

Comptes Rendus

Mathématique

Gil Alon, François Legrand and Elad Paran

Galois groups over rational function fields over skew fields
Volume 358, issue 7 (2020), p. 785-790.
https://doi.org/10.5802/crmath.20
© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.
(G) Er This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Galois groups over rational function fields over skew fields

Gil Alon ${ }^{a}$, François Legrand ${ }^{b}$ and Elad Paran*, a
${ }^{a}$ Department of Mathematics and Computer Science, the Open University of Israel, Ra'anana 4353701, Israel
${ }^{b}$ Institut für Algebra, Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany
E-mails: gilal@openu.ac.il, francois.legrand@tu-dresden.de, paran@openu.ac.il

Abstract

Let H be a skew field of finite dimension over its center k. We solve the Inverse Galois Problem over the field of fractions $H(X)$ of the ring of polynomial functions over H in the variable X, if k contains an ample field. Résumé. Soit H un corps gauche de dimension finie sur son centre k. Nous résolvons le Problème Inverse de Galois sur le corps des fractions $H(X)$ de l'anneau des fonctions polynomiales en la variable X et à coefficients dans H, si k contient un corps ample.

Manuscript received 17th December 2019, accepted 28th May 2020.

1. Introduction

The Inverse Galois Problem over a field k asks whether every finite group occurs as the Galois group of a Galois field extension of k. Hilbert showed in 1892, via his celebrated irreducibility theorem, that this problem over the field \mathbb{Q} of rational numbers is equivalent to the same problem over the field $\mathbb{Q}(t)$ of rational functions over \mathbb{Q}. While the problem is wide open over $\mathbb{Q}(t)$, it is known to have an affirmative answer over many other function fields, e.g., over the field $\mathbb{C}(t)$ of complex rational functions, as a consequence of Riemann's Existence Theorem.

The aim of this note is to contribute to inverse Galois theory over skew fields, following a first work on this topic by Deschamps and Legrand (see [4]). In this more general context, given skew fields (equivalently, division rings) $H \subseteq M$, the extension M / H is said to be Galois if every element of M which is fixed under any automorphism of M fixing H pointwise lies in H. See [3, Section 3.3] for more on Galois theory over skew fields.

Let H be a skew field, and let $H[X]$ denote the ring of all polynomial functions over H in the variable X. That is, $H[X]$ is the ring of all functions from H to H that can be expressed by sums

[^0]and products of the variable X and elements of H. We observe that, if H is of finite dimension over its center k and if k is infinite, then $H[X]$ has a classical (right) field of fractions, denoted by $H(X)$. See Section 2 for more details.

In the sequel, we solve the Inverse Galois Problem over the skew field $H(X)$, if the center of H contains an ample field:

Theorem 1. Let H be a skew field of finite dimension over its center k. If k contains an ample field, then every finite group is the Galois group of a Galois extension of $H(X)$.

Recall that a field k is ample (or large) if every smooth geometrically irreducible k-curve has either zero or infinitely many k-rational points. Ample fields, which were introduced by Pop in [9] (and which are necessarily infinite), include algebraically closed fields, some complete valued fields (e.g., $\left.\mathbb{Q}_{p}, \mathbb{R}, \kappa((T))\right)$, the field $\mathbb{Q}^{\text {tr }}$ of all totally real algebraic numbers, etc. See [7], [2], and [10] for more details. Consequently, a special (but fundamental) case of Theorem 1 is that the Inverse Galois Problem has an affirmative answer over $\mathbb{H}(X)$, where \mathbb{H} denotes the skew field of Hamilton's quaternions.

Given a skew field H of finite dimension over its center k, with k infinite, the ring $H[X]$ is one possible natural generalization of the usual polynomial ring in one variable over an infinite field. Another one is the polynomial ring $H_{c}[t]$, where t is a central indeterminate, commuting with the coefficients ${ }^{12}$. While these rings are isomorphic in the special case $H=k$, it is not clear that such an isomorphism exists if H is non-commutative. This suggests that the Inverse Galois Problem over the field of fractions $H_{c}(t)$ of $H_{c}[t]$, which is studied by Deschamps and Legrand, and the same problem over $H(X)$ are a priori independent. In particular, although the Inverse Galois Problem over $H_{c}(t)$ has a positive answer if k contains an ample field (see [4, Théorème B]), Theorem 1 has its own merits and, as [4, Théorème B], extends the deep result of Pop solving the Inverse Galois Problem over the field $k(t)$, if k contains an ample field.

