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Abstract. In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation

u(l—|uf?)
u(x) = —dy,
(x) fmz'l x—yna Y,
where u: R" — R¥ with k=1 and 1 < a < n/2. We prove that u € L2(R") = u = 0 on R", as long as u is a
bounded and differentiable solution.
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If a harmonic function u is bounded on R”, then u = Const. (this is the Liouville theorem).
Moreover, if u is integrable (i.e. u € L*(R") for some s = 1), then u =0 on R".
In 1994, Brezis, Merle and Riviere [2] studied the quantization effects of the following equation

—Au=u(l-|ul®>) on R (1

Here u : R? — R? is a vector valued function. It is the Euler-Lagrange equation of the Ginzburg—
Landau energy

2

1 2 1 2
EGL(u) = Ellvu”LZ(RZ) + Z”]- - |u| ”LZ(RZ).

In particular, they proved the finite energy solution (i.e., u satisfies Vu € I[%(R?%)) is bounded (see
also [4] and [6])
lul<1 on R". )
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(Here n = 2.) Based on this result, they obtained a Liouville type theorem for finite energy
solutions (cf. [2, Theorem 2]):
Let u:R? — R? be a classical solution of (1). If Vu € L?(R?), then either u € L?(R?) which
implies u=0, or1 —|ul? € L' (R?) which implies u= C with|C| = 1.
The boundedness and the integrability of solutions are the important conditions which ensure
that the Liouville theorem holds. The Pohozaev identity plays a key role in the proof.
In this paper, we are concerned with the integral equation

u(l-|ul®)

u(x) =f —dy. 3)
R [X =y Y

Here u:R" — R¥, k=1, n>3, and 1 < a < n/2. We also apply the integral form of the Pohozaev

identity (which was used for the Lane-Emden equations in [3], [5] and [12]) to establish a Liouville
theorem.

Theorem 1. Assume that u : R* — R¥ is bounded and differentiable, and solves (3) with a €
(1,n/2). Ifu € L*(R"), then u(x) =

Proof. For convenience, we denote B (0) by By here.

Step 1. We claim that the improper integral
f 2 V@0 - u@P)] |
RV!

|x —z|~@

4)

is convergent at each x € R".
In fact, since u € L2(R™), we can find R = Rj — oo such that

Rf lu(z)>ds — 0. (5)
0Bgr

Since u is bounded, by the Holder inequality, we obtain that for sufficiently large R, there holds
R f W@ - u@P) |
0BR

|x —z|"~@

sCRl"”“/ lu(z)|ds
0Bgr

1

1

2 .

<CR'""*@ (Rf Iu(z)lzds) R
0B8R
Let R = Rj — oo. Noting a < n/2, and using (5) we get
1— 2
Rf u(z)(1-u(z)|%)
0B

ds—0 6
x—zpna ©
when R = Rj — oo.
Next, we claim that the improper integral
I®R") ;:f w2 (1~ |u@ P (x-2) 2
R’Z

|x_z|n—oc+2 dz @)

absolutely converges for each x € R".
In fact, we observe that the defect points of I(R") are x and oo. When z is near oo, we have

u(z)|dz d
e, el [ e | [

In view of u € L?(R") and a < n/2, we get
|[I(R"\ B;)| < oo. 8)

When z is near x, we first take

n
se( ,oo). 9)

a—1
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Clearly, 1 < a < n/2 implies s > 2. In addition,
ue LR (10)
because u is bounded and u € L2(R"). Note that

L 1
lu(z)ldz ST s s dp)
|1(B (X))ISCf —5(}( Iulsdz) (f n-g (n—a+ )
o Bs(x) |x_z|n—a+1 RM 0 p 0

By (9) and (10), we get
[I(Bs(x))| < oo.
Combining this with (8), we prove that (7) is absolutely convergent.
Finally we prove that (4) is convergent. Integrating by parts yields

f z-V[u(Z)(l—Iu(Z)IZ)]Gl B f u(2)(1 - u(z)[?) / u(2)(1 - u(z)[%)
z=R —  ds—n —azZ
Br 6BR Br

|x =z~ |x =z~ |x —z|"~@
u2)(1-u@)P)(x-2)-z
-(n—-a) . I z[n-a+z dz. (11)

Letting R = Rj — oo in (11) and using (3) and (6), we can see that
/ 2 V@0 - [u@P)] |
RVZ

|x —z|~@

z=—-nu(x)+ (a-n) IR,
and hence it is convergent at each x € R".
Step 2. Proof of Theorem 1. For any A > 0, from (3) it follows

