

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Xi Chen, James D. Lewis and Gregory Pearlstein

Indecomposable *K*₁ **classes on a Surface and Membrane Integrals** Volume 358, issue 4 (2020), p. 511-513.

<https://doi.org/10.5802/crmath.69>

© Académie des sciences, Paris and the authors, 2020. Some rights reserved.

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

Algebraic Geometry / Géométrie algébrique

Indecomposable K_1 classes on a Surface and Membrane Integrals

Xi Chen^{*a*}, James D. Lewis^{*, *a*} and Gregory Pearlstein^{*b*}

^a Department of Mathematics, 632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

^b Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.

E-mails: xichen@math.ualberta.ca, lewisjd@ualberta.ca, gpearl@math.tamu.edu.

Abstract. Let *X* be a projective algebraic surface. We recall the *K*-group $K_{1,\text{ind}}^{(2)}(X)$ of indecomposables and provide evidence that membrane integrals are sufficient to detect these indecomposable classes.

Résumé. Soit X une surface algébrique projective. Nous rappelons le groupe K, $K_{1,ind}^{(2)}(X)$ indécomposables et apporter la preuve que les intégrales membranaires sont suffisantes pour détecter ces classes indécomposables.

2020 Mathematics Subject Classification. 14C25, 14C30, 14C35.

Funding. X. Chen and J. D. Lewis partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

Manuscript received 9th December 2019, accepted 7th May 2020.

1. Introduction

Let X/\mathbb{C} be a smooth projective surface, and consider a class $\{\xi\} \in K_1^{(2)}(X)$ which can be represented in the form

$$\xi = \sum_{j=1}^{N} (f_j, D_j), \quad f_j \in \mathbb{C}(D_j)^{\times}, \quad \sum_{j=1}^{N} \operatorname{div}_{D_j}(f_j) = 0 \text{ in } X_j$$

and where D_j is irreducible, with $\operatorname{codim}_X D_j = 1$. ξ is said to be decomposable if $f_j \in \mathbb{C}^{\times}$ for $j = 1, \ldots, N$. A class $\{\xi\}$ is said to be indecomposable if, modulo the tame symbol image $T(K_2(\mathbb{C}(X)))$, ξ is not decomposable. The quotient space of indecomposables is denoted by $K_{1,\operatorname{ind}}^{(2)}(X)$. There is a Betti cycle class map $\operatorname{cl}_{2,1} : K_{1,\operatorname{ind}}^{(2)}(X) \to H^3(X, \mathbb{Z}(2))$, evidently with torsion image (due to Hodge theory), and whose kernel is denoted by $K_{1,\operatorname{ind}}^{(2)}(X)^\circ$. The map $\operatorname{cl}_{2,1}$ is defined as follows. Put $\gamma_j := f_j^{-1}[-\infty, 0]$ and $\gamma := \sum_{j=1}^N \gamma_j$. Then we have $\partial \gamma = \sum_{j=1}^N \operatorname{div}_{D_j}(f_j) = 0$, hence γ defines a

^{*} Corresponding author.

class $\{\gamma\} \in H_1(X, \mathbb{Z}) \simeq H^3(X, \mathbb{Z}(2))$ (Poincaré duality). We now assume that $\xi \in K_{1, \text{ind}}^{(2)}(X)^\circ$. Then γ bounds a real 2-chain ζ . There is the *integrally defined* transcendental Abel–Jacobi map,

$$\underline{\Phi}: K^{(2)}_{1,\mathrm{ind}}(X)^{\circ} \to \frac{H^{2,0}(X)^{\vee}}{H_2(X,\mathbb{Z})}, \quad \underline{\Phi}(\xi)(\omega) = \int_{\zeta} \omega.$$

It is our belief that $\underline{\Phi}$ is injective. This is the subject matter of our paper where we provide some evidence in support of this. Our main results are stated in Theorem 4 and Corollary 5.

2. Notation

We assume that the reader is familiar with mixed Hodge structures (MHS). Let *V* be a \mathbb{Z} -MHS and $\mathbb{Z}(r)$ the Tate twist. We put

$$\Gamma V = \operatorname{hom}_{MHS}(\mathbb{Z}(0), V)$$
, and $JV = \operatorname{Ext}_{MHS}(\mathbb{Z}(0), V)$.

