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Abstract. In this article, we consider Heisenberg uniqueness pairs corresponding to the exponential curve
and surfaces, paraboloid, and sphere. Further, we look for analogous results related to the Heisenberg
uniqueness pair on the Euclidean motion group and related product group.

Résumé. Dans cet article, nous considérons des paires d’unicité de Heisenberg correspondant aux courbes
et surfaces exponentielles, au paraboloïde, à la sphère. De plus, nous cherchons des résultats analogues reliés
à la paire d’unicité de Heisenberg sur le groupe des mouvements euclidiens et le groupe produit apparenté.
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1. Introduction

In general, the uncertainty principle states that both function and its Fourier transform cannot
be localized simultaneously (see [3,10,14]). As a version of the uncertainty principle, Hedenmalm
and Montes-Rodríguez introduced the notion of the Heisenberg uniqueness pair. In [11], Heden-
malm and Montes-Rodríguez propose the following problem: Let Γ be a finite disjoint union of
smooth curves in R2 andΛ be any subset of R2. Let X (Γ) be the space of all finite complex-valued
Borel measures in R2 which are supported on Γ and absolutely continuous with respect to the arc
length measure on Γ, and for (ξ,η) ∈R2, the Fourier transform of µ is defined by

µ̂(ξ,η) =
∫
Γ

e−iπ(x·ξ+y ·η)dµ(x, y).

When it would be possible that any µ ∈ X (Γ) satisfies µ̂(ξ,η) = 0 for all (ξ,η) ∈ Λ implies µ is
identically zero? If this is the case, the pair (Γ,Λ) is called a Heisenberg uniqueness pair (or HUP).
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The concept of HUP is quite similar to an annihilating pair made of Borel measurable sets
of positive measures as described in Havin and Jöricke (see [10]). Consider a pair of Borel
measurable sets S ,Σ ⊆ R. Then (S ,Σ) forms a mutually annihilating pair if for any ϕ ∈ L2(R)
such that suppϕ⊂S and whose Fourier transform ϕ̂ supported on Σ, implies ϕ= 0.

Since the Fourier transform is invariant under translation and rotation, one can deduce the
following invariance properties about the Heisenberg uniqueness pair (see [11]).

(i) Let uo , vo ∈R2. Then the pair (Γ,Λ) is a HUP if and only if the pair (Γ+uo ,Λ+vo) is a HUP.
(ii) Let T : R2 → R2 be an invertible linear transform whose adjoint is denoted by T ∗. Then

(Γ,Λ) is a HUP if and only if
(
T −1Γ,T ∗Λ

)
is a HUP.

In [11], Hedenmalm and Montes-Rodríguez have shown that the pair (hyperbola, some lattice-
cross) is a Heisenberg uniqueness pair. As a dual problem, a weak-star dense subspace of
L∞(R) has been constructed to solve the one-dimensional Klein–Gordon equation. Further, they
characterize the Heisenberg uniqueness pairs corresponding to any two parallel lines.

Afterward, a considerable amount of work has been done pertaining to the Heisenberg
uniqueness pair in the plane as well as in the Euclidean spaces. Next, we briefly summarize the
recent progress on Heisenberg uniqueness pair.

Lev [18] and Sjölin [20] have independently shown that circle and certain system of lines are
HUP while Γ is the unit circle. Further, Vieli [7] has generalized HUP corresponding to circle in
the higher dimension and show that a sphere whose radius does not lie in the zero sets of the
Bessel functions J(n+2k−2)/2; k ∈ Z+, the set of non-negative integers, is a HUP corresponding to
the unit sphere Sn−1. In [23], Srivastava has shown that a cone is a Heisenberg uniqueness pair
corresponding to the sphere as long as the cone does not completely lay on the level surface of
any homogeneous harmonic polynomial on Rn .

Further, Sjölin [21] has investigated some of the Heisenberg uniqueness pairs corresponding
to the parabola. In a significant development, Jaming and Kellay [15] have given a unifying proof
for some of the Heisenberg uniqueness pairs corresponding to the hyperbola, polygon, ellipse,
and graph of the functions ϕ(t ) = |t |α, whenever α > 0. Further, Gröchenig and Jaming [8]
have worked out some of the Heisenberg uniqueness pairs corresponding to the quadratic
surface. Subsequently, Babot [2] has given a characterization of the Heisenberg uniqueness pairs
corresponding to a certain system of three parallel lines. Thereafter, necessary and sufficient
conditions for the Heisenberg uniqueness pairs corresponding to a system of four parallel lines
was studied in [6]. For more details on Heisenberg uniqueness pairs, see ( [4, 12, 13]).

The rest part of the paper is organized as follows. In Section 2, we study the Heisenberg
uniqueness pairs on Rn . In particular, we explore the HUP corresponding to the exponential
curve and surfaces, paraboloid, and the sphere. In Section 3, we extend the concept of HUP on
the Euclidean motion group and the product group.