_ 2
u(/lx)=/1“f U - [udAR
Rn

[x —z|"~@
Differentiating both sides with respect to A yields

— 2
x-Vu(dx) = aA®"! / uA2)(1 - AP |
R" |x —z|n—a
o [ (2-Vu2)1-udz)?) + udz)[-2u(rz)(z- Vu(dz))]
" - dz.
R" |x—z|"—a

Letting A = 1 yields

. 2
x-Vu(x) = au(x)+f Mdz. 12)
R |x—z|"@
Since u is bounded and u € L2(R"), it follows that u € L*(R"), and hence
Rf lul*ds — 0 (13)
dBg
for some R = Rj — oo. Thus, integrating by parts and using (5) and (13), we respectively obtain
f u(x)(x-Vu(x))dx = —_nf lu(x))?dx, 14)
R" 2 Jpn
and n
f u(x)|u(x)?(x- Vu(x))dx = Tf lu(x)|*dx. (15)
R" R"
These results show that
f u(x)(l—Iu(x)lz)(x-Vu(x))dx<oo. (16)
Rﬂ

Multiply (12) by u(x)(1 - |u(x)|*) and integrate over Bg. Letting R = Rj — oo, from u € L*(R") N
L*(R™) and (16), we get

. 2
f u(x)(l—lu(x)lz)f Mdzdx<oo,
R R |x —z|"~@
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and

fu(x)(l—Iu(x)lz)(x-Vu(x))dx—af L ()1 (1 - u(x)*)dx
R R

=f w0 (1 - u()| )f Mdzdx. 17)

|l’l(X

We use the Fubini theorem and (3) to handle the right hand side term. Thus,

2
f u(x) (1 - ()| )f Mdzdx

z|na
=f eVt -lup) [ dedz
R” z|"¢@ (18)
=fRn(x-V[u(1—|u| )u(x)dx
=fn u(x)(l—|u|2)(x-Vu(x))dx—fn|u|2(x‘V|u(x)|2)dx.
Inserting this result into (17), anﬂji using (15) we have ’
fw[alu(x)lzﬂg—a)lu(x)|4]dx=0. (19)
In view of a € (1, n/2), (19) leads to |u| = 0. Theorem 1 is proved. O
Remark 2. Clearly, (19) implies
| @ttt = ucor®y + Ziutoitidx =o. (20)

When u satisfies (2), (20) also implies |u| = 0. For (1), the bound |u| < 1 for solutions u : R" — R¥
was first proved by Brezis (cf. [1]). Ma also pointed out that (2) holds true (cf. [6]).

Remark 3. In 2016, Ma [7] proved (2) for the Ginzburg-Landau-type equation with fractional
Laplacian
(-Nzu=(1-|u®u on R" 1)

under the assumption

1-|ul® € *(R"), (22)
where n = 2 and 0 < a < 2. The physical background of (21) can be found in [9] and [11]. Such an
equation with a = 1 was well studied in [8]. Recall the definition of fractional Laplacian on R”. Let
n=2and0< a < 2. Write

E=LynCLIRY,

where L, = {u € Llloc(R”);fRn I"jj’;}m < oo} For a vector value function u € E from R” to R,

define (0 - u(y) (0 - u(y)
a u(x) —u(y u(x)—u(y
-AN)2u:=CpqPV.|] ——————dy=Cyq li ———dy. 23
(=A)2u na /[R" Ix— ya y rwcaljal)r eyize [X—yln*a Y (23)
Here C;, 4 is a positive constant.

Clearly, (22) and u e L%(R™) are incompatible.

Remark 4. Another definition of the fractional order Laplacian involves the Riesz potential
(cf. [10, Chapter 5]). Assume « € (0,n), and u, u(1 — lul?) € &' (R"), then (21) can be explained
as (3). In fact, (3) is equivalent to

(&) = (%1% * [w@ = uP)D™ ) = CIE“[u - ul?)" @), (24)
where C is a positive constant. By the property of the Riesz potential, we have
[(-2)*2u)" (@) = CIE1* ad), (25)
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where C is another positive constant. Therefore, the above equality (24) amounts to (21). In
addition, let u € E be a solution of (21) with 0 < a < 2. From (23), it follows that (25) is still true. If
the Fourier inversion formula of (24) holds, then u also solves (3) (if we omit the constants).

Remark 5. If uis a finite energy solution of (1), then [2] shows that
f lul>(1 - u|®)dx < co. (26)
Rn

Therefore, we sometimes call u a finite energy solution of (3) if u satisfies (26). Moreover, if u is
uniformly continuous, we can see that either u € L2([R™) or 1—|ul? € LY R™) by the same argument
of (3.9) and (3.10) in [2]. Therefore, if a bounded, uniformly continuous, differentiable function u
is a finite energy solution of (3), then either u =0, or |u(x)| — 1 when |x| — co.
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