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Abstract. In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation

u(x) =
∫
Rn

u(1−|u|2)

|x − y |n−α dy,

where u : Rn → Rk with k ≥ 1 and 1 < α < n/2. We prove that u ∈ L2(Rn ) ⇒ u ≡ 0 on Rn , as long as u is a
bounded and differentiable solution.
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If a harmonic function u is bounded on Rn , then u ≡ Const. (this is the Liouville theorem).
Moreover, if u is integrable (i.e. u ∈ Ls (Rn) for some s ≥ 1), then u ≡ 0 on Rn .

In 1994, Brezis, Merle and Rivière [2] studied the quantization effects of the following equation

−∆u = u(1−|u|2) on R2. (1)

Here u : R2 → R2 is a vector valued function. It is the Euler–Lagrange equation of the Ginzburg–
Landau energy

EGL(u) = 1

2
‖∇u‖2

L2(R2) +
1

4
‖1−|u|2‖2

L2(R2).

In particular, they proved the finite energy solution (i.e., u satisfies ∇u ∈ L2(R2)) is bounded (see
also [4] and [6])

|u| ≤ 1 on Rn . (2)
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(Here n = 2.) Based on this result, they obtained a Liouville type theorem for finite energy
solutions (cf. [2, Theorem 2]):

Let u :R2 →R2 be a classical solution of (1). If ∇u ∈ L2(R2), then either u ∈ L2(R2) which
implies u ≡ 0, or 1−|u|2 ∈ L1(R2) which implies u ≡C with |C | = 1.

The boundedness and the integrability of solutions are the important conditions which ensure
that the Liouville theorem holds. The Pohozaev identity plays a key role in the proof.

In this paper, we are concerned with the integral equation

u(x) =
∫
Rn

u(1−|u|2)

|x − y |n−α dy. (3)

Here u : Rn → Rk , k ≥ 1, n ≥ 3, and 1 < α < n/2. We also apply the integral form of the Pohozaev
identity (which was used for the Lane–Emden equations in [3], [5] and [12]) to establish a Liouville
theorem.

Theorem 1. Assume that u : Rn → Rk is bounded and differentiable, and solves (3) with α ∈
(1,n/2). If u ∈ L2(Rn), then u(x) ≡ 0.

Proof. For convenience, we denote BR (0) by BR here.

Step 1. We claim that the improper integral∫
Rn

z ·∇[u(z)(1−|u(z)|2)]

|x − z|n−α dz (4)

is convergent at each x ∈Rn .
In fact, since u ∈ L2(Rn), we can find R = R j →∞ such that

R
∫
∂BR

|u(z)|2ds → 0. (5)

Since u is bounded, by the Hölder inequality, we obtain that for sufficiently large R, there holds

R

∣∣∣∣∫
∂BR

u(z)(1−|u(z)|2)

|x − z|n−α ds

∣∣∣∣≤C R1−n+α
∫
∂BR

|u(z)|ds

≤C R1−n+α
(
R

∫
∂BR

|u(z)|2ds

) 1
2

R− 1
2 + n−1

2 .

Let R = R j →∞. Noting α< n/2, and using (5) we get

R
∫
∂BR

u(z)(1−|u(z)|2)

|x − z|n−α ds → 0 (6)

when R = R j →∞.
Next, we claim that the improper integral

I (Rn) :=
∫
Rn

u(z)(1−|u(z)|2)(x − z) · z

|x − z|n−α+2 dz (7)

absolutely converges for each x ∈Rn .
In fact, we observe that the defect points of I (Rn) are x and ∞. When z is near ∞, we have

|I (Rn \ Br )| ≤C
∫
Rn \Br

|u(z)|dz

|x − z|n−α ≤C

(∫
Rn

|u|2dz

) 1
2
(∫ ∞

r
ρn−2(n−α) dρ

ρ

) 1
2

.

In view of u ∈ L2(Rn) and α< n/2, we get

|I (Rn \ Br )| <∞. (8)

When z is near x, we first take

s ∈
(

n

α−1
,∞

)
. (9)
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Clearly, 1 <α< n/2 implies s > 2. In addition,

u ∈ Ls (Rn) (10)

because u is bounded and u ∈ L2(Rn). Note that

|I (Bδ(x))| ≤C
∫

Bδ(x)

|u(z)|dz

|x − z|n−α+1 ≤C

(∫
Rn

|u|s dz

) 1
s
(∫ r

0
ρn− s

s−1 (n−α+1) dρ

ρ

)1− 1
s

.

By (9) and (10), we get
|I (Bδ(x))| <∞.

Combining this with (8), we prove that (7) is absolutely convergent.
Finally we prove that (4) is convergent. Integrating by parts yields∫

BR

z ·∇[u(z)(1−|u(z)|2)]

|x − z|n−α dz = R
∫
∂BR

u(z)(1−|u(z)|2)

|x − z|n−α ds −n
∫

BR

u(z)(1−|u(z)|2)

|x − z|n−α dz

− (n −α)
∫

BR

u(z)(1−|u(z)|2)(x − z) · z

|x − z|n−α+2 dz. (11)

Letting R = R j →∞ in (11) and using (3) and (6), we can see that∫
Rn

z ·∇[u(z)(1−|u(z)|2)]

|x − z|n−α dz =−nu(x)+ (α−n)I (Rn),

and hence it is convergent at each x ∈Rn .

Step 2. Proof of Theorem 1. For any λ> 0, from (3) it follows

u(λx) =λα
∫
Rn

u(λz)(1−|u(λz)|2)

|x − z|n−α dz.

