I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Christopher S. Withers and Saralees Nadarajah
A note on bias reduction
Volume 358, issue 6 (2020), p. 641-644.
https://doi.org/10.5802/crmath.49
© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.
(G) Er This article is licensed under the

Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

A note on bias reduction

Christopher S. Withers ${ }^{a}$ and Saralees Nadarajah ${ }^{*, b}$

${ }^{a}$ Industrial Research Limited, Lower Hutt, New Zealand
${ }^{b}$ University of Manchester, Manchester M13 9PL, UK
E-mails: kit.withers@gmail.com, mbbsssn2@manchester.ac.uk

Abstract

Let \widehat{w} be an unbiased estimate of an unknown $w \in R$. Given a function $t(w)$, we show how to choose a function $f_{n}(w)$ such that for $w^{*}=\widehat{w}+f_{n}(w), E t\left(w^{*}\right)=t(w)$. We illustrate this with $t(w)=w^{a}$ for a given constant a. For $a=2$ and \widehat{w} normal, this leads to the convolution equation $c_{r}=c_{r} \otimes c_{r}$.

Manuscript received 10th January 2019, accepted 9th April 2020.

1. Introduction

Let \widehat{w} be an unbiased estimate of an unknown $w \in R$. Given a function $t(w)$, we show how to choose a function $f_{n}(w)$ such that $E t\left(w^{*}\right)=t(w)$ for $w^{*}=\widehat{w}+f_{n}(w)$. We illustrate this in Section 2 with \widehat{w} normal and $t(w)=w^{a}$ for some constant a. For $a=2$ this gives the convolution equation $c_{r}=c_{r} \otimes c_{r}$ to solve.
w^{*} is not an estimate since it depends on the unknown w. The method extends to $\widehat{\mathbf{w}}$ any standard estimate of an unknown $\mathbf{w} \in R^{p}$ with respect to a given parameter n. That is, $E \widehat{\mathbf{w}} \rightarrow \mathbf{w}$ as $n \rightarrow \infty$ and, for $r \geq 1$, its r th order cumulants have magnitude n^{1-r} and can be expanded as power series in n^{-1} :

$$
\begin{equation*}
\kappa\left(\widehat{w}_{i_{1}}, \ldots, \widehat{w}_{i_{r}}\right)=\sum_{e=r-1}^{\infty} n^{-e} k_{e}^{i_{1}, \ldots, i_{r}} \tag{1}
\end{equation*}
$$

for $1 \leq i_{1}, \ldots, i_{r} \leq p$ and $k_{0}^{i_{1}}=w_{i_{1}}$, where w_{i} is the i th component of \mathbf{w}, and the cumulant coefficients $k_{e}^{i_{1}, \ldots, i_{r}}$ are bounded as $n \rightarrow \infty$, but may depend on \mathbf{w}. For $p=1$, (1) can be written

$$
\kappa(\widehat{w})=\sum_{e=r-1}^{\infty} n^{-e} k_{r, e}
$$

for $r \geq 1$, where $k_{1,0}=w$. Cumulant coefficients are the building blocks of analytic methods for statistical inference. For example, methods for constructing estimates of low bias for any smooth function $t(\mathbf{w}): R^{p} \rightarrow R$ were given in Mynbaev et al. [3] and Withers and Nadarajah [4-14].

[^0]Given a sequence a_{1}, a_{2}, \ldots, the exponential partial Bell polynomial $B_{i, k}(\mathbf{a})$ is defined by

$$
\left(\sum_{j=1}^{\infty} a_{j} t^{j} / j!\right)^{k} / k!\equiv \sum_{j=k}^{\infty} B_{j, k}(\mathbf{a}) t^{j} / j!
$$

for $t \in R$ and $k=0,1, \ldots$. It is tabled on p . 307-308 of Comtet [2] for $1 \leq r \leq 12$. Given two sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots, their discrete convolution is defined by

$$
a_{r} \otimes b_{r}=\sum_{i=1}^{r} a_{i} b_{r-i} .
$$

Set $\delta_{i, 1}=I(i=1)$ and $(a)_{j}=a!/(a-j)!$.

2. Adding bias to \widehat{w} to reduce the bias of $t(\widehat{w})$

Suppose that $\widehat{w} \sim \mathscr{N}(w, v(w) / n)$, a normal estimate. Set

$$
\begin{equation*}
\nu=v(w), \quad f_{n}(w)=\sum_{i=1}^{\infty} k_{i} n^{-i}, \tag{2}
\end{equation*}
$$

where $k_{i}=b_{i} / i$! may depend on w. Theorems 1 and 3 show how to choose k_{i} or b_{i} so that for any given a,

$$
\begin{equation*}
E\left(w^{*}\right)^{a}=w^{a}, w^{*}=\widehat{w}+f_{n}(w) \tag{3}
\end{equation*}
$$

Theorem 2.1 considers the case $a=2$. Theorem 3 considers the case $a=3$. Throughout, we set

$$
\begin{equation*}
\delta=\widehat{w}-w, \quad v=v / w^{2}, \quad m_{n}=E w^{*}=w+f_{n}(w) . \tag{4}
\end{equation*}
$$