2. Heisenberg uniqueness pairs on Rn

2.1. Heisenberg uniqueness pairs for exponential curve and surfaces.

Let µ be a finite Borel measure having support on Γ = {(t ,e t 2
) : t ∈ R} which is absolutely

continuous with respect to the arc length on Γ. Then there exists fµ ∈ L1(R,
√

1+4t 2e2t 2 dt )

such that dµ = gµ(t )dt , where gµ(t ) = fµ(t )
√

1+4t 2e2t 2 . Hence by finiteness of µ, it follows that
gµ ∈ L1(R) and

µ̂(x, y) =
∫
R

e
−iπ

(
xt+ye t2 )

gµ(t )dt . (1)

Then µ̂ satisfies the PDE
(1+Dx ) µ̂=β∂y µ̂ (2)
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in the sense of distribution, where Dx =∑∞
n=0

(∑4
k=1

β4n+k

(4n+k)!∂
4n+k
x

)
and β= i

π .

2.1.1. An exponential type map

Let hc :R→R be defined by

hc (t ) =
(

t + 1

2c

)2

+e t 2 − t 2,

where c is a non-zero constant. It is clear that the range of hc is [a2,∞) for some a > 0. By
derivative test, there exists α ∈ R with hc (α) = a2 such that hc is strictly increasing in [α,∞) and
strictly decreasing in (−∞,α]. We denote h̃c := hc |[α,∞) and h̄c := hc |(−∞,α]. Note that both the
functions h̃c and h̄c are invertible having range [a2,∞). Now, consider the reflection type map
ρc : [α,∞) → (−∞,α] such that h̄c ◦ ρc = h̃c . Thus, ρc is a diffeomorphism and ρc (α) = α. To
describe the dynamic of the function hc , we need to define an operator Tc : L1(R) → L1([a,∞)) by

Tc [g ](u) = [
g ◦ h̃−1

c (u2)− g ◦ρc ◦ h̃−1
c (u2)ρ′c (h̃−1

c (u2))
] 2u

h̃′
c (h̃−1

c (u2))
. (3)

Let N (Tc ) denotes the null space of Tc .

Remark 1.

(a) We would like to mention that when hc (t ) = e t 2
, then ρc (t ) = −t . In this particular case,

N (Tc ) is the set of all odd integrable functions.
(b) In the sense of dynamical system and ergodic theory, the operator Tc defined in (3),

can be thought as a transfer-type operator. For instance, Perron–Frobenius operator
(see [19]) is used to study HUP (see [4, 11]). For further details on connection between
dynamical system and HUP, we refer [12, 13, 15]. The null space of the operator Tc will be
deterministic for our main result about HUP.

Theorem 2. Let Γ= {(
t ,γ(t )

)
: t ∈R}

, where γ :R→R+ is defined by γ(t ) = e t 2
.

(a) Let Λ be a straight line and assume that N (Tc ) 6= {0} for each c 6= 0. Then (Γ,Λ) is a
Heisenberg uniqueness pair if and only ifΛ is parallel to the x-axis.

(b) Let L j ; j = 1,2 be two parallel lines which are not parallel to either of the axes. Then
(Γ,L1 ∪L2) is a Heisenberg uniqueness pair.

In order to prove Theorem 2, we need the following results. First, we state a result which can
be found in Havin and Jöricke [10, p. 36].

Lemma 3 ( [10]). Let ϕ ∈ L1[0,∞). If
∫
R log |ϕ̂| dx

1+x2 =−∞, then ϕ= 0.

Next, we state the following form of Radon–Nikodym derivative theorem (see [5, p. 91]).

Proposition 4. Let ν be a σ-finite signed measure which is absolutely continuous with respect to
a σ-finite measure µ on the measure space (X ,M ). If g ∈ L1(ν), then g dν

dµ ∈ L1(µ) and
∫

g dν =∫
g dν

dµdµ.

As a consequence of Lemma 3 and Proposition 4, we prove the following result. Let |E | denotes
the Lebesgue measure of the set E ⊂R.

Lemma 5. Let g ∈ L1(R). Suppose E ⊂R and |E | > 0. Then∫
R

e−iπcxhc (t )g (t )dt = 0 (4)

for all x ∈ E if and only if g ∈N (Tc ).
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Proof. The left-hand side of (4) can be written as

I =
∫ ∞

α
e−iπcxh̃c (t )g (t )dt +

∫ α

−∞
e−iπcxh̄c (t )g (t )dt

=
∫ ∞

α
e−iπcxh̃c (t )g (t )dt −

∫ ∞

α
e−iπcxh̃c (s)g (ρc (s)) ·ρ′c (s)ds,

by using the change of variables s = ρ−1
c (t ). Further applying the change of variables h̃c (t ) = u2

we get

I =
∫ ∞

a
e−iπcxu2 [

g ◦ h̃−1
c (u2)− g ◦ρc ◦ h̃−1

c (u2) ·ρ′c (h̃−1
c (u2))

] 2u

h̃′
c (h̃−1

c (u2))
du

=
∫ ∞

a
e−iπcxu2

Tc [g ](u)du.

