I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

J.L. Ramírez Alfonsín and M. Skałba

Primes in numerical semigroups

Volume 358, issue 9-10 (2020), p. 1001-1004.
https://doi.org/10.5802/crmath.104
© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.
(G) Er This article is licensed under the

Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Primes in numerical semigroups

J.L. Ramírez Alfonsín ${ }^{*}, a$ and M. Skałba ${ }^{b}$

${ }^{a}$ UMI2924 - Jean- Christophe Yoccoz, CNRS-IMPA, Brazil and Univ. Montpellier, CNRS, Montpellier, France
${ }^{b}$ Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
E-mails: jorge.ramirez-alfonsin@umontpellier.fr (J.L. Ramírez Alfonsín), skalba@mimuw.edu.pl (M. Skałba)

Abstract

Let $0<a<b$ be two relatively prime integers and let $\langle a, b\rangle$ be the numerical semigroup generated by a and b with Frobenius number $g(a, b)=a b-a-b$. In this note, we prove that there exists a prime number $p \in\langle a, b\rangle$ with $p<g(a, b)$ when the product $a b$ is sufficiently large. Two related conjectures are posed and discussed as well.

2020 Mathematics Subject Classification. 11D07, 11N13.
Funding. J.L. Ramírez Alfonsín was partially supported by Grant MATHAM-SUD 18-MATH-01, Project FLaNASAGraTA and INSMI-CNRS..

Manuscript received 22nd July 2020, revised and accepted 30th July 2020.

Let $0<a<b$ be two relatively prime integers. Let $S=\langle a, b\rangle=\{n \mid n=a x+b y, x, y \in \mathbb{Z}, x, y \geq 0\}$ be the numerical semigroup generated by a and b. A well-known result due to Sylvester [5] states that the largest integer not belonging to S, denoted by $g(a, b)$, is given by $a b-a-b . g(a, b)$ is called the Frobenius number (we refer the reader to [3] for an extensive literature on the Frobenius number).

We clearly have that any prime p larger than $g(a, b)$ belongs to $\langle a, b\rangle$. A less obvious and more intriguing question is whether there is a prime $p \leq g(a, b)$ belonging to $\langle a, b\rangle$.

In this note, we show that there always exists a prime $p \in\langle a, b\rangle, p<g(a, b)$ when the product $a b$ is sufficiently large. The latter is a straight forward consequence of the below Theorem.

Let $0<u<v$ be integers. We define

$$
\pi_{S}[u, v]=\mid\{p \text { prime } \mid p \in S, u \leq p \leq \nu\} \mid .
$$

For short, we may write π_{S} instead of $\pi_{S}[0, g(a, b)]$.
Theorem 1. Let $3 \leq a<b$ be two relatively prime integers and let $S=\langle a, b\rangle$ be the numerical semigroup generated by a and b. Then, for any fixed $\varepsilon>0$ there exists $C(\varepsilon)>0$ such that

$$
\pi_{S}>C(\varepsilon) \frac{g(a, b)}{\log (g(a, b))^{2+\varepsilon}}
$$

[^0]for ab sufficiently large.
Let us quickly introduce some notation and recall some facts needed for the proof of Theorem 1.

Let $S=\langle a, b\rangle$ and let $0<u<\nu$ be integers. We define

$$
n_{S}[u, v]=|\{n \in \mathbb{N} \mid u \leq n \leq v, n \in S\}|
$$

and

$$
n_{S}^{c}[u, v]=|\{n \in \mathbb{N} \mid u \leq n \leq v, n \notin S\}| .
$$

For short, we may write n_{S} instead of $n_{S}[0, g(a, b)]$ and n_{S}^{c} instead of $n_{S}^{c}[0, g(a, b)]$. The set of elements in $n_{S}^{c}=\mathbb{N} \backslash S$ are usually called the gaps of S.

It is known [3] that S is always symmetric, that is, for any integer $0 \leq s \leq g(a, b)$

$$
s \in S \text { if and only if } g(a, b)-s \notin S \text {. }
$$

It follows that

$$
n_{S}=\frac{g(a, b)+1}{2} .
$$

We may now prove Theorem 1.
Proof of Theorem 1. Let $\varepsilon>0$ be fixed. We distinguish two cases.
Case 1. Suppose that $a>(\log (a b))^{1+\varepsilon}$. Let us take $c=a b /(\log (a b))^{1+\varepsilon}$. It is known [1] that if $k \in[0, \ldots, g(a, b)]$ then

$$
n_{S}[0, k]=\sum_{i=0}^{\left\lfloor\frac{k}{b}\right\rfloor}\left(\left\lfloor\frac{k-i b}{a}\right\rfloor+1\right) .
$$

