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Abstract. Let H be a skew field of finite dimension over its center k. We solve the Inverse Galois Problem over
the field of fractions H(X ) of the ring of polynomial functions over H in the variable X , if k contains an ample
field.

Résumé. Soit H un corps gauche de dimension finie sur son centre k. Nous résolvons le Problème Inverse de
Galois sur le corps des fractions H(X ) de l’anneau des fonctions polynomiales en la variable X et à coefficients
dans H , si k contient un corps ample.
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1. Introduction

The Inverse Galois Problem over a field k asks whether every finite group occurs as the Galois
group of a Galois field extension of k. Hilbert showed in 1892, via his celebrated irreducibility
theorem, that this problem over the fieldQ of rational numbers is equivalent to the same problem
over the field Q(t ) of rational functions over Q. While the problem is wide open over Q(t ), it is
known to have an affirmative answer over many other function fields, e.g., over the field C(t ) of
complex rational functions, as a consequence of Riemann’s Existence Theorem.

The aim of this note is to contribute to inverse Galois theory over skew fields, following a first
work on this topic by Deschamps and Legrand (see [4]). In this more general context, given skew
fields (equivalently, division rings) H ⊆ M , the extension M/H is said to be Galois if every element
of M which is fixed under any automorphism of M fixing H pointwise lies in H . See [3, Section 3.3]
for more on Galois theory over skew fields.

Let H be a skew field, and let H [X ] denote the ring of all polynomial functions over H in the
variable X . That is, H [X ] is the ring of all functions from H to H that can be expressed by sums
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and products of the variable X and elements of H . We observe that, if H is of finite dimension
over its center k and if k is infinite, then H [X ] has a classical (right) field of fractions, denoted by
H(X ). See Section 2 for more details.

In the sequel, we solve the Inverse Galois Problem over the skew field H(X ), if the center of H
contains an ample field:

Theorem 1. Let H be a skew field of finite dimension over its center k. If k contains an ample field,
then every finite group is the Galois group of a Galois extension of H(X ).

Recall that a field k is ample (or large) if every smooth geometrically irreducible k-curve has
either zero or infinitely many k-rational points. Ample fields, which were introduced by Pop in [9]
(and which are necessarily infinite), include algebraically closed fields, some complete valued
fields (e.g.,Qp ,R,κ((T ))), the fieldQtr of all totally real algebraic numbers, etc. See [7], [2], and [10]
for more details. Consequently, a special (but fundamental) case of Theorem 1 is that the Inverse
Galois Problem has an affirmative answer overH(X ), whereHdenotes the skew field of Hamilton’s
quaternions.

Given a skew field H of finite dimension over its center k, with k infinite, the ring H [X ] is
one possible natural generalization of the usual polynomial ring in one variable over an infinite
field. Another one is the polynomial ring Hc [t ], where t is a central indeterminate, commuting
with the coefficients1 2. While these rings are isomorphic in the special case H = k, it is not clear
that such an isomorphism exists if H is non-commutative. This suggests that the Inverse Galois
Problem over the field of fractions Hc (t ) of Hc [t ], which is studied by Deschamps and Legrand,
and the same problem over H(X ) are a priori independent. In particular, although the Inverse
Galois Problem over Hc (t ) has a positive answer if k contains an ample field (see [4, Théorème B]),
Theorem 1 has its own merits and, as [4, Théorème B], extends the deep result of Pop solving the
Inverse Galois Problem over the field k(t ), if k contains an ample field.

We prove Theorem 1 in Section 3, by reducing it to the case settled by Deschamps and Legrand.
The main observation needed is that the ring H [X ] is isomorphic to the ring Hc [t1, . . . , tn] of
polynomials over H in n central variables, where n denotes the dimension of H over its center
(see Proposition 4). This follows from a theorem of Wilczynski [12, Theorem 4.1]. We also make
use of the general observation that the Inverse Galois Problem over skew fields is “algebraic”; see
Proposition 6.

