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Abstract. We consider a generalization of the elliptic Lp -estimate suited for linear operators with non-trivial
kernels. A classical result of Schulenberger and Wilcox (Ann. Mat. Pura Appl. 88 (1971), no. 1, p. 229-305)
shows that if the operator has constant rank then the estimate holds. We prove necessity of the constant rank
condition for such an estimate.
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Consider a linear constant-coefficient homogeneous differential operator A ,

Aϕ= ∑
|α|=k

Aα∂
αϕ, ϕ : Rn →V; (1)

hereV,W are complex finite-dimensional inner product spaces and Aα ∈ Lin(V,W). Given 1 < p <
∞, there is a constant Cp such that

‖Dkϕ‖Lp (Rn ) ≤Cp‖Aϕ‖Lp (Rn ) for all ϕ ∈C∞
c (Rn ,V) (2)

if and only if A is elliptic; this is a classical result that goes back to the work of Calderón–
Zygmund [3]. We recall that A is (overdetermined) elliptic if the symbol Sn−1 3 ξ 7→ A (ξ) ≡∑

|α|=k (iξ)αAα is injective. We also remark that the estimate (2) only holds in trivial cases when
p = 1 [10, 16] and p =∞ [1, 11, 13]. We refer the reader to [6] for a short proof of the p = 1 case in
two dimensions.

Denote by F ≡ ·̂ the Fourier transform and define for ϕ ∈C∞
c (Rn ,V) the operator�PAϕ(ξ) ≡ ProjkerA (ξ) ϕ̂(ξ).

All projections in this note are taken to be orthogonal. Note that PAϕ ∈ L2(Rn ,V) whenever
ϕ ∈ L2(Rn ,V) and that PA is the orthogonal projection onto kerA ⊆ L2(Rn ,V).
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The operator A has constant rank if rank(A (ξ)) is constant for all ξ ∈Sn−1. Constant rank op-
erators have a general Helmholtz–Hodge decomposition, as proved in [7, 8, 15]; this decomposi-
tion implies that, for such operators, one has

PA = 0 ⇐⇒ A is elliptic. (3)

This equivalence partially explains the necessity of ellipticity for the estimate (2). However, the
example A (ξ1,ξ2) = diag(ξ1,ξ2) shows that (3) is false if A does not have constant rank.

It is thus natural to wonder whether (2) holds if we test it only in the orthogonal complement
of kerA ⊆ L2(Rn ,V). In this note, we prove the following:

Theorem. Given 1 < p <∞, an operator A as in (1) has constant rank if and only if

‖Dk (ϕ−PAϕ)‖Lp (Rn ) ≤Cp‖Aϕ‖Lp (Rn ) for all ϕ ∈C∞
c (Rn ,V). (4)

The sufficiency of the constant rank condition for the estimate (4) is classical and seems to go
back to the work of Schulenberger–Wilcox [19], at least for the p = 2 case, see also [9,15]. It seems,
however, that the necessity of this condition has remained unnoticed.

The inequality (4) is often used in the Lp -theory of Compensated Compactness [7, 15, 20] and,
more recently, it has been used in [8] through constructions with potentials [18]. Moreover, when
p = 1 or p =∞, (4) never holds except in trivial cases: this is recovered from the classical results
mentioned above by considering ϕ = A ∗ψ for a test function ψ, since in that case PAϕ = 0,
see the proof of the theorem below; here A ∗ denotes the formal adjoint of A . On the other
hand, strong type estimates on lower order derivatives in the spirit of (4) can be proved, see [17],
building on [18, 21]. Finally, we remark that the constant rank condition is not necessary for
estimates on lower order derivatives, as can be seen from the simple example ‖u‖L∞ ≤ ‖∂1∂2u‖L1

for u ∈C∞
c (R2).

For A ∈ Lin(V,W), the Moore–Penrose generalized inverse of A, sometimes called the pseudoin-
verse, is the unique A† ∈ Lin(W,V) such that A A† = Projim A and A† A = Projim A∗ . Equivalently, we
may define

A† ≡ (
A|(ker A)⊥

)−1 Projim A .

We refer the reader to [4] for these and numerous other properties of generalized inverses.
The proof of the theorem is based on two observations, that we record as separate lemmas.

Lemma 1. Let Ω ⊂ Rn be an open set and A : Ω→ Lin(V,W) be smooth. Then A† : Ω→ Lin(W,V)
is locally bounded if and only if rank A is constant inΩ. In that case, A † is also smooth.

Proof. Let | · | be the operator norm on Lin(V,W). We have that, for ξ1,ξ2 ∈Ω,

rank(A(ξ1)) > rank(A(ξ2)) =⇒ |A†(ξ1)| ≥ 1

|A(ξ1)− A(ξ2)| . (5)

Indeed, if the hypothesis holds then there exists v ∈ ker A(ξ2)∩ (ker A(ξ1))⊥ with |v | = 1. Thus
A†(ξ1)(A(ξ1)− A(ξ2))v = A†(ξ1)A(ξ1)v = v and so

1 ≤ |A†(ξ1)(A(ξ1)− A(ξ2))| ≤ |A†(ξ1)||A(ξ1)− A(ξ2)|.
Now suppose that rank A is not constant, so we can pick a point ξ0 ∈Ω and a sequence ξn → ξ0

such that rank(A(ξn)) 6= rank(A(ξ)). It follows from (5) that A† is not bounded near ξ0.
Conversely, assuming that rank A is constant, A† is smooth. Indeed, and as in [18], this is easily

deduced from Decell’s formula [5]