Differentiating both sides with respect to λ yields

x ·∇u(λx) =αλα−1
∫
Rn

u(λz)(1−|u(λz)|2)

|x − z|n−α dz

+λα
∫
Rn

(z ·∇u(λz))(1−|u(λz)|2)+u(λz)[−2u(λz)(z ·∇u(λz))]

|x − z|n−α dz.

Letting λ= 1 yields

x ·∇u(x) =αu(x)+
∫
Rn

z ·∇[u(1−|u|2)]

|x − z|n−α dz. (12)

Since u is bounded and u ∈ L2(Rn), it follows that u ∈ L4(Rn), and hence

R
∫
∂BR

|u|4ds → 0 (13)

for some R = R j →∞. Thus, integrating by parts and using (5) and (13), we respectively obtain∫
Rn

u(x)(x ·∇u(x))dx = −n

2

∫
Rn

|u(x)|2dx, (14)

and ∫
Rn

u(x)|u(x)|2(x ·∇u(x))dx = −n

4

∫
Rn

|u(x)|4dx. (15)

These results show that ∫
Rn

u(x)(1−|u(x)|2)(x ·∇u(x))dx <∞. (16)

Multiply (12) by u(x)(1−|u(x)|2) and integrate over BR . Letting R = R j →∞, from u ∈ L2(Rn)∩
L4(Rn) and (16), we get∫

Rn
u(x)(1−|u(x)|2)

∫
Rn

z ·∇[u(1−|u|2)]

|x − z|n−α dzdx <∞,
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and∫
Rn

u(x)(1−|u(x)|2)(x ·∇u(x))dx −α
∫
Rn

|u(x)|2(1−|u(x)|2)dx

=
∫
Rn

u(x)(1−|u(x)|2)
∫
Rn

z ·∇[u(1−|u|2)]

|x − z|n−α dzdx. (17)

We use the Fubini theorem and (3) to handle the right hand side term. Thus,∫
Rn

u(x)(1−|u(x)|2)
∫
Rn

z ·∇[u(1−|u|2)]

|x − z|n−α dzdx

=
∫
Rn

z ·∇[u(1−|u|2)]
∫
Rn

u(x)(1−|u(x)|2)

|x − z|n−α dxdz

=
∫
Rn

(x ·∇[u(1−|u|2)])u(x)dx

=
∫
Rn

u(x)(1−|u|2)(x ·∇u(x))dx −
∫
Rn

|u|2(x ·∇|u(x)|2)dx.

(18)

Inserting this result into (17), and using (15) we have∫
Rn

[α|u(x)|2 + (
n

2
−α)|u(x)|4]dx = 0. (19)

In view of α ∈ (1,n/2), (19) leads to |u| ≡ 0. Theorem 1 is proved. �

Remark 2. Clearly, (19) implies∫
Rn

[α(|u(x)|2 −|u(x)|4)+ n

2
|u(x)|4]dx = 0. (20)

When u satisfies (2), (20) also implies |u| ≡ 0. For (1), the bound |u| ≤ 1 for solutions u : Rn → Rk

was first proved by Brezis (cf. [1]). Ma also pointed out that (2) holds true (cf. [6]).

Remark 3. In 2016, Ma [7] proved (2) for the Ginzburg–Landau-type equation with fractional
Laplacian

(−∆)
α
2 u = (1−|u|2)u on Rn (21)

under the assumption
1−|u|2 ∈ L2(Rn), (22)

where n ≥ 2 and 0 <α< 2. The physical background of (21) can be found in [9] and [11]. Such an
equation withα= 1 was well studied in [8]. Recall the definition of fractional Laplacian onRn . Let
n ≥ 2 and 0 <α< 2. Write

E = Lα∩C 1,1
loc(Rn),

where Lα =
{

u ∈ L1
loc(Rn);

∫
Rn

|u(x)|dx
1+|x|n+α <∞

}
. For a vector value function u ∈ E from Rn to Rk ,

define

(−4)
α
2 u :=Cn,αP.V.

∫
Rn

u(x)−u(y)

|x − y |n+α dy =Cn,α lim
ε→0+

∫
|x−y |≥ε

u(x)−u(y)

|x − y |n+α dy. (23)

Here Cn,α is a positive constant.
Clearly, (22) and u ∈ L2(Rn) are incompatible.

Remark 4. Another definition of the fractional order Laplacian involves the Riesz potential
(cf. [10, Chapter 5]). Assume α ∈ (0,n), and u,u(1− |u|2) ∈ S ′(Rn), then (21) can be explained
as (3). In fact, (3) is equivalent to

û(ξ) = (|x|α−n ∗ [u(1−|u|2)])∧(ξ) =C |ξ|−α[u(1−|u|2)]∧(ξ), (24)

where C is a positive constant. By the property of the Riesz potential, we have

[(−∆)α/2u]∧(ξ) =C |ξ|αû(ξ), (25)
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where C is another positive constant. Therefore, the above equality (24) amounts to (21). In
addition, let u ∈ E be a solution of (21) with 0 <α< 2. From (23), it follows that (25) is still true. If
the Fourier inversion formula of (24) holds, then u also solves (3) (if we omit the constants).

Remark 5. If u is a finite energy solution of (1), then [2] shows that∫
Rn

|u|2(1−|u|2)dx <∞. (26)

Therefore, we sometimes call u a finite energy solution of (3) if u satisfies (26). Moreover, if u is
uniformly continuous, we can see that either u ∈ L2(Rn) or 1−|u|2 ∈ L1(Rn) by the same argument
of (3.9) and (3.10) in [2]. Therefore, if a bounded, uniformly continuous, differentiable function u
is a finite energy solution of (3), then either u ≡ 0, or |u(x)|→ 1 when |x|→∞.
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