2. Polynomial rings and fields of fractions

2.1. Polynomial rings

For this subsection, let H be a skew field.
The polynomial ring Hc [t ] in the central variable t is the set of all sequences (an)n∈N of

elements of H such that an = 0 for all but finitely many n. As in the commutative setting, the
addition is defined componentwise and the multiplication is defined by (an)n · (bn)n = (cn)n ,
where cn = ∑

l+m=n al bm for every n ∈ N. Setting (an)n = ∑
n an t n , one has at = t a for every

a ∈ H , thus justifying the terminology “central”. If H is a field, then Hc [t ] is nothing but the usual
polynomial ring in the variable t over H . In the sense of Ore [8], Hc [t ] is the skew polynomial ring

1We adopt a different notation from that of [4], where this ring is denoted by H [t ], in order to distinguish between the
cases of central variables and non-central ones. We note that there are alternative notations for this ring in the literature,
such as H [x, id,0] in [8], or HL [t ] in [6].

2Throughout this note, we use upper-case letters to denote non-central variables and lower case-letter to denote
central ones, to add a visual distinction between the two.
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H [t ,α,δ] in the variable t , where the automorphism α is the identity of H and the derivation δ

is 0. One can iteratively construct rings of polynomials in several central variables over H , by
putting Hc [t1, t2] = (Hc [t1])c [t2], Hc [t1, t2, t3] = (Hc [t1, t2])c [t3], and so on. Since the variables
are all central, the order in which they are added does not change the ring obtained, up to
isomorphism.

On the other hand, let H〈X 〉 be the free algebra in one symbol X over H . That is, H〈X 〉 is
the algebra spanned by all words whose letters are elements of H or X . For an element a ∈ H
and f (X ) ∈ H〈X 〉, the substitution f (a) ∈ H is defined in the obvious way, by replacing each
occurrence of X in f (X ) by a, and computing the resulting value in H . For a fixed a ∈ H , the map
f (X ) 7→ f (a) is a homomorphism from H〈X 〉 to H . We say that f vanishes at a if f (a) = 0. Let I
be the (two-sided) ideal of H〈X 〉 which consists of all f (X ) ∈ H〈X 〉 that vanish at all a ∈ H . Then
the ring H [X ] is defined as the quotient H〈X 〉/I , and it is isomorphic to the ring of polynomial
functions over H . Note that, if H is an infinite field, then this definition coincides with the usual
definition of the polynomial ring in the variable X over H .

2.2. Classical fields of fractions

For this subsection, let R be a non-zero ring, not necessarily commutative. Recall that R is an
integral domain if, for all r ∈ R \ {0} and s ∈ R \ {0}, one has sr 6= 0 and r s 6= 0. From now on,
suppose R is an integral domain.

A classical right quotient ring for R is an overring S ⊇ R such that every non-zero element of
R is invertible in S, and such that every element of S can be written as ab−1 for some a ∈ R and
some b ∈ R \ {0}. We say that R is a right Ore domain if, for all non-zero elements x and y of R,
there exist r and s in R such that xr = y s 6= 0. By [5, Theorem 6.8], if R is a right Ore domain, then
R has a classical right quotient ring H which is a skew field and, by [3, Proposition 1.3.4], H is
unique up to isomorphism. We then say that H is the classical right field of fractions of R.

If H denotes an arbitrary skew field, then the polynomial ring Hc [t ] in the central variable t
over H is an integral domain, since the degree is additive on products. Moreover, Hc [t ] is a right
Ore domain, by [5, Theorem 2.6 and Corollary 6.7]. By an easy induction, given a positive integer
n, the polynomial ring Hc [t1, . . . , tn] in n central variables over H has a classical right field of
fractions, which we denote by Hc (t1, . . . , tn).

Proposition 2. Let H be a skew field and n ≥ 2. Then the equality Hc (t1, . . . , tn) =
(Hc (t1, . . . , tn−1))c (tn) holds.

Proof. First, it is clear that the inclusion Hc [t1, . . . , tn] ⊆ (Hc (t1, . . . , tn−1))c (tn) holds. As every
element of Hc (t1, . . . , tn) can be written as f g−1 with f and g in Hc [t1, . . . , tn], we actually have
Hc (t1, . . . , tn) ⊆ (Hc (t1, . . . , tn−1))c (tn).

