ,m,r possibilities to r -partition them together with the distinguished
elements in Whitney coloured sense such that each non-distinguished block contains at least
s elements. Finally, all but one elements are coloured with m colours in the (n − j +1)-element
block of n + r +1. Hence, for a fixed j , we have

(n
j

)
D≥ s

j ,m,r mn− j possibilities. �

After some manipulation of the above identities, recurrence relations of fixed order can be
reached for s-associated r -Dowling factorials and s-associated r -Dowling–Lah numbers.

Theorem 4. If r ≥ 0, s,m ≥ 1 and n ≥ s −1, then

D A≥ s
n+1,m,r = (mn + r )D A≥ s

n,m,r + (mn|m)s−1 D A≥s
n−s+1,m,r .

If r ≥ 0, s,m ≥ 1 and n ≥ s, then

DL≥ s
n+1,m,r = (2mn +2r )DL≥ s

n,m,r + s (mn|m)s−1 DL≥s
n−s+1,m,r

−mn (mn −m +2r )DL≥ s
n−1,m,r − (s −1)(mn|m)s DL≥ s

n−s,m,r .

Proof. By using Theorem 3 and the fundamental identities

(n − j +1)! = (n − j )(n − j )!+ (n − j )!,

(
n

j

)
= n

n − j

(
n −1

j

)
(0 ≤ j ≤ n −1),
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we have

DL≥s
n+1,m,r = 2r DL≥ s

n,m,r +2r
n−1∑
j=0

(
n

j

)
DL≥ s

j ,m,r mn− j (
n − j

)
!

+ s (mn|m)s−1 DL≥ s
n−s+1,m,r +

n−s∑
j=0

(
n

j

)
DL≥ s

j ,m,r mn− j (
n − j +1

)
!

= 2r DL≥ s
n,m,r + s (mn|m)s−1 DL≥ s

n−s+1,m,r

+2mnr
n−1∑
j=0

(
n −1

j

)
DL≥ s

j ,m,r mn− j−1 (
n − j −1

)
!

+mn
n−s∑
j=0

(
n −1

j

)
DL≥s

j ,m,r mn− j−1 (
n − j

)
!+

n−s∑
j=0

(mn|m)n− j DL≥ s
j ,m,r

= (mn +2r )DL≥s
n,m,r + s (mn|m)s−1 DL≥s

n−s+1,m,r +
n−s∑
j=0

(mn|m)n− j DL≥ s
j ,m,r .

From this identity it follows that

DL≥ s
n+1,m,r −mnDL≥ s

n,m,r = (mn +2r )DL≥ s
n,m,r + s (mn|m)s−1 DL≥s

n−s+1,m,r

+
n−s∑
j=0

(mn|m)n− j DL≥ s
j ,m,r −mn (m (n −1)+2r )DL≥ s

n−1,m,r

− s (mn|m)s DL≥ s
n−s,m,r −

n−s−1∑
j=0

(mn|m)n− j DL≥ s
j ,m,r

= (mn +2r )DL≥s
n,m,r + s (mn|m)s−1 DL≥s

n−s+1,m,r

−mn (m (n −1)+2r )DL≥s
n−1,m,r − (s −1)(mn|m)s DL≥ s

n−s,m,r . �

A purely combinatorial argument allows us to give the connections between s-associated
r -Dowling and s-associated r ′-Dowling type numbers.

Theorem 5. If n ≥ 0, r ≥ r ′ ≥ 0 and s,m ≥ 1, then

D≥ s
n,m,r =

n∑
j=0

(
n

j

)
D≥ s

j ,m,r ′
(
r − r ′)n− j ,

D A≥ s
n,m,r =

n∑
j=0

(
n

j

)
D A≥ s

j ,m,r ′
(
r − r ′|m)n− j ,

DL≥ s
n,m,r =

n∑
j=0

(
n

j

)
DL≥ s

j ,m,r ′
(
2r −2r ′|m)n− j .

Proof. The Whitney coloured r -partitions of {1, . . . , n + r } with m colours having non-dis-
tinguished blocks containing at least s elements can be enumerated in the following way.

Let j be the number of those non-distinguished elements which belong to the distinguished
blocks of 1, . . . , r ′ or a non-distinguished block ( j = 0, . . . , n). We have

(n
j

)
possible choices of these

elements, and D≥ s
j ,m,r ′ ways to r ′-partition them together with 1, . . . , r ′ in Whitney coloured sense

such that each non-distinguished block contains at least s elements. Finally, there exist (r −r ′)n− j

placements of the remaining n − j elements (in case of s-associated r -Dowling factorials and
s-associated r -Dowling–Lah numbers, we insert them in increasing order, and they might be
coloured according to the appropriate colouring rule). Summarizing, for a fixed j , we have(n

j

)
D≥ s

j ,m,r ′ (r − r ′)n− j possibilities. �

C. R. Mathématique, 2021, 359, n 1, 47-55
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The Dobiński type formulas for s-associated r -Dowling type numbers can be derived from
their exponential generating functions. As it can be seen, they become much more complicated
in the s-associated case.