In view of Proposition 4, the function Tc [g ] ∈ L1([a,∞)), and by the change of variables u2 = v ,
we have

I =
∫ ∞

a2
e−iπcxv Tc [g ](

p
v)

dv

2
p

v
. (5)

Let ϕ(v) = Tc [g ](
p

v)/2
p

v χ(a2,∞)(v). Then ϕ ∈ L1(R) and from (5) we obtain I = ϕ̂(cx) = 0 for all
x ∈ E . That is, ϕ̂ vanishes on the set cE of positive measure. Thus, by Lemma 3 we conclude that
ϕ = 0 a.e. Hence, it follows that Tc [g ] = 0 a.e. on [a,∞). Conversely, if Tc [g ] = 0, then (4) trivially
holds. �

In view of Remark 1(a) and Lemma 5, we can derive the following result.

Corollary 6. Let g ∈ L1(R) and γ :R→R+ be defined by γ(t ) = e t 2
. Suppose E ⊂R and |E | > 0. Then∫

R
e−iπxγ(t )g (t )dt = 0 (6)

for all x ∈ E if and only if g is an odd function.

Proposition 7. Let µ ∈ X (Γ) and gµ ∈ L1(R), as appeared in (1). If E ⊂ R with |E | > 0, then for
c,d ∈R\ {0} the following holds.

(a) µ̂(x,cx) = 0 for all x ∈ E if and only if gµ ∈N (Tc ).

(b) µ̂(x,cx +d) = 0 for all x ∈ E if and only if χµ ∈N (Tc ), where χµ(t ) = e−iπde t2

gµ(t ).

Proof. (a). From (1) we can express

µ̂(x,cx) =
∫
R

e
−iπx

(
t+ce t2 )

gµ(t )dt = e iπx/4c
∫
R

e−iπcxhc (t )gµ(t )dt .

By Lemma 5, Tc [gµ] = 0 if and only if µ̂(x,cx) = 0 for all x ∈ E .

(b). By a simple computation, we get

µ̂(x,cx +d) =
∫
R

e
−iπx

(
t+ce t2 )

χµ(t )dt = e iπx/4c
∫
R

e−iπcxhc (t )χµ(t )dt .

As similar to the above case, Tc [χµ] = 0 if and only if µ̂(x,cx +d) = 0 for all x ∈ E . �

Proof of Theorem 2. (a). In view of the invariance property, we can assume that Λ is the x-axis.
Recall that µ̂ satisfies

µ̂(x, y) =
∫
R

e
−iπ

(
xt+ye t2 )

gµ(t )dt .

Hence µ̂|Λ = 0 implies that ĝµ(x) = 0 for all x ∈R. Thus, we conclude that µ= 0.
Conversely, suppose Λ is not parallel to the x-axis. If Λ is parallel to the y-axis, then by

Corollary 6, it follows that (Γ,Λ) is not a HUP. Hence we can assume that Λ of the form y = cx,
where c 6= 0. Choose a non-zero function g ∈N (Tc ), then by Proposition 7, it follows that (Γ,Λ) is
not a Heisenberg uniqueness pair.

C. R. Mathématique, 2020, 358, n 3, 365-377
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(b). Let L1 = {(x,cx) : x ∈ R} and L2 = {(x,cx +d) : x ∈ R}, where c,d 6= 0. Since µ̂|L j = 0; j = 1,2,
by Proposition 7 it follows that Tc [gµ] = 0 and Tc [χµ] = 0. Thus we have[

e
iπd

{
e(h̃−1

c (u2))2
−e(ρc ◦h̃−1

c (u2))2
}
−1

]
gµ ◦ h̃−1

c (u2) = 0.

For a non-zero c, we have ρ2
c (t ) 6= t 2 except at t = α. Therefore gµ ◦ h̃−1

c (u2) = 0 a.a. u ≥ a, that
is, gµ = 0 a.e. on [α,∞). As Tc [gµ] = 0 and ρ′c 6= 0 a.e., it follows that gµ = 0 a.e. Thus, the pair
(Γ,L1 ∪L2) is a Heisenberg uniqueness pair. �

Remark 8.

(a) Let γ : R → R+ be an even smooth function having finitely many local extrema and
consider Γ= {

(t ,γ(t )) : t ∈R}
. Then the conclusions of Theorem 2 would also hold.

(b) If we consider Γ= {(e t 2
cosh t ,e t 2

sinh t ) : t ∈R} and Λ= L1 ∪L2; where L j ; j = 1,2 are any
two straight lines parallel to the X -axis, then (Γ,Λ) is a HUP.