For the converse, take a polynomial f = ∑m
l=0 al t l

n with al ∈ Hc (t1, . . . , tn−1) for every l ∈
{0, . . . ,m}. As before, we can write al = bl c−1

l with bl ∈ Hc [t1, . . . , tn−1] and cl ∈ Hc [t1, . . . , tn−1] \
{0}, for every l ∈ {0, . . . ,m}. Since Hc [t1, . . . , tn−1] ⊆ Hc [t1, . . . , tn] ⊆ Hc (t1, . . . , tn) and tn ∈
Hc (t1, . . . , tn), we get that f = ∑m

l=0 bl c−1
l t l

n is in Hc (t1, . . . , tn). This shows the desired inclusion
(Hc (t1, . . . , tn−1))c (tn) ⊆ Hc (t1, . . . , tn), since every element of (Hc (t1, . . . , tn−1))c (tn) can be written
as f g−1 with f and g in (Hc (t1, . . . , tn−1))c [tn]. �

Proposition 3. Let H be a skew field of center k and let n be a positive integer. The center of
Hc (t1, . . . , tn) equals k(t1, . . . , tn). Moreover, if the dimension of H over k is finite, then the equality
dimk(t1,...,tn ) Hc (t1, . . . , tn) = dimk H holds.

C. R. Mathématique, 2020, 358, n 7, 785-790
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Proof. By, e.g., [3, Proposition 2.1.5], if K is an arbitrary skew field of center C , then C (t ) is the
center of Kc (t ). Hence, by iterating Proposition 2, the center of Hc (t1, . . . , tn) equals k(t1, . . . , tn).
Now, suppose dimk H is finite. Then, by [4, Proposition 9], we have Hc (t1) ∼= H ⊗k k(t1). Conse-
quently, dimk(t1) Hc (t1) is finite and equals dimk H . As before, it remains to iterate Proposition 2
to conclude the proof. �

Proposition 4. Let H be a skew field of finite dimension n over its center k. Assume k is infinite.
Then the ring H [X ] is isomorphic to Hc [t1, . . . , tn].

Proof. The existence of such an isomorphism follows from [12, Theorem 4.1]. See also [1,
Theorem 5] for a different, more explicit proof. For the convenience of the reader, we include an
elementary proof in the special case H =H, where H is the skew field of Hamilton’s quaternions.

One has the following classical identity for each a ∈H:

Re(a) = 1

4
(a − i ai − j a j −kak),

where Re(a) is the real component of a. More generally, putting

y1 = 1

4
(X − i X i − j X j −k X k),

y2 = 1

4
( j X k −X i − i X −k X j ),

y3 = 1

4
(k X i −X j − j X − i X k),

y4 = 1

4
(i X j −X k −k X − j X i ),

the functions y1, y2, y3, y4 ∈H[X ] obtain real values only, and one has X = y1 + i y2 + j y3 +k y4. In
particular, y1, y2, y3, y4 belong to the center of H[X ], and we may then define a homomorphism
φ : Hc [t1, t2, t3, t4] → H[X ] by φ(tl ) = yl , 1 ≤ l ≤ 4, and φ(a) = a for all a ∈ H. The equality
X = y1 + i y2 + j y3 +k y4 implies that φ is surjective.

Let p = p(t1, t2, t3, t4) ∈Hc [t1, t2, t3, t4]. By decomposing the coefficients of p into their real, i ,
j , and k components, we may present p in the form p = p1 +p2i +p3 j +p4k with p1, p2, p3, p4 ∈
R[t1, t2, t3, t4]. If p 6= 0, then pl 6= 0 for some 1 ≤ l ≤ 4. Then there exists a non-zero tuple
a = (a1, a2, a3, a4) ∈R4 such that pl (a) 6= 0. Hence,φ(p) does not vanish at X = a1+a2i+a3 j+a4k,
thus showing that φ is also injective. �

Corollary 5. Let H be a skew field of finite dimension n over its center k. Assume k is infinite.
Then the ring H [X ] has a classical right field of fractions, denoted by H(X ), which is isomorphic to
Hc (t1, . . . , tn).

