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Abstract. Let f be a transcendental meromorphic function on C, and P (z),Q(z) be two polynomials with
degP (z) > degQ(z). In this paper, we prove that: if f (z) = 0 ⇒ f ′(z) = a(a nonzero constant), except possibly
finitely many, then f ′(z)−P (z)/Q(z) has infinitely many zeros. Our result extends or improves some previous
related results due to Bergweiler–Pang, Pang–Nevo–Zalcman, Wang–Fang, and the author, et. al.
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1. Introduction and Main Results

In 1959, Hayman [2, 3] proved the following result, which has come to be known as Hayman’s
alternative.

Theorem 1. Let f be a transcendental meromorphic function in the complex plane C, and let
k ∈N, a ∈C and b ∈C\{0}. Then either f −a or f (k) −b has infinitely many zeros.

Considering g = f −a, it suffices to take a = 0 in Theorem 1.
In the past years, a number of improvements and extensions of Theorem 1 have been ob-

tained. Wang and Fang [8] proved the following result.

Theorem 2. Let f be a transcendental meromorphic function in the complex planeC and k ∈N. If

(i) all zeros of f have multiplicity at least k +1 and all poles of f are multiple, or
(ii) all zeros of f have multiplicity at least 3,

then, for each b ∈C\{0}, f (k) −b has infinitely many zeros.
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For k = 1, Nevo, Pang and Zalcman [5] proved the following result, in which they use an
argument involving quasinormal families.

Theorem 3. Let f be a transcendental meromorphic function in the complex plane C. If all zeros
of f are multiple, then, for each b ∈C\{0}, f ′−b has infinitely many zeros.

It is a natural to ask: Does the above results still hold if we replace the nonzero constant b by a
small function function R(z)( 6≡ 0) of f ?

By using the theory of normal families, Bergweiler and Pang [1] (for k = 1), and the author [9]
(for k ≥ 2) obtained

Theorem 4. Let f be a transcendental meromorphic function in the complex plane C, and R( 6≡ 0)
be a rational function. If

(i) all zeros of f have multiplicity at least k +1 and all poles of f are multiple, or
(ii) all zeros of f have multiplicity at least k +2, except possibly finitely many,

then f (k) −R has infinitely many zeros.

For the case k = 1, using the theory of quasinormal families, Pang, Nevo and Zalcman [6]
proved the following stronger result.

Theorem 5. Let f be a transcendental meromorphic function in the complex plane C. If all zeros
of f are multiple except possibly finitely many, then, for each rational function R 6≡ 0, f ′−R has
infinitely many zeros.

Clearly, the condition “all zeros of f are multiple” in Theorem 5 is equivalent to the condition
“ f = 0 ⇒ f ′(z) = 0”. We note that the function f (z) = ez −a (a ∈ C) satisfying “ f = 0 ⇒ f ′(z) = a”,
and f ′(z)−R(z) has infinitely many zeros for rational function R(z) 6≡ −a.

Inspired by this observation, we prove the following result by using the theory of normal family.

Theorem 6. Let f be a transcendental meromorphic function on C, and a ∈ C. If f (z) = 0 ⇒
f ′(z) = a, except possibly finitely many, then f ′(z)−R(z) has infinitely many zeros, where R(z) =
P (z)/Q(z)( 6≡ 0), and P (z),Q(z) are two polynomials with degP (z) > degQ(z).

Remark. At present, we are not clear whether the condition degP (z) > degQ(z) in Theorem 6
can be omitted.

Corollary 7. Let f be a transcendental meromorphic function on C, and a ∈ C. If f (z) = 0 ⇒
f ′(z) = a, except possibly finitely many, then for nonconstant polynomial P (z), f ′(z)−P (z) has
infinitely many zeros.

2. Some Lemmas

First we recall some definitions. If there exists a curve Γ ⊂ C tending to ∞ such that f (z) → a as
z →∞ and z ∈ Γ, we call that a is an asymptotic value of f .

A meromorphic function f is called a Julia exceptional function if f #(z) = O(1/|z|) as z →∞.
Here, as usual, f #(z) = | f ′(z)|/(1+ | f (z)|2) is the spherical derivative of f . It follows easily from
the Ahlfors-Shimizu characteristic function that if f is a Julia exceptional function, then T (r, f ) =
O((logr )2) as r →∞.

The following result is due to Lehto and Virtanen [4].

Lemma 8. A transcendental Julia exceptional function does not have an asymptotic value.

Lemma 9 (see [1]). Let f be a transcendental meromorphic function, and let R be a rational
function satisfying R(z) ∼ czd as z → ∞, with c ∈ C\{0} and d ∈ Z. Suppose that f ′ − R has
only finitely many zeros and T (r, f ) = O((logr )2) as r → ∞. Set g := f (z)/zd+1. Then g has an
asymptotic value.
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Lemma 10 (see [2, 3]). Let f be a meromorphic function in the complex plane, and k a positive
integer. If f 6= 0 and f (k)(z) 6= 1, then f (z) is a constant.

The next is a local version of Zalcaman’s lemma due to Pang and Zalcman [7].

Lemma 11. Let k be a positive integer and let F be a family of functions meromorphic in a domain
D, such that each function f ∈ F has only zeros of multiplicity at least k, and suppose that there
exists A ≥ 1 such that | f (k)(z)| ≤ A whenever f (z) = 0. If F is not normal at z0 ∈ D, then, for each
0 ≤α≤ k, there exist a sequence of points zn ∈ D, zn → z0, a sequence of positive numbers ρn → 0,
and a sequence of functions fn ∈F such that

gn(ζ) = fn(zn +ρnζ)

ραn
→ g (ζ)

locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic
function on C, all of whose zeros have multiplicity at least k, such that g #(ζ) ≤ g #(0) = k A + 1.
Moreover, g has order at most 2.