Theorem 1. Take $w^{*}=\widehat{w}+f_{n}(w)$ with

$$
k_{r}=-c_{r} v^{r} / D^{2 r-1}
$$

where $D=2 w$ and, for $r \geq 2$,

$$
\begin{equation*}
c_{1}=1, \quad c_{r}=c_{r} \otimes c_{r} . \tag{5}
\end{equation*}
$$

Then $E\left(w^{*}\right)^{2}=w^{2}$.
Proof. For w^{*} of (3),

$$
E\left(w^{*}\right)^{2}=m_{n}^{2}+v / n=w^{2}+2 w f_{n}(w)+f_{n}(w)^{2}+v / n=w^{2}+\sum_{i=1}^{\infty} T_{i} n^{-i},
$$

where $T_{i}=D k_{i}+s_{i}+\nu \delta_{i, 1}, s_{1}=0$, and for $i \geq 2$,

$$
s_{i}=k_{i} \otimes k_{i}=\sum_{j=1}^{i-1} k_{j} k_{i-j} .
$$

So, $T_{i}=0$ if we take $k_{i}=-\left(s_{i}+v \delta_{i, 1}\right) / D$ for $i \geq 1$. This gives the result.
Corollary 2 gives an explicit form for c_{r} in (5).
Corollary 2. For $r \geq 2$,

$$
c_{r}=-\binom{1 / 2}{r}\left(-4 c_{1}\right)^{r} / 2=2^{r-1} 13 \cdots(2 r-3) / r!.
$$

Proof. Set

$$
C(t)=\sum_{r=1}^{\infty} c_{r} t^{r},
$$

where c_{1} is now arbitrary. By (5), $C(t)=c_{1} t+C(t)^{2}$. Since $C(0)=0$, this gives

$$
C(t)=\left[1-\left(1-4 c_{1} t\right)^{1 / 2}\right] / 2=-\sum_{r=1}^{\infty}\binom{1 / 2}{r}\left(-4 c_{1} t\right)^{r} / 2
$$

which implies the result.
Theorem 3. Take $w^{*}=\widehat{w}+f_{n}(w)$ with

$$
f_{n}(w)=w \sum_{j=0}^{\infty} A_{j}\left(c / n^{3}\right)^{j} / j!+w u \sum_{j=0}^{\infty} B_{j}\left(c / n^{3}\right)^{j} / j!-w,
$$

where $c=4 v^{3}, a_{j}=(1 / 2)_{j} / 2, u=-v n^{-1}, B_{k}=a_{k+1} / a_{1}(k+1)$ and

$$
A_{j}=\sum_{k=0}^{j}(1 / 3)_{k} B_{j, k}(\mathbf{a}) .
$$

Then $E\left(w^{*}\right)^{3}=w^{3}$.
Proof. For w^{*} of (3),

$$
E\left(w^{*}\right)^{3}=m_{n}^{3}+3 m_{n} v / n=w^{3}
$$

if $m_{n}^{3}+3 m_{n} \nu / n-w^{3}=0$. Set $\gamma=(\nu / n)^{3}+w^{6} / 4$. Since $\gamma>0$, this cubic has one real root given by Equation (3.8.2) of Abramowitz and Stegun [1]:

$$
m_{n}=S_{1}^{1 / 3}+S_{2}^{1 / 3}
$$

where $S_{j}=w^{3} / 2 \pm \gamma^{1 / 2}$. Suppose that $w>0$. (If not, replace w by $|w|$.) Then for v of (4),

$$
\gamma^{1 / 2}=w^{3}(1+d)^{1 / 2} / 2
$$

where $d=c n^{-3}$. Furthermore,

$$
(1+d)^{1 / 2}=\sum_{j=0}^{\infty}\binom{1 / 2}{j} d^{j}, \quad S_{1}=1+D
$$

for

$$
D=\sum_{j=1}^{\infty}\binom{1 / 2}{j} d^{j} / 2=\sum_{j=1}^{\infty} a_{j} d^{j} / j!.
$$

Furthermore,

$$
D^{k} / k!=\sum_{j=k}^{\infty} B_{j, k}(\mathbf{a}) d^{j} / j!
$$

implies

$$
S_{1}^{1 / 3}=\sum_{k=0}^{\infty}\binom{1 / 3}{k} D^{k}=\sum_{j=0}^{\infty} A_{j} d^{j} / j!.
$$

Also

$$
S_{2}=1 / 2-(1+d)^{1 / 2} / 2=-\sum_{j=1}^{\infty} a_{j} d^{j} / j!=-a_{1} d(1+U)
$$

for

$$
U=\sum_{k=1}^{\infty} B_{k} d^{k} / k!
$$

and

$$
U^{j} / j!=\sum_{k=j}^{\infty} B_{k, j}(\mathbf{B}) d^{k} / k!.
$$

Then

$$
S_{2}^{1 / 3}=u(1+U)^{1 / 3}=u \sum_{j=0}^{\infty}\binom{1 / 3}{j} U^{j}=u \sum_{j=0}^{\infty}(1 / 3)_{j} U^{j} / j!=\sum_{k=0}^{\infty} C_{k} d^{k} / k!,
$$

where

$$
C_{k}=\sum_{j=0}^{k}(1 / 3)_{j} B_{k, j}(\mathbf{B}) .
$$

Hence, for the choice of $f_{n}(w), E\left(w^{*}\right)^{3}=w^{3}$.