Theorem 9. Let Γ be the surface xn+1 = ex2
1 +·· ·+ex2

n in Rn+1 andΛ an affine hyperplane in Rn+1

of dimension n. Assume that N (Tc ) 6= {0} for each c 6= 0. Then (Γ,Λ) is a Heisenberg uniqueness
pair if and only ifΛ is parallel to the hyperplane xn+1 = 0.

For u = (u1, . . . ,un), denoting ϕ(u) = eu2
1 + ·· · + eu2

n . Let µ be a finite Borel measure which is
supported on Γ = {(u,ϕ(u)) : u ∈ Rn} and absolutely continuous with respect to the surface
measure on Γ. Then by Radon–Nikodym theorem, there exists a measurable function fµ on Rn

such that dµ = gµ(u)du, where gµ(u) = fµ(u)
√

1+‖gradϕ(u)‖2. Then by the finiteness of µ, it
follows that gµ ∈ L1(Rn). Denote u′ = (u2, . . . ,un), x ′′ = (x1, . . . , xn) and x ′ = (x2, . . . , xn). Then the
Fourier transform of µ can be expressed as

µ̂(x) =
∫
Rn

e−πi(x′′.u+xn+1ϕ(u))gµ(u)du (7)

for x ∈Rn+1.

Proof of Theorem 9. Since Λ is an affine hyperplane in Rn+1 of dimension n, by the invariance
properties of HUP, we can assume thatΛ is a linear subspace of Rn+1 which can be considered as
either xn+1 = cx1, where c ∈R or x1 = 0.

If Λ = {
(x1, . . . , xn+1) ∈Rn+1 : xn+1 = 0

}
, then by the hypothesis, µ̂|Λ = 0 implies ĝµ = 0 on Rn .

Thus, it follows that (Γ,Λ) is a HUP.
Conversely, suppose Λ is not parallel to the hyperplane xn+1 = 0. Consider a non-zero com-

pactly supported function h ∈ L1(Rn−1). Then we have the following two cases.

Case 1. If Λ = {
(x1, . . . , xn+1) ∈Rn+1 : x1 = 0

}
, then take a non-zero compactly supported odd

function ψ ∈ L1(R) and write g (u) = ψ(u1)h(u′). Then we can construct a non-zero measure µ
such that for x ∈Λ, we have

µ̂(x) =
∫
Rn

e−πi(x′.u′+xn+1ϕ(u))g (u)du

=
∫
Rn

e−πi(x′.u′+xn+1ϕ(u))ψ(u1)h(u′)du

=
∫
Rn−1

e
−πi

{
x′.u′+xn+1

(
ϕ(u)−eu2

1

)} (∫
R

e−πi xn+1eu2
1
ψ(u1)du1

)
h(u′)du′

= 0.

Thus, (Γ,Λ) is not a Heisenberg uniqueness pair.
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Case 2. Suppose Λ = {
(x1, . . . , xn+1) ∈Rn+1 : xn+1 = cx1,c 6= 0

}
. Consider a non zero function τ ∈

N (Tc ) and write g (u) = τ(u1)h(u′). Then for x ∈Λ, we have

µ̂(x) =
∫
Rn

e−πi(x′′.u+cx1ϕ(u))g (u)du

=
∫
Rn

e−πi(x′′.u+cx1ϕ(u))τ(u1)h(u′)du

=
∫
Rn−1

e
−πi

{
x′.u′+cx1

(
ϕ(u)−eu2

1

)} (∫
R

e
−πi

(
x1u1+cx1eu2

1

)
τ(u1)du1

)
h(u′)du′.

By Lemma 5, it follows that∫
R

e−πi x1(u1+ceu2
1 )τ(u1)du1 = e iπx1/4c

∫
R

e−πi cx1hc (u1)τ(u1)du1 = 0.

Thus, we conclude that (Γ,Λ) is not a Heisenberg uniqueness pair. �

2.2. Heisenberg uniqueness pairs for the paraboloid and the sphere

2.2.1. Spherical harmonic

Let Z+ denote the set of all non-negative integers. For l ∈ Z+, let Pl denote the space of all
homogeneous polynomials of degree l in n variables. Let Hl = {P ∈ Pl : ∆P = 0}, where ∆ is the
standard Laplacian on Rn . The elements of Hl are called solid spherical harmonics of degree l . It
is worthy to mention that Hl is invariant under the natural action of SO(n). A spherical harmonic
of degree l is P |Sn−1 , where P ∈ Hl . Let

H l = {P |Sn−1 : P ∈ Hl }.

We write dl for the dimension of H l and let {Yl j : 1 ≤ j ≤ dl } be an orthonormal basis of H l .
Let dσ be the natural measure on Sn−1, then any two spherical harmonics of different degrees
l and k are orthogonal with respect to the usual inner product on L2(Sn−1,dσ). Let the set
H̃ = {Yl j : 1 ≤ j ≤ dl , l ∈ Z+} be an orthonormal basis for L2(Sn−1,dσ). For each fixed ξ ∈ Sn−1,
define a linear functional on H l by Yl 7→ Yl (ξ). Then there exists a unique spherical harmonic,
say Z (l )

ξ
∈H l such that

Yl (ξ) =
∫

Sn−1
Z (l )
ξ

(η)Yl (η)dσ(η).