3. Proof of Theorem 6

By Theorem 5, we only need to consider the case a 6= 0.
Since R(z) = P (z)/Q(z)( 6≡ 0), where P (z) and Q(z) are two polynomials with degP (z) >

degQ(z). We may assume that R(z) ∼ czd as z → ∞, where c ∈ C\{0} and d is a positive inte-
ger. Define

g (z) := f (z)

zd+1
.

Suppose that f ′ − R has only finitely many zeros. If g is a Julia exceptional function, then
T (r, g ) = O((logr )2) and hence T (r, f ) = O((logr )2) as r → ∞. Lemma 9 implies that g has an
asymptotic value. But, by Lemma 8, g has no asymptotic value, a contradiction.

Thus g is not a Julia exceptional function. Hence, by the definition of Julia exceptional func-
tion, there exists {an} such that an →∞ and an g #(an) →∞ as n →∞.

Let D = {z ∈C : |z −1| < 1/2}, and set

G = {gn(z) := g (an z)zd+1 = f (an z)

ad+1
n

, z ∈ D}.

The family G is not normal at z = 1. Indeed, by computation, we have

g #
n(1) = |an g ′(an)+ (d +1)g (an)|

1+|g (an)|2 ≥ |an |g #(an)− |d +1|
2

→∞

as n →∞. So, by Marty’s criterion, F is not normal at z = 1.
If gn(z) = 0, that is, f (an z) = 0, then from the hypotheses of theorem, we have f ′(an z) = a.

Thus there exists M ≥ 1 such that (for large n)

|g ′
n(z)| =

∣∣∣∣ f ′(an z)

ad
n

∣∣∣∣= ∣∣∣∣ a

ad
n

∣∣∣∣≤ M

whenever gn(z) = 0. Then, applying Lemma 11, we can find zn ∈ D , zn → 1, ρn → 0+, and gn ∈G

such that

Gn(ζ) = gn(zn +ρnζ)

ρn
= f (an(zn +ρnζ))

ρn ad+1
n

→G(ζ) (1)

locally uniformly with respect to the spherical metric, where G(ζ) is a nonconstant meromorphic
function in C.

Claim. G(ζ) 6= 0 on C.
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Suppose that there exists a point ζ0 such that G(ζ0) = 0. Then, there exist ζn , ζn → ζ0, such that
Gn(ζn) = 0 (for n sufficiently large) since G is not constant, and thus f (an(zn +ρnζn)) = 0. By the
assumption of theorem, we have f ′(an(zn +ρnζn)) = a.

From (1), we have

G ′
n(ζ) = g ′

n(zn +ρnζ) = f ′(an(zn +ρnζ))

ad
n

→G ′(ζ), (2)

uniformly on compact subsets of C disjoint from the poles of G . It follows that G ′(ζ0) =
limn→∞G ′

n(ζn) = limn→∞ a/ad
n = 0. Thus, all zeros of G are multiple.

Let ζ0 be a zero of G with multiplicity m(≥ 2), then G (m)(ζ0) 6= 0. By (1) and Rouché’s theorem,
there exist δ> 0, and m sequences {ζ(i )

n } (i = 1,2, . . . ,m) on Dδ(ζ0) = {ζ : |ζ−ζ0| < δ}, tending to ζ0,
such that

Gn(ζ(i )
n ) = 0, (i = 1,2, . . . ,m).

From (1), we have f (an(zn +ρnζ
(i )
n )) = 0 (i = 1,2, . . . ,m). It follows that f ′(an(zn +ρnζ

(i )
n )) = a, and

thus G ′
n(ζ(i )

n ) = a/ad
n 6= 0(i = 1,2, . . . ,m). This means that each ζ(i )

n is a simple zero of Gn , which
rules out the possibility that each two of {ζ(i )

n } (i = 1,2, . . . ,m) might coincide. So, ζ(i )
n (i = 1,2, . . . ,m)

are m distinct zeros of G ′
n(ζ)−a/ad

n on Dδ(ζ0). Noting that ζ(i )
n → ζ0 and

G ′
n(ζ)− a

ad
n

→G ′(ζ),

Rouché’s theorem implies that ζ0 is the zero of G ′(ζ) with multiplicity at least m. We get
G (m)(ζ0) = 0, a contradiction. We thus proved our claim.

Since R(z) ∼ czd as z →∞, by (2), we have

G ′
n(ζ)− R(an(zn +ρnζ))

ad
n

→G ′(ζ)− c (3)

uniformly on compact subsets of C disjoint from the poles of G . On the other hand, for n
sufficiently large

G ′
n(ζ)− R(an(zn +ρnζ))

ad
n

= f ′(an(zn +ρnζ))−R(an(zn +ρnζ))

ad
n

6= 0.

By (3) and Hurwitz’s theorem, either G ′(ζ) 6= c or G ′(ζ) ≡ c on C \G−1(∞). Clearly, these also hold
on C. If G ′ ≡ c, then G is a polynomial with degree 1. This is impossible since G 6= 0. Hence G ′ 6= c.

So, by Lemma 10, G(ζ) must be a constant, a contradiction. This completes the proof of
Theorem 6. �
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