The method of Theorems 1 and 3 will not work for $t(w)=w^{5}$ since there is no explicit solution to a quintic. However, we now show how to obtain an unbiased or bias-reduced estimate of w^{a} for any $a>0$. Set $\Delta=\widehat{w}-w=w^{*}-m_{n}$. Then

$$
E\left(w^{*}\right)^{a}=E\left(m_{n}+\Delta\right)^{a}=\sum_{j=0}^{\infty}\binom{a}{j} m_{n}^{a-j} \mu_{j}(\widehat{w})=\sum_{j=0}^{\infty}\binom{a}{2 j} m_{n}^{a-2 j} \mu_{2 j}(\widehat{w}),
$$

where

$$
\mu_{2 j}(\widehat{w})=N_{j} \nu^{j}, \quad N_{0}=1, \quad N_{j}=13 \cdots(2 j-1)
$$

for $j \geq 1$. By (2),

$$
f_{n}(w)^{k} / k!=\sum_{i=k}^{\infty} B_{i, k}(\mathbf{b}) n^{-i} / i!.
$$

So,

$$
\left(m_{n} / w\right)^{a}=\left[1+f_{n}(w) / w\right]^{a}=\sum_{k=0}^{\infty}(a)_{k} w^{-k} f_{n}(w)^{k} / k!=\sum_{i=0}^{\infty} D_{a, i} n^{-i} / i!
$$

for

$$
D_{a, i}=\sum_{k=0}^{i}(a)_{k} w^{-k} B_{i, k}(\mathbf{b}) .
$$

This implies

$$
E\left(w^{*}\right)^{a} / w^{a}=\sum_{k=0}^{\infty} n^{-k} E_{k}
$$

for

$$
E_{k}=\sum_{i+j=k}\binom{a}{2 j} N_{j} v^{j} D_{a-2 j, i} / i!.
$$

So,

$$
\begin{array}{lll}
b_{1}=-(a-1) w / 2, & E_{1}=0, & E\left(w^{*}\right)^{a}=w^{a}+O\left(n^{-2}\right), \\
b_{2}=w(a-1)\left[-(a-1)^{2}+(a-1)_{2} w v-(a-2)_{2} v^{2}\right], & E_{2}=0, & E\left(w^{*}\right)^{a}=w^{a}+O\left(n^{-3}\right) .
\end{array}
$$

In this way, we can construct $f_{n}(w)$ so that for any given $a>0$ and $k \geq 1, E\left[\widehat{w}+f_{n}(w)\right]^{a}=$ $w^{a}+O\left(n^{-k}\right)$.

References

[1] M. Abramowitz, I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, Applied Mathematics Series, vol. 55, U.S. Department of Commerce, 1964.
[2] L. Comtet, Advanced combinatorics: the art of finite and infinite expansions, Springer, 1974.
[3] K. T. Mynbaev, S. Nadarajah, C. S. Withers, A. S. Aipenova, "Improving bias in kernel density estimation", Stat. Probab. Lett. 94 (2014), p. 106-112.
[4] C. S. Withers, S. Nadarajah, "Analytic bias reduction for k-sample functionals", Sankhyā, Ser. A70 (2008), no. 2, p. 186222.
[5] _, "The bias and skewness of M-estimators in regression", Electron. J. Stat. 4 (2010), p. 1-14.
[6] —_, "Bias-reduced estimates for skewness, kurtosis, L-skewness and L-kurtosis", J. Stat. Plann. Inference 141 (2011), no. 12, p. 3839-3861.
[7] - "Bias reduction for the ratio of means", J. Stat. Comput. Simulation 81 (2011), no. 12, p. 1799-1816.
[8] -, "Estimates of low bias for the multivariate normal", Stat. Probab. Lett. 81 (2011), no. 11, p. 1635-1647.
[9] -_, "Reduction of bias and skewness with applications to second order accuracy", Stat. Methods Appl. 20 (2011), no. 4, p. 439-450.
[10] , "Nonparametric estimates of low bias", REVSTAT 10 (2012), no. 2, p. 229-283.
[11] ——, "Calibration with low bias", Stat. Pap. 54 (2013), no. 2, p. 371-379.
[12] —, "Delta and jackknife estimators with low bias for functions of binomial and multinomial parameters", J. Multivariate Anal. 118 (2013), p. 138-147.
[13] —, "Density estimates of low bias", Metrika 76 (2013), no. 3, p. 357-379.
$[14]-$, "Bias reduction when data are rounded", Stat. Neerl. 69 (2015), no. 3, p. 236-271.

[^0]: * Corresponding author.