Theorem 6. If n,r ≥ 0 and s,m ≥ 1, then

D≥s
n,m,r = e−

1
m

∞∑
k=0

1

mk k !

∑
∗

n!

l !
(mk + r )l

s−1∏
j=1

1

i j !

(
−m j−1

j !

)i j

,

D A≥s
n,m,r =

∑
∗

n!

l !
(r +1|m)l

s−1∏
j=1

1

i j !

(
−m j−1

j

)i j

,

DL≥s
n,m,r = e−

1
m

∞∑
k=0

1

mk k !

∑
∗

n!

l !
(mk +2r |m)l

s−1∏
j=1

1

i j !

(
−m j−1

)i j
,

where the sums indicated with a star symbol are taken over all s-tuples (i1, i2, . . . , is−1, l ) of
nonnegative integers satisfying i1 +2i2 + ·· · + (s −1)is−1 + l = n.

Proof. The formula can be deduced from Theorem 2 as
∞∑

n=0

D≥s
n,m,r

n!
xn = exp(r x)exp

(
exp(mx)

m

)
exp

(
− 1

m

) s−1∏
j=1

exp

(
−m j−1

j !
x j

)

= exp

(
− 1

m

) ∞∑
k=0

exp((mk + r ) x)

mk k !

s−1∏
j=1

exp

(
−m j−1

j !
x j

)

= exp

(
− 1

m

) ∞∑
k=0

∞∑
l=0

(mk + r )l

mk k !l !
x l

s−1∏
j=1

∞∑
i j =0

1

i j !

(
−m j−1

j !

)i j

x j i j

= exp

(
− 1

m

) ∞∑
k=0

1

mk k !

∑
∗

1

l !
(mk + r )l

s−1∏
j=1

1

i j !

(
−m j−1

j !

)i j

xn . �

As an interesting, instant consequence of the above, we can obtain that 2-associated
r -Dowling numbers coincide with (r − 1)-Dowling numbers, by comparing any of our Theo-
rems 2, 3, 6 with the corresponding results in [11]. We note that a special case appeared in [15] for
2-associated r -Bell numbers. Here, we provide a direct, combinatorial proof of this fact.

Corollary 7. If n ≥ 0 and r,m ≥ 1, then D≥2
n,m,r = Dn,m,r−1.

Proof. Consider a Whitney coloured r -partition of {1, . . . , n + r }, where each non-distinguished
block contains at least 2 elements. If we delete r , split its block into singletons, and decrease all
non-distinguished elements by 1 in the whole partition, then we arrive at a Whitney coloured
(r −1)-partition of {1, . . . , n + r −1}. It can be easily verified that this mapping is bijective, which
proves the equality. �

Remark. Corollary 7 remains valid for r = 0 in the sense that 2-associated 0-Dowling numbers
behave like they were (−1)-Dowling numbers. This observation is somehow similar to the famous
theorem of R. P. Stanley [23] about chromatic polynomials.

4. Alternative definitions

We say a few closing remarks about the possible alternative definitions of the numbers studied in
our paper. If we require each block/cycle/ordered block (not only the non-distinguished ones) to
contain at least s elements, then we call them alternative s-associated r -Dowling numbers, alter-
native s-associated r -Dowling factorials, alternative s-associated r -Dowling–Lah numbers (es-
pecially, alternative s-associated r -Bell numbers, alternative s-associated r -factorials, alternative
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s-associated summed r -Lah numbers if m = 1), and denote them by D≥ s,∗
n,m,r , D A≥s,∗

n,m,r , DL≥ s,∗
n,m,r ,

respectively. Alternative s-associated r -Bell numbers appear in two recent papers [1, 3] (the for-
mer one allows a more general restriction on the cardinality of the blocks), while in [19, 24], the
authors investigated alternative 2-associated and alternative s-associated r -factorials under the
names of r -derangement and generalized r -derangement numbers.

However, we prefer our variants since our previous experiences on r -generalized combinato-
rial numbers highly suggest that usually different requirements are imposed for distinguished
and non-distinguished blocks/cycles/ordered blocks. Also, it fits to the usage of 2-associated
r -Bell numbers by F. T. Howard [15]. On the other hand, our sequences consist of nonzero
numbers already from their initial elements, while the alternative numbers are equal to 0 for
0 ≤ n ≤ (s −1)r −1.

But, of course, the exponential generating function of the sequences(
D≥ s,∗

n,m,r

)∞
n=0 ,

(
D A≥ s,∗

n,m,r

)∞
n=0 ,

(
DL≥ s,∗

n,m,r

)∞
n=0

can be also derived using the r -compositional formula (Theorem 1).
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[22] G. Pólya, G. Szegő, Problems and Theorems in Analysis. Vol. I: Series. Integral calculus. Theory of functions. Translation

by D. Aeppli, Grundlehren der mathematischen Wissenschaften, vol. 193, Springer, 1972.
[23] R. P. Stanley, “Acyclic orientations of graphs”, Discrete Math. 5 (1973), p. 171-178.
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