We prove Theorem 1 in Section 3, by reducing it to the case settled by Deschamps and Legrand. The main observation needed is that the ring $H[X]$ is isomorphic to the ring $H_{c}\left[t_{1}, \ldots, t_{n}\right]$ of polynomials over H in n central variables, where n denotes the dimension of H over its center (see Proposition 4). This follows from a theorem of Wilczynski [12, Theorem 4.1]. We also make use of the general observation that the Inverse Galois Problem over skew fields is "algebraic"; see Proposition 6.

2. Polynomial rings and fields of fractions

2.1. Polynomial rings

For this subsection, let H be a skew field.
The polynomial ring $H_{c}[t]$ in the central variable t is the set of all sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ of elements of H such that $a_{n}=0$ for all but finitely many n. As in the commutative setting, the addition is defined componentwise and the multiplication is defined by $\left(a_{n}\right)_{n} \cdot\left(b_{n}\right)_{n}=\left(c_{n}\right)_{n}$, where $c_{n}=\sum_{l+m=n} a_{l} b_{m}$ for every $n \in \mathbb{N}$. Setting $\left(a_{n}\right)_{n}=\sum_{n} a_{n} t^{n}$, one has $a t=t a$ for every $a \in H$, thus justifying the terminology "central". If H is a field, then $H_{c}[t]$ is nothing but the usual polynomial ring in the variable t over H. In the sense of Ore [8], $H_{c}[t]$ is the skew polynomial ring

[^1]$H[t, \alpha, \delta]$ in the variable t, where the automorphism α is the identity of H and the derivation δ is 0 . One can iteratively construct rings of polynomials in several central variables over H, by putting $H_{c}\left[t_{1}, t_{2}\right]=\left(H_{c}\left[t_{1}\right]\right)_{c}\left[t_{2}\right], H_{c}\left[t_{1}, t_{2}, t_{3}\right]=\left(H_{c}\left[t_{1}, t_{2}\right]\right)_{c}\left[t_{3}\right]$, and so on. Since the variables are all central, the order in which they are added does not change the ring obtained, up to isomorphism.

On the other hand, let $H\langle X\rangle$ be the free algebra in one symbol X over H. That is, $H\langle X\rangle$ is the algebra spanned by all words whose letters are elements of H or X. For an element $a \in H$ and $f(X) \in H\langle X\rangle$, the substitution $f(a) \in H$ is defined in the obvious way, by replacing each occurrence of X in $f(X)$ by a, and computing the resulting value in H. For a fixed $a \in H$, the map $f(X) \mapsto f(a)$ is a homomorphism from $H\langle X\rangle$ to H. We say that f vanishes at a if $f(a)=0$. Let I be the (two-sided) ideal of $H\langle X\rangle$ which consists of all $f(X) \in H\langle X\rangle$ that vanish at all $a \in H$. Then the ring $H[X]$ is defined as the quotient $H\langle X\rangle / I$, and it is isomorphic to the ring of polynomial functions over H. Note that, if H is an infinite field, then this definition coincides with the usual definition of the polynomial ring in the variable X over H.

2.2. Classical fields of fractions

For this subsection, let R be a non-zero ring, not necessarily commutative. Recall that R is an integral domain if, for all $r \in R \backslash\{0\}$ and $s \in R \backslash\{0\}$, one has $s r \neq 0$ and $r s \neq 0$. From now on, suppose R is an integral domain.

A classical right quotient ring for R is an overring $S \supseteq R$ such that every non-zero element of R is invertible in S, and such that every element of S can be written as $a b^{-1}$ for some $a \in R$ and some $b \in R \backslash\{0\}$. We say that R is a right Ore domain if, for all non-zero elements x and y of R, there exist r and s in R such that $x r=y s \neq 0$. By [5, Theorem 6.8], if R is a right Ore domain, then R has a classical right quotient ring H which is a skew field and, by [3, Proposition 1.3.4], H is unique up to isomorphism. We then say that H is the classical right field of fractions of R.

If H denotes an arbitrary skew field, then the polynomial ring $H_{c}[t]$ in the central variable t over H is an integral domain, since the degree is additive on products. Moreover, $H_{c}[t]$ is a right Ore domain, by [5, Theorem 2.6 and Corollary 6.7]. By an easy induction, given a positive integer n, the polynomial ring $H_{c}\left[t_{1}, \ldots, t_{n}\right]$ in n central variables over H has a classical right field of fractions, which we denote by $H_{c}\left(t_{1}, \ldots, t_{n}\right)$.

Proposition 2. Let H be a skew field and $n \geq 2$. Then the equality $H_{c}\left(t_{1}, \ldots, t_{n}\right)=$ $\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right)$ holds.