3. The full Abel-Jacobi map on indecomposables

Let $H^2_{tr}(X,\mathbb{Z}) := H^2(X,\mathbb{Z})/NS(X)$ be transcendental cohomology, where NS stands for the Neron–Severi group. There is a the full Abel–Jacobi map [3] on indecomposables,

$$\Phi: K_{1,\text{ind}}^{(2)}(X)^{\circ} \to J\big(H_{\text{tr}}^2(X, \mathbb{Z}(2))\big) = \frac{\big(H^{2,0}(X) \oplus H_{\text{tr}}^{1,1}(X)\big)^{\vee}}{H_2(X, \mathbb{Z})}$$

given by (for $\omega \in H^{2,0}(X) \oplus H^{1,1}_{tr}(X)$):

$$\{\xi\} \mapsto \Phi(\xi)(\omega) := \frac{1}{2\pi i} \left(\sum_{j=1}^N \int_{D_j} \log(f_j) \omega - 2\pi i \int_{\zeta} \omega \right),$$

where log has the principal branch. It turns out that we can say something about this map. For this we recall the (limit) Betti cycle class map

$$K_2(\mathbb{C}(X)) \xrightarrow{\operatorname{dlog}_2} \Gamma H^2(\mathbb{C}(X), \mathbb{Z}(2)), \{f, g\} \mapsto \operatorname{dlog} f \wedge \operatorname{dlog} g,$$

where

$$\Gamma H^2(\mathbb{C}(X),\mathbb{Z}(2)) = \lim_{\overrightarrow{U}} \Gamma H^2(U,\mathbb{Z}(2)), \ U \subset X \text{ Zariski open.}$$

Theorem 1. Φ is injective iff dlog₂ is surjective.

dlag

Proof. See [2, Corollary 6.5], where it should also be pointed out that $H^2(\mathbb{C}(X),\mathbb{Z}(2))$ is torsion free.

The following conjecture seems to have survived critical examination (see [2] and the references cited there).

Conjecture 2 (Beilinson-Milnor-Hodge conjecture). dlog₂ is surjective.

Remark 3. As argued in [2], this conjecture is *equivalent* to the corresponding conjecture with \mathbb{Q} -coefficients.

Let $X = \mathscr{X}_0 := \rho^{-1}(0)$ be a very general¹ member of a family of surfaces $\rho : \mathscr{X} \to S$, $0 \in S$. Here ρ is a smooth and proper morphism of smooth quasi-projective varieties. We recall the Kodaira–Spencer map:

$$\kappa: T_0(S) \to H^1(X, \Theta_X),$$

and put $H^1_{alg}(X, \Theta_X) := \kappa(T_0(S))$. We prove the following:

¹Very general in this context means outside of a countable union of proper analytic subsets.

Theorem 4. Assume that $H^1_{alg}(X, \Theta_X) \otimes H^{2,0}(X) \xrightarrow{\cup} H^{1,1}_{tr}(X)$ is surjective. Then the correspondence $\Phi(\xi) \mapsto \Phi(\xi)$ is injective.