Proof. As recalled, the ring Hc [t1, . . . , tn] is a right Ore domain. Since H [X ] is isomorphic to
Hc [t1, . . . , tn] by Proposition 4, H [X ] is also a right Ore domain and so has a classical right
field of fractions. Finally, [3, Section 1.3] shows that the isomorphism H [X ] ∼= Hc [t1, . . . , tn] from
Proposition 4 extends to an isomorphism H(X ) ∼= Hc (t1, . . . , tn). �

3. Proof of Theorem 1

We first make the general observation that the Inverse Galois Problem over skew fields is an
“algebraic problem”. More precisely:

Proposition 6. Let H1 and H2 be isomorphic skew fields and let G be a finite group. Then there
exists a Galois extension of H1 of group G if and only if there exists a Galois extension of H2 of
group G.

C. R. Mathématique, 2020, 358, n 7, 785-790
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Proof. Let ϕ : H1 → H2 be an isomorphism. Suppose there exists a Galois extension K1/H1 of
group G .

By the exchange principle3, there exists a set C such that C ∩ H2 = ; and |C | = |K1 \ H1|. Let
f : K1\H1 →C be a bijection. Then set K2 =C∪H2 and consider the well-defined mapψ : K1 → K2

given by ψ(x) = ϕ(x) if x ∈ H1 and ψ(x) = f (x) if x ∈ K1 \ H1. The map ψ is surjective and, as
C ∩H2 =;, it is also injective. Now, define the ring operations on K2 as inherited from K1 via ψ:

∀ x, y ∈ K2, x · y =ψ(ψ−1(x) ·ψ−1(y)), x + y =ψ(ψ−1(x)+ψ−1(y)).

Then K2 is isomorphic to K1 via ψ and, in particular, K2 is a skew field containing H2.
It remains to show that K2/H2 is Galois of group G . To that end, note that the isomorphism ψ :

K1 → K2, whose restriction to H1 equalsϕ, induces an isomorphismφ : Aut(K1/H1) → Aut(K2/H2)
(namely, φ(σ) =ψ◦σ◦ψ−1 for every σ ∈ Aut(K1/H1)). Finally, if x is any element of K2 such that
σ(x) = x for every σ ∈ Aut(K2/H2), then we have τ(ψ−1(x)) =ψ−1(x) for every τ ∈ Aut(K1/H1). As
K1/H1 is Galois, we then haveψ−1(x) ∈ H1, and so x ∈ H2, thus showing that K2/H2 is Galois. This
concludes the proof. �

Proof of Theorem 1. By Corollary 5, we have H(X ) ∼= Hc (t1, . . . , tn), where n denotes the dimen-
sion of H over k. Moreover, by Proposition 3, the center of Hc (t1, . . . , tn−1) equals k(t1, . . . , tn−1)
and the dimension of Hc (t1, . . . , tn−1) over k(t1, . . . , tn−1) is finite. Finally, k(t1, . . . , tn−1) contains
an ample field. Hence, by [4, Théorème B], the Inverse Galois Problem has an affirmative answer
over the skew field (Hc (t1, . . . , tn−1))c (tn), that is, over Hc (t1, . . . , tn) by Proposition 2. It then re-
mains to apply Proposition 6 to get that the Inverse Galois Problem also has an affirmative an-
swer over H(X ), thus concluding the proof. �

Remark 7. Similarly, we have this result, which follows from [4, Proposition 12] as Theorem 1
follows from [4, Théorème B]:

Let G be a finite group and H a skew field of finite dimension n over its center k. In each of the
following cases, G occurs as the Galois group of a Galois extension of H(X ):

(1) G is abelian and k is infinite,
(2) G = Sm (m ≥ 3) and k is infinite,
(3) G = Am (m ≥ 4) and k has characteristic zero,
(4) G is solvable, n ≥ 2, and k has positive characteristic.
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