Proof. First, it is clear that the inclusion $H_{c}\left[t_{1}, \ldots, t_{n}\right] \subseteq\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right)$ holds. As every element of $H_{c}\left(t_{1}, \ldots, t_{n}\right)$ can be written as $f g^{-1}$ with f and g in $H_{c}\left[t_{1}, \ldots, t_{n}\right]$, we actually have $H_{c}\left(t_{1}, \ldots, t_{n}\right) \subseteq\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right)$.

For the converse, take a polynomial $f=\sum_{l=0}^{m} a_{l} t_{n}^{l}$ with $a_{l} \in H_{c}\left(t_{1}, \ldots, t_{n-1}\right)$ for every $l \in$ $\{0, \ldots, m\}$. As before, we can write $a_{l}=b_{l} c_{l}^{-1}$ with $b_{l} \in H_{c}\left[t_{1}, \ldots, t_{n-1}\right]$ and $c_{l} \in H_{c}\left[t_{1}, \ldots, t_{n-1}\right] \backslash$ $\{0\}$, for every $l \in\{0, \ldots, m\}$. Since $H_{c}\left[t_{1}, \ldots, t_{n-1}\right] \subseteq H_{c}\left[t_{1}, \ldots, t_{n}\right] \subseteq H_{c}\left(t_{1}, \ldots, t_{n}\right)$ and $t_{n} \in$ $H_{c}\left(t_{1}, \ldots, t_{n}\right)$, we get that $f=\sum_{l=0}^{m} b_{l} c_{l}^{-1} t_{n}^{l}$ is in $H_{c}\left(t_{1}, \ldots, t_{n}\right)$. This shows the desired inclusion $\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right) \subseteq H_{c}\left(t_{1}, \ldots, t_{n}\right)$, since every element of $\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right)$ can be written as $f g^{-1}$ with f and g in $\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left[t_{n}\right]$.

Proposition 3. Let H be a skew field of center k and let n be a positive integer. The center of $H_{c}\left(t_{1}, \ldots, t_{n}\right)$ equals $k\left(t_{1}, \ldots, t_{n}\right)$. Moreover, if the dimension of H over k is finite, then the equality $\operatorname{dim}_{k\left(t_{1}, \ldots, t_{n}\right)} H_{c}\left(t_{1}, \ldots, t_{n}\right)=\operatorname{dim}_{k} H$ holds.

Proof. By, e.g., [3, Proposition 2.1.5], if K is an arbitrary skew field of center C, then $C(t)$ is the center of $K_{c}(t)$. Hence, by iterating Proposition 2, the center of $H_{c}\left(t_{1}, \ldots, t_{n}\right)$ equals $k\left(t_{1}, \ldots, t_{n}\right)$. Now, suppose $\operatorname{dim}_{k} H$ is finite. Then, by [4, Proposition 9], we have $H_{c}\left(t_{1}\right) \cong H \otimes_{k} k\left(t_{1}\right)$. Consequently, $\operatorname{dim}_{k\left(t_{1}\right)} H_{c}\left(t_{1}\right)$ is finite and equals $\operatorname{dim}_{k} H$. As before, it remains to iterate Proposition 2 to conclude the proof.

Proposition 4. Let H be a skew field of finite dimension n over its center k. Assume k is infinite. Then the ring $H[X]$ is isomorphic to $H_{c}\left[t_{1}, \ldots, t_{n}\right]$.

Proof. The existence of such an isomorphism follows from [12, Theorem 4.1]. See also [1, Theorem 5] for a different, more explicit proof. For the convenience of the reader, we include an elementary proof in the special case $H=\mathbb{H}$, where \mathbb{H} is the skew field of Hamilton's quaternions.

One has the following classical identity for each $a \in \mathbb{H}$:

$$
\operatorname{Re}(a)=\frac{1}{4}(a-i a i-j a j-k a k),
$$

where $\operatorname{Re}(a)$ is the real component of a. More generally, putting

$$
\begin{aligned}
y_{1} & =\frac{1}{4}(X-i X i-j X j-k X k), \\
y_{2} & =\frac{1}{4}(j X k-X i-i X-k X j), \\
y_{3} & =\frac{1}{4}(k X i-X j-j X-i X k), \\
y_{4} & =\frac{1}{4}(i X j-X k-k X-j X i),
\end{aligned}
$$

the functions $y_{1}, y_{2}, y_{3}, y_{4} \in \mathbb{H}[X]$ obtain real values only, and one has $X=y_{1}+i y_{2}+j y_{3}+k y_{4}$. In particular, $y_{1}, y_{2}, y_{3}, y_{4}$ belong to the center of $\mathbb{H}[X]$, and we may then define a homomorphism $\phi: \mathbb{H}_{c}\left[t_{1}, t_{2}, t_{3}, t_{4}\right] \rightarrow \mathbb{H}[X]$ by $\phi\left(t_{l}\right)=y_{l}, 1 \leq l \leq 4$, and $\phi(a)=a$ for all $a \in \mathbb{H}$. The equality $X=y_{1}+i y_{2}+j y_{3}+k y_{4}$ implies that ϕ is surjective.