In our case, we obtain that

$$
\begin{aligned}
n_{S}[0, c] & \leq\left\lfloor\frac{c}{a}\right\rfloor+\left\lfloor\frac{c}{b}\right\rfloor\left(\left\lfloor\frac{c-b}{a}\right\rfloor+1\right)+1 \leq\left\lfloor\frac{c}{a}\right\rfloor+\left\lfloor\frac{c}{b}\right\rfloor\left(\left\lfloor\frac{c}{a}\right\rfloor+1\right)+1 \\
& \leq \frac{c}{a}+\frac{c}{b}+\frac{c^{2}}{a b}+1=\frac{b c+a c+c^{2}+a b}{a b}<\frac{2 c^{2}+c^{2}+c^{2}}{a b}=\frac{4 c^{2}}{a b}=\frac{4 a b}{(\log (a b))^{2+2 \varepsilon}}
\end{aligned}
$$

where the last inequality holds since $c>b>a$.
Due to the symmetry of S, we have

$$
\begin{equation*}
n_{S}^{c}[g(a, b)-c, g(a, b)]=n_{S}[0, c]<\frac{4 a b}{(\log (a b))^{2+2 \varepsilon}} . \tag{1}
\end{equation*}
$$

Let $\pi(x)$ be the number of primes integers less or equals to x. We have

$$
\begin{equation*}
\pi(g(a, b))-\pi(g(a, b)-c) \ggg \frac{c}{\log (a b)}=\frac{a b}{(\log (a b))^{2+\varepsilon}} \tag{2}
\end{equation*}
$$

when $a b$ is large enough. The latter follows from Prime Number Theorem for short intervals (when $c=a b /(\log (a b))^{1+\varepsilon}$ is large enough in comparison to $\left.g(a, b)=a b-a-b\right)$.

Finally, by combining equations (1) and (2), we obtain

$$
\begin{gathered}
\pi_{S} \geq \pi_{S}[g(a, b)-c, g(a, b)] \geq \pi(g(a, b))-\pi(g(a, b)-c)-n_{S}^{c}[g(a, b)-c, g(a, b)] \\
>\frac{a b}{(\log (a b))^{2+\varepsilon}}-\frac{4 a b}{(\log (a b))^{2+2 \varepsilon}}>0
\end{gathered}
$$

where the last inequality holds since $(\log (a b))^{\varepsilon}>4$ for $a b$ large enough for the fixed ϵ. The above leads to the desired estimate of π_{s}.

Case 2. Suppose that $3 \leq a \leq(\log (a b))^{1+\varepsilon}$.
If $p \in[b, \ldots, g(a, b)]$ is a prime and $p \equiv b(\bmod a)$ then p is clearly representable as $p=b+\frac{p-b}{a} a$. By Siegel-Walfisz theorem [2,7], the number of such primes p, denoted by N, is

$$
N=\frac{1}{\varphi(a)} \int_{b}^{g(a, b)} \frac{d u}{\log u}+R
$$

where φ is the Euler totient function and $|R|<D^{\prime}(\varepsilon) \frac{g(a, b)}{(\log (g(a, b)))^{2+2 \varepsilon}}$ uniformly in a and $g(a, b)$.
Since the function $1 / \log u$ is decreasing on the interval $[b, g(a, b)]$ then

$$
\int_{b}^{g(a, b)} \frac{d u}{\log u}>(g(a, b)-b) \cdot \frac{1}{\log g(a, b)}
$$

and therefore

$$
\begin{equation*}
N>\frac{1}{\varphi(a)} \cdot \frac{g(a, b)-b}{\log (g(a, b))}-D^{\prime}(\varepsilon) \frac{g(a, b)}{(\log (g(a, b)))^{2+2 \varepsilon}} . \tag{3}
\end{equation*}
$$