The spherical harmonic Z (l )
ξ

is called the zonal harmonic of degree l with pole at ξ. Let f ∈
L1(Sn−1,dσ). For each l ∈Z+, define the l -th spherical harmonic projection of f by

Πl f (ξ) =
∫

Sn−1
Z (l )
ξ

(η) f (η)dσ(η)

for all ξ ∈ Sn−1. The projection Πl f is a spherical harmonic of degree l . For δ > (n − 2)/2, write

Am
l (δ) = (m−l+δ

δ

)(m+δ
δ

)−1
. Then the Fourier–Laplace series

∑∞
l=0Πl f is δ-Cesaro summable to f .

That is,

f = lim
m→∞

m∑
l=0

Am
l (δ)Πl f , (8)

where limit in the right-hand side of (8) exists in L1
(
Sn−1

)
. Also, for δ ≥ 0 and l ∈ Z+, we have

limm→∞ Am
l (δ) = 1. For more details, see [22].

A set C in Rn (n ≥ 2), which satisfies the scaling condition λC ⊆ C , for all λ ∈ R, is called a
cone. We call a cone to be non-harmonic if it is not contained in the zero sets of any homogeneous
harmonic polynomial on Rn .
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2.2.2. Heisenberg uniqueness pairs for the paraboloid

Let Γ be the paraboloid xn+1 = x2
1 +·· ·+ x2

n in Rn+1 and µ ∈ X (Γ). Then there exists g ∈ L1(Rn)
such that dµ = g (u)

√
1+4‖u‖2du. We write f (u) = g (u)

√
1+4‖u‖2, then the Fourier transform

of µ can be expressed as

µ̂(x1, . . . , xn+1) =
∫
Rn

e−i (x,xn+1)·(u,‖u‖2) f (u)du (9)

for all x = (x1, . . . , xn) ∈Rn , xn+1 ∈R.

Proposition 10. Let Γ be a paraboloid in Rn+1 and Sn−1 be the unit sphere in Rn . Then the
following holds.

(a) IfΛ= Sn−1 ×R, then (Γ,Λ) is a Heisenberg uniqueness pair.
(b) If Λ = C ×R, where C is a cone in Rn , then (Γ,Λ) is a Heisenberg uniqueness pair if and

only if C is non-harmonic.

In order to prove Proposition 10, we need the following result.

Lemma 11 ( [20]). Let ϕ ∈ L1 ((0,∞)) and E be a measurable subset of Rwith |E | > 0. If∫ ∞

0
e−i xt 2

ϕ(t )dt = 0 for all x ∈ E ,

then ϕ= 0.

Proof of Proposition 10. (a). In view of (9), µ̂ vanishes onΛ implies∫
Rn

e−i (x,xn+1)·(u,‖u‖2) f (u)du = 0,

for all (x, xn+1) ∈ Sn−1 ×R. Next, by converting the above integral into the polar coordinates, we
get ∫ ∞

0
e−i xn+1r 2

∫
Sn−1

r

e−i x·η f (η)dσr (η)dr = 0.

It follows from Lemma 11 that for each r > 0,∫
Sn−1

r

e−i x·η f (η)dσr (η) = 0 (10)

for all x ∈ Sn−1. If we write fr (ξ) = f (rξ) for ξ ∈ Sn−1, then (10) reduce to∫
Sn−1

e−i y ·ξ fr (ξ)dσ(ξ) = 0

for all y ∈ Sn−1
r and r > 0. In view of ( [7, Proposition 1.2]), we have fr (ξ) = 0 for a.e. ξ ∈ Sn−1 if and

only if Jd+(n−2)/2(r ) 6= 0 for all d ∈Z+.
Thus, we infer that f (η) = 0 for a.e. η ∈ Sn−1

r if and only if Jd+(n−2)/2(r ) 6= 0 for all d ∈Z+. Since
the set {r > 0 : Jd+(n−2)/2(r ) = 0, for some d ∈ Z+} is countable, we conclude that f = 0 a.e., and
hence µ= 0.