Proof. This proof takes inspiration from [1]. First of all, the assumptions in the theorem do not change if we shrink *S* and/or replace *S* by a finite cover $S' \to S$, which will be unramified over $0 \in S$ by Sard's lemma, together with 0 a very general point of *S*. Indeed a very general point of *S'* will map to a very general point of *S*, and we can just as easily work over *S'*. However we can assume $0 \in S$ corresponds to a very general point of *S'* and instead work over a polydisk neighbourhood of $0 \in S$. So for simplicity, we will replace *S* by a polydisk, and we will assume this. Thus a cycle $\xi \in K_{1,\text{ind}}^{(2)}(X)^\circ$ lifts to a relative spread cycle $\tilde{\xi} \in K_1^{(2)}(\mathscr{X}/S)^\circ$, and corresponding normal function $v_{\tilde{\xi}}$, where $v_{\tilde{\xi}}(0) = \Phi(\xi)$. Let $\nabla = \partial \otimes 1$ be the Gauss–Manin connection associated to the Hodge bundle $\mathscr{H} := \mathscr{O}_S \otimes R^2 \rho_* \mathbb{C}, \mu \in H^0(S, \Theta_S)$ a linear differential operator, which we identify with the corresponding operator ∇_{μ} on \mathscr{H} . If $\omega \in H^{2,0}(X)$, there is a variational $\tilde{\omega} \in \mathscr{K}(\mathscr{X}/S)$ (relative canonical sheaf), with $\tilde{\omega}_0 = \omega$. Now suppose that $\Phi(\xi) \neq 0$, and yet $\langle v_{\tilde{\xi}}, \tilde{\omega} \rangle = 0$ for all $\tilde{\omega} \in \mathscr{K}(\mathscr{X}/S)$. This translates to saying that $\langle v_{\tilde{\xi}}, \tilde{\omega} \rangle = \langle \gamma, \tilde{\omega} \rangle$, for some period $\gamma \in H^0(S, R^2 \rho_* \mathbb{Z}(2))$. Now for all $\mu \in H^0(S, \Theta_S)$, we arrive at:

$$\langle \gamma, \nabla_{\mu} \widetilde{\omega} \rangle = \mu \langle \gamma, \widetilde{\omega} \rangle = \mu \langle v_{\widetilde{\xi}}, \widetilde{\omega} \rangle = \langle \nabla_{\mu} v_{\widetilde{\xi}}, \widetilde{\omega} \rangle + \langle v_{\widetilde{\xi}}, \nabla_{\mu} \widetilde{\omega} \rangle = \langle v_{\widetilde{\xi}}, \nabla_{\mu} \widetilde{\omega} \rangle,$$

where we use the well-known fact that v_{ξ} is quasi-horizontal, implying that $\langle \nabla_{\mu} v_{\xi}, \widetilde{\omega} \rangle = 0$ for Hodge type reasons. By our assumption on the Kodaira–Spencer map, we have $v_{\xi} \equiv 0$, a fortiori $\Phi(\xi) = 0$, a contradiction. This tells us that $\underline{\Phi}(\tilde{\xi}_t) \neq 0$ for very general $t \in S$. Since $0 \in \Delta$ already corresponds to a very general $X = \mathscr{X}_0$, we can assume that t = 0, and hence $\Phi(\xi) \neq 0 \Rightarrow$ $\underline{\Phi}(\xi) \neq 0$.

Corollary 5. Same assumptions as given in the above theorem. Further, let us assume Conjecture 2. Then the correspondence $\Phi \mapsto \underline{\Phi}$ is injective. In particular, $\underline{\Phi}$ is injective.

Proof. Beilinson rigidity and Conjecture 2, imply that $K_{1,ind}^{(2)}(X)^{\circ}$ is countable (Voisin's conjecture). Let $\xi \in K_{1,ind}^{(2)}(X)^{\circ}$. A spread of ξ will involve a finite cover $S'_{\xi} \to S$ and the very general points of S'_{ξ} map to a dense subset S_{ξ} of S, being a countable intersection of open dense subsets (Baire). But again by Baire, the countable intersection

$$\bigcap_{\xi \in K_{1, \text{ind}}^{(2)}(X)^{\circ}} S_{\xi}$$

is likewise dense in *S*; indeed and more explicitly, it amounts to the complement of a countable union of proper analytic subsets of *S*. Since $0 \in S$ is already very general, it belongs to that intersection. Therefore if $\Phi \mapsto \underline{\Phi}$ were not injective, then it would fail to be injective for some ξ as well. Now apply the above theorem.

References

- X. Chen, C. Doran, M. Kerr, J. D. Lewis, "Normal Functions, Picard-Fuchs Equations, and Elliptic Fibrations on K3 Surfaces", J. Reine Angew. Math. 721 (2016), p. 43-80.
- [2] R. de Jeu, J. D. Lewis, "Beilinson's Hodge conjecture for smooth varieties, with an appendix by Masanori Asakura", J. K-Theory 11 (2013), no. 2, p. 243-282.
- [3] M. Kerr, J. D. Lewis, S. Müller-Stach, "The Abel-Jacobi map for higher Chow groups", *Compos. Math.* **142** (2006), no. 2, p. 374-396.