Now, we have that

$$
\begin{aligned}
\frac{1}{\varphi(a)} \cdot \frac{g(a, b)-b}{\log (g(a, b))} & \cdot \frac{(\log (g(a, b)))^{2+\varepsilon}}{g(a, b)} \\
= & \frac{1}{\varphi(a)} \log (g(a, b))^{1+\varepsilon}\left(1-\frac{b}{g(a, b)}\right) \\
& >\frac{1}{\log (a b)^{1+\varepsilon}} \log (g(a, b))^{1+\varepsilon}\left(1-\frac{b}{g(a, b)}\right)\left(\text { since }(\log (a b))^{1+\varepsilon} \geq a>\varphi(a)\right) \\
& >\left(\frac{\log (a b)-\log (3)}{\log (a b)}\right)^{1+\varepsilon} \frac{1}{5}>F>0\left(\text { since } g(a, b)>a b / 3 \text { and } \frac{b}{g(a, b)} \leq \frac{4}{5}\right)
\end{aligned}
$$

for some absolute $F>0$, uniformly for $a b \geq D^{\prime \prime}(\varepsilon)$ with $a \geq 3$.
It yields to

$$
\begin{equation*}
\frac{1}{\varphi(a)} \cdot \frac{g(a, b)-b}{\log (g(a, b))} \geq F \frac{g(a, b)}{\log (g(a, b))^{2+\varepsilon}} \tag{4}
\end{equation*}
$$

and combining equations (3) and (4) we obtain

$$
N>F^{\prime} \frac{g(a, b)}{\log (g(a, b))^{2+\varepsilon}}
$$

for $a b$ large enough for the fixed ϵ. The latter leads to the desired estimate of π_{S} also in this case.

1. Concluding remarks

A number of computer experiments lead us to the following.
Conjecture 2. Let $2 \leq a<b$ be two relatively prime integers and let S be the numerical semigroup generated by a and b. Then,

$$
\pi_{S}>0
$$

In analogy with the symmetry of $\langle a, b\rangle$ mentioned above, our task of looking for primes in $\langle a, b\rangle$ is related with the task of finding primes in $[g(a, b)-1) / 2, \ldots, g(a, b)]$. From this point of view, Conjecture 2 can be thought of as a counterpart of the famous Chebyshev theorem stating that there is always a prime in $[n, \ldots, 2 n]$ for any $n \geq 2$, see [4, Chapter 3]. A way to attack Conjecture 2 could be by applying effective versions of Siegel-Walfisz theorem. For instance, one may try to use [6, Corollary 8.31] in order to get computable constants in our estimates. However, it is not an easy task to trace all constants appearing in the relevant estimates of $L(x, \chi)$ (but in principle possible). The remaining cases for small values $a b$ must to be treated by computer.

Conjecture 3. Let $2 \leq a<b$ be two relatively prime integers and let S be the numerical semigroup generated by a and b. Then,

$$
\pi_{S} \sim \frac{\pi(g(a, b))}{2} \text { for } a \rightarrow \infty .
$$

In the same spirit as the prime number theorem, this conjecture seems to be out of reach.
The famous Linnik's theorem asserts that there exist absolute constants C and L such that: for given relatively prime integers a, b the least prime p satisfying $p \equiv b(\bmod a)$ is less than $C a^{L}$. It is conjectured that one can take $L=2$, but the current record is only that $L \leq 5$ is allowed, see [8].

On the same flavor of Linnik's theorem that concerns the existence of primes of the form $a x+b$, Theorem 1 is concerning the existence of primes of the form $a x+b y$ with $x, y \geq 1$ less than $a b$ for sufficiently large $a b$. This relation could shed light on in either direction.

References

[1] G. Márquez-Campos, J. L. Ramírez Alfonsín, J. M. Tornero, "Integral points in rational polygons: a numerical semigroup approach", Semigroup Forum 94 (2017), no. 1, p. 123-138.
[2] K. Prachar, Primzahlverteilung, Die Grundlehren der Mathematischen Wissenschaften, vol. 91, Springer, 1957.
[3] J. L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lecture Series in Mathematics and its Applications, vol. 30, Oxford University Press, 2005.
[4] W. Sierpiński, Elementary Theory of Numbers, 2nd ed., North-Holland Mathematical Library, vol. 31, PWN-Polish Scientific Publisher; North-Holland, 1988.
[5] J. J. Sylvester, "Question 7382", Mathematical Questions from Educational Times 41 (1884), p. 21.
[6] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd expanded ed., Graduate Studies in Mathematics, vol. 163, American Mathematical Society, 2015.
[7] A. Walfisz, "Zur additiven Zahlentheorie. II", Math. Z. 40 (1936), no. 1, p. 592-607.
[8] T. Xylouris, Über die Nullstellen der Dirichletschen L-Funktionen und die kleinste Primzahl in einer arithmetischen Progression, Bonner Mathematische Schriften, vol. 404, University Bonn; Mathematisches Institut and MathematischNaturwissenschaftliche Fakultät, 2011.

[^0]: * Corresponding author.