(b). Let C be a non-harmonic cone. In view of (10), we have∫
Sn−1

r

e−i x·η f (η)dσr (η) = 0

for all x ∈C and r > 0. Since C is non-harmonic, by ( [23, Theorem 3.1]),∫
Sn−1

e−i y ·ξ fr (ξ)dσ(ξ) = 0

for all y ∈ C and r > 0, where fr (ξ) = f (rξ) for all ξ ∈ Sn−1 implies f (η) = 0 a.e. η ∈ Sn−1
r , and for

each r > 0. Hence f = 0 a.e. that is, (Γ,Λ) is a Heisenberg uniqueness pair.
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Conversely, assume that C is contained in the zero set of a homogeneous harmonic polyno-
mial Pl ∈ Hl . Define a function f on Rn by f (y) = e−r 2

Yl (ξ), where y = rξ,r > 0 and ξ ∈ Sn−1

and Yl ∈H l . Then f ∈ L1(Rn). Thus, we can construct a finite complex Borel measure µ in Rn by
dµ= f (u)du. By Funk–Hecke theorem (see [1]), for each r > 0 and x ∈C ,∫

Sn−1
r

e−i x·η f (η)dσr (η) =
∫

Sn−1
e−i r x·ξe−r 2

Yl (ξ)dσ(ξ)

= (2π)n/2e−r 2
i l Jl+(n−2)/2(r s)

(r s)(n−2)/2
Yl (ζ),

where x = s ζ for some s > 0 and ζ ∈ Sn−1. This shows that µ̂|Λ = 0 but µ is non-zero measure
supported on Γ. �

Remark 12. If we considerΛ= Sn−1
r ×R for some r > 0, then also Proposition 10(a) remains true.

2.2.3. Examples of non-uniqueness sets for the sphere

Next, we extend a result due to Lev (see [18]) to higher dimensions.

Theorem 13. Let Sn−1 be the unit sphere in Rn and Λ be the union of two or more spheres in Rn .
Then (Sn−1,Λ) is not a Heisenberg uniqueness pair if and only if these spheres in Λ are concentric
and their radii lay in the zero sets of the same Bessel function of the form Jd+(n−2)/2 where d ∈Z+.

Proof. LetΛ be the union of two or more spheres with center at a ∈Rn . Further, assume that their
radius lies in the zero sets of Jd+(n−2)/2, for some d ∈ Z+. Consider f (η) = e i a.ηYd (η) and write
dµ= f dσ. For x ∈Λ, there exist r > 0 and ξ ∈ Sn−1 such that x = a + rξ. Hence the expression

µ̂(x) =
∫

Sn−1
e−i (a+rξ).η f (η)dσ(η)

= (2π)n/2i d r−(n−2)/2 Jd+(n−2)/2(r )Yd (ξ)

shows that (Sn−1,Λ) is not a Heisenberg uniqueness pair.
Conversely, let Λ be union of two spheres such that (Sn−1,Λ) is not a HUP. Due to invariance

properties of HUP we can assume that Λ = Λr ∪Λρ , where Λr is the sphere of radius r center
at origin and Λρ is the sphere of radius ρ center at (a1,0, . . . ,0) such that Jl1+(n−2)/2(r ) = 0 and
Jl2+(n−2)/2(ρ) = 0 for some l1, l2 ∈ Z+. Since the zero sets of the above two Bessel functions can
intersect at most at the origin ( [25, p. 484]), Jm+(n−2)/2(r ) = 0 only if m = l1 and similar conclusion
holds true for ρ. Now, µ̂= 0 onΛr implies

(2π)n/2i l r−(n−2)/2 Jl+(n−2)/2(r )‖Πl f ‖2
2 = 0

for all l ∈ Z+ (see [7]). It follows that Πl f = 0 for all l ∈ Z+ except l = l1. Thus from (8) we have
f (η) =Πl1 f (η). Further, µ̂ vanishes on Λρ gives g (η) =Πl2 g (η), where g (η) = e−i a1η1 f (η), that is,
f (η) = e i a1η1Πl2 e−i a1η1 f (η), where η1 be the first coordinate of η. Therefore

Πl1 f (η) = e i a1η1Πl2 e−i a1η1 f (η) (11)

for all η ∈ Sn−1.
Next, we show that a1 = 0 and l1 = l2. If a1 = 0, then by the orthogonality of spherical

harmonics we get l1 = l2. Observe from (11) that e i a1η1Πl2 e−i a1η1 f (η) is a spherical harmonic
of degree l1. Hence for all α> 0, we have

αl1 e i a1η1Πl2 e−i a1η1 f (η) = e iαa1η1Πl2 e−iαa1η1 f (αη) (12)

= e iαa1η1αl2Πl2 e−i a1η1 f (η).

We claim that Πl2 e−i a1η1 f (η) 6= 0 for some η such that η1 6= 0. In contrary, if Πl2 e−i a1η1 f (η) = 0
for all η such that η1 6= 0, then

Πl2 e−i a1η1 f (η) = 0
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for almost all η, which implies g = 0 and hence f = 0, which is not possible.
Thus by the above claim and (12) we get

αl1 e i a1η1 = e iαa1η1αl2

for all α > 0, which is possible only if l1 = l2 and a1 = 0. This completes the proof while Λ is the
union of two spheres.