A† =− 1

ar
A∗

(
r∑

i=1
ai−1(A A∗)r−i

)
,

where r = rank A, d = dimW and p(λ) = (−1)d ∑d
j=0 a jλ

d− j is the characteristic polynomial of A;
note that a j = 0 for j > r and ar 6= 0 away from zero. Since the coefficients ai depend polynomially
on A, it follows that A† is smooth. �
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In order to deduce the theorem from Lemma 1, we need the following auxiliary result:

Lemma 2. If (4) holds for some 1 ≤ p ≤∞, there is a constant C such that

|ξ|k |A ∗(ξ)w | ≤C |A (ξ)A ∗(ξ)w | for all w ∈W,ξ ∈Rn\{0}. (6)

An argument in a similar spirit, but concerning (2), is outlined in [1].

Proof. Fix ξ ∈Rn\{0} and w ∈W and let g ∈C∞
c (B1(0)) be such that 0 ≤ g ≤ 1 and g = 1 in B1/2(0).

Set ϕε(x) ≡A ∗(g (εx)eix·ξw) for ε ∈ (0,1), so that

ϕε(x) = g (εx)eix·ξA ∗(ξ)w + ∑
|α|=k

∑
β<α

(
α

β

)
εk−|β|(iξ)β(∂α−βg )(εx)eix·ξA∗

αw

≡ g (εx)eix·ξA ∗(ξ)w +εFε(x),

where Fε ∈ C∞
c (Rn ,V) is supported inside B1/ε(0) and is bounded independently of ε by

C0(A , g ,ξ, w), say. On the other hand, PAϕε = 0: indeed, kerA (ξ) = (imA ∗(ξ))⊥ and so, writ-
ing η(x) ≡ g (εx)e i x·ξw ,

F (PAϕε) = ProjkerA (ξ) A
∗(ξ)η̂(ξ) = 0.

We can analogously obtain

Aϕε(x) = g (εx)eix·ξA (ξ)A ∗(ξ)w +εGε(x),

where Gε ∈ C∞
c (Rn ,W) is supported inside B1/ε(0) and can be assumed to be bounded indepen-

dently of ε by C0, so

|Aϕε(x)| ≤ |g (εx)||A (ξ)A ∗(ξ)w |+ε |Gε(x)| . (7)

A similar calculation yields

|Dkϕ(x)| ≥ |g (εx)||ξ|k |A ∗(ξ)w |−ε |Hε(x)| (8)

for another smooth function Hε having the same properties as Gε. Clearly we can assume
that A ∗(ξ)w 6= 0 for otherwise there is nothing to prove. We take ε small enough such that
|ξ|k |A ∗(ξ)w | ≥ C0ε, so the right hand side of (8) is non-negative inside B1/(2ε)(0). Thus, for
1 ≤ p <∞, combining (7) and (8) with (4) we find

L n(B1/(2ε))
(
|ξ|k |A ∗(ξ)w |−εC0

)p ≤CL n(B1/ε)
(|A (ξ)A ∗(ξ)w |+εC0

)p .

Dividing by L n(B1/ε) and sending ε→ 0 we arrive at the conclusion. The case p =∞ is similar,
but easier. �

Proof of the theorem. Note that, for any ξ ∈ Rn\{0}, ϕ̂(ξ)−ProjkerA (ξ) ϕ̂(ξ) = A †(ξ)Âϕ(ξ). Thus,
by the definition of PA , we have that

Dk (ϕ−PAϕ) =F−1(A †(ξ)Âϕ(ξ)⊗ξ⊗k )

and the “if” direction followsfrom Lemma 1 and the Hörmander–Mihlin multiplier theorem.
For the “only if” direction, suppose that (4) holds. Thus Lemma 2 shows that (6) must hold

as well and this easily implies that A has constant rank. Indeed, (6) shows that the spectrum of
A (ξ)|imA ∗(ξ) is bounded away from zero uniformly in ξ; equivalently,

Sn−1 3 ξ 7→ (
A (ξ)|imA ∗(ξ)

)−1 is bounded.

The definition of A †, together with Lemma 1, show that A has constant rank. �

In fact, our observation can be improved when p = 2:
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Corollary. The operator A has constant rank if and only if there is a constant C such that

inf
{
‖Dk (ϕ−ψ)‖L2(Rn ) : Aψ= 0,ψ ∈C∞

c (Rn ,V)
}
≤C‖Aϕ‖L2(Rn ) (9)

for all ϕ ∈C∞
c (Rn ,V). In particular, A has constant rank if and only if the operator

A : W A ,2(Rn) ≡ closϕ 7→‖Aϕ‖L2 C∞
c (Rn ,V) → L2(Rn ,W)

has closed range.

Proof. Note that the infimum in (9) is attained with ψ = PAϕ, by Plancherel’s theorem and the
minimization properties of orthogonal projections. Hence the first part follows from the theorem,
while the second statement is an immediate consequence of general results on unbounded linear
operators, see for instance [2, §2.7, Remark 18]. �

Altogether, the observations made in the present note suggest that the general study of
compensated compactness under linear partial differential constraints that are not of constant
rank requires substantially finer harmonic analysis tools, if any. Specifically, we refer to proving
the results in [7, 8, 15] without any assumptions on the compensating differential operators. In
the particular case of quadratic forms [12, 20] or of simple operators [14] these assumptions can
be bypassed but at present there is no general theory.
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