Let $p=p\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \in \mathbb{H}_{c}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$. By decomposing the coefficients of p into their real, i, j, and k components, we may present p in the form $p=p_{1}+p_{2} i+p_{3} j+p_{4} k$ with $p_{1}, p_{2}, p_{3}, p_{4} \in$ $\mathbb{R}\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$. If $p \neq 0$, then $p_{l} \neq 0$ for some $1 \leq l \leq 4$. Then there exists a non-zero tuple $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{R}^{4}$ such that $p_{l}(a) \neq 0$. Hence, $\phi(p)$ does not vanish at $X=a_{1}+a_{2} i+a_{3} j+a_{4} k$, thus showing that ϕ is also injective.

Corollary 5. Let H be a skew field of finite dimension n over its center k. Assume k is infinite. Then the ring $H[X]$ has a classical right field of fractions, denoted by $H(X)$, which is isomorphic to $H_{c}\left(t_{1}, \ldots, t_{n}\right)$.
Proof. As recalled, the ring $H_{c}\left[t_{1}, \ldots, t_{n}\right]$ is a right Ore domain. Since $H[X]$ is isomorphic to $H_{c}\left[t_{1}, \ldots, t_{n}\right]$ by Proposition $4, H[X]$ is also a right Ore domain and so has a classical right field of fractions. Finally, [3, Section 1.3] shows that the isomorphism $H[X] \cong H_{c}\left[t_{1}, \ldots, t_{n}\right]$ from Proposition 4 extends to an isomorphism $H(X) \cong H_{c}\left(t_{1}, \ldots, t_{n}\right)$.

3. Proof of Theorem 1

We first make the general observation that the Inverse Galois Problem over skew fields is an "algebraic problem". More precisely:
Proposition 6. Let H_{1} and H_{2} be isomorphic skew fields and let G be a finite group. Then there exists a Galois extension of H_{1} of group G if and only if there exists a Galois extension of H_{2} of group G.

Proof. Let $\varphi: H_{1} \rightarrow H_{2}$ be an isomorphism. Suppose there exists a Galois extension K_{1} / H_{1} of group G.

By the exchange principle ${ }^{3}$, there exists a set C such that $C \cap H_{2}=\varnothing$ and $|C|=\left|K_{1} \backslash H_{1}\right|$. Let $f: K_{1} \backslash H_{1} \rightarrow C$ be a bijection. Then set $K_{2}=C \cup H_{2}$ and consider the well-defined map $\psi: K_{1} \rightarrow K_{2}$ given by $\psi(x)=\varphi(x)$ if $x \in H_{1}$ and $\psi(x)=f(x)$ if $x \in K_{1} \backslash H_{1}$. The map ψ is surjective and, as $C \cap H_{2}=\varnothing$, it is also injective. Now, define the ring operations on K_{2} as inherited from K_{1} via ψ :

$$
\forall x, y \in K_{2}, x \cdot y=\psi\left(\psi^{-1}(x) \cdot \psi^{-1}(y)\right), x+y=\psi\left(\psi^{-1}(x)+\psi^{-1}(y)\right) .
$$

Then K_{2} is isomorphic to K_{1} via ψ and, in particular, K_{2} is a skew field containing H_{2}.
It remains to show that K_{2} / H_{2} is Galois of group G. To that end, note that the isomorphism ψ : $K_{1} \rightarrow K_{2}$, whose restriction to H_{1} equals φ, induces an isomorphism $\phi: \operatorname{Aut}\left(K_{1} / H_{1}\right) \rightarrow \operatorname{Aut}\left(K_{2} / H_{2}\right)$ (namely, $\phi(\sigma)=\psi \circ \sigma \circ \psi^{-1}$ for every $\sigma \in \operatorname{Aut}\left(K_{1} / H_{1}\right)$). Finally, if x is any element of K_{2} such that $\sigma(x)=x$ for every $\sigma \in \operatorname{Aut}\left(K_{2} / H_{2}\right)$, then we have $\tau\left(\psi^{-1}(x)\right)=\psi^{-1}(x)$ for every $\tau \in \operatorname{Aut}\left(K_{1} / H_{1}\right)$. As K_{1} / H_{1} is Galois, we then have $\psi^{-1}(x) \in H_{1}$, and so $x \in H_{2}$, thus showing that K_{2} / H_{2} is Galois. This concludes the proof.