IfΛ is the union of more than two spheres, then by applying the above argument for each pair
of spheres inΛ, we can reach to the conclusion. �

3. A connection of Heisenberg uniqueness pair to the Euclidean motion group and the
product group

3.1. Euclidean motion group M(n)

Let G denotes the Euclidean motion group M(n) is the group of isometries of Rn that leaves
invariant the Laplacian. Since the action of the special orthogonal group K = SO(n) defines a
group of automorphisms on Rn via y 7→ k y + x, where x ∈ Rn and k ∈ K , the group M(n) can be
identified as the semi-direct product of Rn and K . Hence the group law on G can be expressed as

(x, s) · (y, t
)= (

x + s y, st
)

.

Since a right K -invariant function on G can be thought as a function onRn , we infer that the Haar
measure on G can be written as d g = d xdk, where d x and dk are the normalized Haar measures
on Rn and K respectively.

Let R+ = (0,∞) and M = SO(n−1) be the subgroup of K that fixes the point en = (0, . . . ,0,1). Let
M̂ be the unitary dual group of M . Given a unitary irreducible representation σ ∈ M̂ realized on
the Hilbert space Hσ of dimension dσ, we consider the space L2(K ,Cdσ×dσ ) consisting of dσ×dσ
complex matrices valued functions ϕ on K such that ϕ(uk) =σ(u)ϕ(k), where u ∈ M , k ∈ K and
satisfying ∫

K
‖ϕ(k)‖2dk =

∫
K

tr(ϕ(k)∗ϕ(k))dk.

It is easy to see that L2(K ,Cdσ×dσ ) is a Hilbert space under the inner product

〈ϕ,ψ〉 =
∫

K
tr(ϕ(k)ψ(k)∗)dk.

Each (a,σ) ∈R+× M̂ , defines a unitary representation πa,σ of G by

πa,σ(g )(ϕ)(k) = e−i a〈x,k·en〉ϕ(s−1k), (13)

where ϕ ∈ L2
(
K ,Cdσ×dσ

)
. Let ϕ = (ϕ1, . . . ,ϕdσ ), where ϕ j are the column vectors of ϕ. Then

ϕ j (uk) =σ(u)ϕ j (k). Now, consider the space

H
(
K ,Cdσ

)
=

{
ϕ : K →Cdσ ,

∫
K
|ϕ(k)|2dk <∞,ϕ(uk) =σ(u)ϕ(k),u ∈ M

}
.

It is obvious that L2(K ,Cdσ×dσ ) is the direct sum of dσ copies of the Hilbert space H(K ,Cdσ )
equipped with the inner product

〈ϕ,ψ〉 = dσ

∫
K

(
ϕ(k),ψ(k)

)
dk.

Now, it can be shown that an infinite-dimensional unitary irreducible representation of G is the
restriction of πa,σ to H(K ,Cdσ ). In other words, each of (a,σ) ∈ R+× M̂ defines a principal series
representation πa,σ of G via (13).
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In addition to the principal series representations, there are finite-dimensional unitary irre-
ducible representations of G , which can be identified with K̂ , though these unitary representa-
tions do not take part in the Plancherel formula. For more details, we refer to Kumahara [17] and
Sugiura [24].

Now, we define the group Fourier transform of a function f ∈ L1(G) by

f̂ (a,σ) =
∫

G
f (g )πa,σ(g−1)dg

and

f̂ (δ) =
∫

G
f (x,k)δ(k−1)dxdk,

where δ ∈ K̂ . Further, the operator f̂ (a,σ) can be explicitly written as

( f̂ (a,σ)ϕ)(k) =
∫
Rn

∫
K

f (x, s)e−i 〈x, ak·en〉ϕ(s−1k)dxds,

=
∫

K
F1 f (ak ·en , s)ϕ(s−1k)ds, (14)

where F1 stands for the usual Fourier transform in the first variable and ϕ ∈ H(K ,Cdσ ). For more
details, we refer to [5, 9, 16].

3.2. Heisenberg uniqueness pairs on M(n)

Let Γ be a smooth surface (or a finite union of smooth surfaces) in Rn and ΓG = Γ×K . Let X (ΓG )
be the space of all finite complex-valued Borel measures µ in the motion group G , which are
supported on ΓG and absolutely continuous with respect to the surface measure on ΓG .

We define the Fourier transform of µ on G by

(µ̂(a,σ)ϕ)(k) =
∫
Γ

∫
K

e−i 〈x,ak·en〉ϕ(s−1k)dµ(x, s), (15)

where a ∈R+ and ϕ ∈ H(K ,Cdσ ).

Proposition 14. Let ΓG = Sn−1 ×K and µ ∈ X (ΓG ). If µ̂(ao ,σ) = 0 for all σ ∈ M̂ and some ao > 0,
then µ= 0 as long as J(n+2l−2)/2(ao) 6= 0 for all l ∈Z+.

Proof. Since µ is absolutely continuous with respect to the surface measure on ΓG , by Radon–
Nikodym theorem, there exists a function f ∈ L1(ΓG ) such that dµ = f dtds. By hypothesis, we
have

(µ̂(ao ,σ)ϕ)(k) =
∫

Sn−1

∫
K

f (t , s)e−i 〈t ,ao k·en〉ϕ(s−1k)dtds = 0,

whenever ϕ ∈C (K ,Cdσ ). Now, by Fubini’s theorem, we can write∫
K

∫
Sn−1

f (t , s)e−i 〈t ,ao k·en〉ϕ(s−1k)dtds =
∫

K
F1 f (aok ·en , s)ϕ(s−1k)ds = 0.

Hence F1 f (aok · en , s) = 0 for almost all s,k ∈ K . Since Sn−1 = {k.en : k ∈ K }, it follows that
F1 f (y, s) = 0 for almost all y ∈ Sn−1

ao
(0) and s ∈ K . Since

(
Sn−1,Sn−1

ao
(0)

)
is a Heisenberg uniqueness

pair as long as J(n+2l−2)/2(ao) 6= 0 for all l ∈Z+ (see [7]), we conclude that µ= 0. �
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3.3. Product group

The Haar measure on the product group G ′ = Rn ×K , where K is a compact group, is given by
dg = dxdk, where dx is the Lebesgue measure on Rn and dk is normalized Haar measure on K .
Since the unitary dual group of G ′ can be parametrized by Ĝ ′ = Rn × K̂ , for each (y,δ) ∈ Ĝ ′, the
map (x,k) 7→ e−2πi x·yδ(k) is a unitary operator on the Hilbert space Hδ of dimension dδ. Hence,
we can define the Fourier transform of the function f ∈ L1(G ′) by

f̂ (y,δ) =
∫
Rn

∫
K

f (x,k)e−2πi x·yδ(k−1)dxdk. (16)

3.4. Heisenberg uniqueness pairs on the product group

LetΓG ′ = Γ×K , whereΓ is a smooth surface (or a finite union of smooth surfaces) inRn . Let X (ΓG ′ )
be the space of all finite complex-valued Borel measure µ in G ′ which is supported on ΓG ′ and
absolutely continuous with respect to the surface measure on ΓG ′ . Then by the Radon–Nikodym
theorem, there exists a function f ∈ L1(ΓG ′ ) such that dµ= f dνdk, where ν is the surface measure
on Γ.

Now, the Fourier transform of the measure µ can be defined by

µ̂(y,δ) =
∫
Γ

∫
K

e−2πi x·yδ(k−1)dµ(x,k)

=
∫
Γ

∫
K

f (x,k)e−2πi x·yδ(k−1)dν(x)dk. (17)

Theorem 15. The pair (Γ,Λ) is a Heisenberg uniqueness pair on Rn if and only if (ΓG ′ ,Λ× K̂ ) is a
Heisenberg uniqueness pair on G ′.

Proof. Suppose (Γ,Λ) is a Heisenberg uniqueness pair on Rn and µ ∈ X (ΓG ′ ). Then by Fubini’s
theorem, the map x 7→ f (x,k) belongs to L1(Γ,dν) for almost all k ∈ K . Hence for (k,δ) ∈ K × K̂ ,
we can define the projection fk,δ of f by

fk,δ(x) =
∫

K
f (x,kh−1)χδ(h)dh, (18)

where χδ = trδ( · ), the character of the representation δ. Thus, the Euclidean Fourier transform
of the projection fk,δ gives

f̂ k,δ(y) =
∫
Γ

∫
K

f (x,kh−1)e−2πi x·yχδ(h)dhdν(x)

= tr
∫
Γ

∫
K

f (x,kh−1)δ(h)e−2πi x·y dhdν(x)

= tr
∫
Γ

∫
K

f (x,h)δ(h−1)e−2πi x·yδ(k)dν(x)dh

= tr
(
µ̂(y,δ)δ(k)

)
. (19)

Suppose µ̂|Λ×K̂ = 0. Since (Γ,Λ) is a Heisenberg uniqueness pair on Rn , from (19), it follows that
fk,δ = 0. Hence by the uniqueness of the Fourier series

f (x,k) = ∑
δ∈K̂

dδ fk,δ(x),

we conclude that f = 0.
Conversely, suppose (ΓG ′ ,Λ× K̂ ) is a Heisenberg uniqueness pair on G ′. Then for µ ∈ X (Γ),

there exists a function f ∈ L1(Γ) such that dµ= f dν. If µ̂|Λ = 0 then∫
Γ

f (x)e−2πi x·y dν(x) = 0

C. R. Mathématique, 2020, 358, n 3, 365-377



376 Arup Chattopadhyay, S. Ghosh, D.K. Giri and R.K. Srivastava

for each y ∈Λ. This, in turn, implies∫
Γ

∫
K

f (x)e−2πi y ·xδ(k−1)dkdν(x) = 0. (20)

Now, if we write dρ = f dνdk, then ρ ∈ X (ΓG ′ ). Since (ΓG ′ ,Λ× K̂ ) is a HUP, by (20), it follows that
ρ = 0. Thus, we conclude that the measure µ= 0. �
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