Proof of Theorem 1. By Corollary 5, we have $H(X) \cong H_{c}\left(t_{1}, \ldots, t_{n}\right)$, where n denotes the dimension of H over k. Moreover, by Proposition 3, the center of $H_{c}\left(t_{1}, \ldots, t_{n-1}\right)$ equals $k\left(t_{1}, \ldots, t_{n-1}\right)$ and the dimension of $H_{c}\left(t_{1}, \ldots, t_{n-1}\right)$ over $k\left(t_{1}, \ldots, t_{n-1}\right)$ is finite. Finally, $k\left(t_{1}, \ldots, t_{n-1}\right)$ contains an ample field. Hence, by [4, Théorème B], the Inverse Galois Problem has an affirmative answer over the skew field $\left(H_{c}\left(t_{1}, \ldots, t_{n-1}\right)\right)_{c}\left(t_{n}\right)$, that is, over $H_{c}\left(t_{1}, \ldots, t_{n}\right)$ by Proposition 2. It then remains to apply Proposition 6 to get that the Inverse Galois Problem also has an affirmative answer over $H(X)$, thus concluding the proof.

Remark 7. Similarly, we have this result, which follows from [4, Proposition 12] as Theorem 1 follows from [4, Théorème $B]$:
Let G be a finite group and H a skew field of finite dimension n over its center k. In each of the following cases, G occurs as the Galois group of a Galois extension of $H(X)$:
(1) G is abelian and k is infinite,
(2) $G=S_{m}(m \geq 3)$ and k is infinite,
(3) $G=A_{m}(m \geq 4)$ and k has characteristic zero,
(4) G is solvable, $n \geq 2$, and k has positive characteristic.

References

[1] G. Alon, E. Paran, "A quaternionic Nullstellensatz", J. Pure Appl. Algebra 225 (2020), no. 4, article ID 106572.
[2] L. Bary-Soroker, A. Fehm, "Open problems in the theory of ample fields", in Geometric and differential Galois theories, Séminaires et Congrès, vol. 27, Société Mathématique de France, 2013, p. 1-11.
[3] P. M. Cohn, Skew fields. Theory of general division rings, Encyclopedia of Mathematics and Its Applications, vol. 57, Cambridge University Press, 1995, xvi+500 pages.
[4] B. Deschamps, F. Legrand, "Le problème inverse de Galois sur les corps des fractions tordus à indéterminée centrale", J. Pure Appl. Algebra 224 (2020), no. 5, article ID 106240 (13 pages).
[5] K. R. Goodearl, R. B. Warfield, Jr., An Introduction to noncommutative Noetherian rings, 2nd ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, 2004, xxiv+344 pages.
[6] B. Gordon, T. S. Motzkin, "On the zeros of polynomials over division rings", Trans. Am. Math. Soc. 116 (1965), p. 218226.
[7] M. Jarden, Algebraic patching, Springer Monographs in Mathematics, Springer, 2011, xxiv+290 pages.
[8] O. Ore, "Theory of non-commutative polynomials", Ann. Math. 34 (1933), no. 3, p. 480-508.
[9] F. Pop, "Embedding problems over large fields", Ann. Math. 144 (1996), no. 1, p. 1-34.

[^2][10] , "Little survey on large fields - old \& new", in Valuation theory in interaction, EMS Series of Congress Reports, European Mathematical Society, 2014, p. 432-463.
[11] R. L. Vaught, Set theory. An introduction, 2nd ed., Birkhäuser, 1995, x+167 pages.
[12] D. M. Wilczynski, "On the fundamental theorem of algebra for polynomial equations over real composition algebras", J. Pure Appl. Algebra 218 (2014), no. 7, p. 1195-1205.

[^0]: * Corresponding author.

[^1]: ${ }^{1}$ We adopt a different notation from that of [4], where this ring is denoted by $H[t]$, in order to distinguish between the cases of central variables and non-central ones. We note that there are alternative notations for this ring in the literature, such as $H[x, \mathrm{id}, 0]$ in [8], or $H_{L}[t]$ in [6].
 ${ }^{2}$ Throughout this note, we use upper-case letters to denote non-central variables and lower case-letter to denote central ones, to add a visual distinction between the two.

[^2]: ${ }^{3}$ which asserts that, given two sets A and B, there exists a set C such that $A \cap C=\varnothing$ and $|C|=|B|$ (see, e.g., [11, p. 31]).

