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Abstract. We show that the leaves of an LA-groupoid which pass through the unit manifold are, modulo
a connectedness issue, Lie groupoids. We illustrate this phenomenon by considering the cotangent Lie
algebroids of Poisson groupoids thus obtaining an interesting class of symplectic groupoids coming from
their symplectic foliations. In particular, we show that for a (strict) Lie 2-group the coadjoint orbits of the
units in the dual of its Lie 2-algebra are symplectic groupoids, meaning that the classical Kostant–Kirillov–
Souriau symplectic forms on these special coadjoint orbits are multiplicative.

Résumé. Nous montrons que les feuilles d’un groupoïde en algébroïde de Lie qui passent par la variété
unité sont elles mêmes des groupoïdes de Lie, sous une condition de connexité. Ce résultat est appliqué
aux algébroïdes de Lie cotangents des groupoïdes de Poisson. On obtient ainsi une classe intéressante de
groupoïdes symplectiques associés à leurs feuilletages symplectiques. Nous montrons en particulier que
pour un 2-groupe de Lie strict, les orbites coadjointes des unités dans le dual de sa 2-algèbre de Lie sont des
groupoïdes symplectiques, en ce sens que les formes symplectiques classiques de Kostant-Kirillov-Souriau
sur ces orbites coadjointes spéciales sont mutiplicatives.

Manuscript received 17th September 2019, revised 20th February 2020, accepted 10th March 2020.

1. Introduction

Lie algebroids are a unifying concept in differential geometry: they allow us to describe folia-
tions, Lie algebra actions, connections on principal bundles and Poisson brackets among many
other examples. Lie algebroids can also be seen as the infinitesimal objects associated to Lie
groupoids, generalizing the correspondence between Lie groups and Lie algebras. Lie groupoids,
on the other hand, provide geometric models for singular spaces when regarded as atlases for
differentiable stacks, see [3]. Lie algebroids over differentiable stacks can be described by LA-
groupoids [15] which are essentially groupoid objects in the category of Lie algebroids and so
they can be called “stacky Lie algebroids”, see [21] for a precise statement. To every Lie algebroid
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is associated a singular foliation on its base manifold. We shall see that, at least up to a connect-
edness issue, the leaves of the singular foliation associated to an LA-groupoid which pass through
the unit manifold inherit themselves a Lie groupoid structure, see Theorem 6.

In order to illustrate Theorem 6 we shall focus on Poisson structures. A Poisson structure on
a manifold determines a singular symplectic foliation which completely characterizes it [22].
From the viewpoint of Lie theory, Poisson structures arise as the infinitesimal counterparts of
Lie groupoids endowed with a compatible symplectic structure, which are called symplectic
groupoids [11, 23]. Whenever a Poisson structure is induced by a symplectic groupoid, it is
called integrable; but unlike Lie algebras, not every Poisson manifold is integrable. Symplectic
groupoids are important tools in the study of Poisson manifolds but in general they are difficult
to construct, see e.g. [9].

A Poisson groupoid [24] is a Lie groupoid endowed with a Poisson structure which is com-
patible with the groupoid multiplication: these objects generalize on the one hand symplectic
groupoids and, on the other, they generalize Poisson–Lie groups [10]. We shall see in Proposi-
tion 12 that those leaves of the symplectic foliation associated to a Poisson groupoid structure
which pass through the unit manifold provide examples of symplectic groupoids.

We exemplify this observation by means of (strict) Lie 2-groups [2], which are group objects
in the category of Lie groupoids. Lie 2-groups equipped with a Poisson structure compatible
with both the group and groupoid multiplications are called Poisson 2-groups [6]. The symplectic
leaves of Poisson groups are the orbits of the infinitesimal dressing actions [19]; for Poisson 2-
groups these dressing actions are multiplicative actions, meaning that the action maps are Lie
groupoid morphisms. The simplest example of a Poisson 2-group is a Lie 2-group endowed with
the zero bracket. In this case, the dressing action coincides with the coadjoint action on the dual
of its Lie algebra so we get, in particular, that the coadjoint orbits of Lie 2-groups which contain
a unit, endowed with their canonical Kostant–Kirillov–Souriau symplectic forms, are symplectic
groupoids.

2. Preliminaries

2.1. Lie groupoids and Lie algebroids

A smooth groupoid is a groupoid object in the category of not necessarily Hausdorff smooth
manifolds such that its source map is a submersion. A Lie groupoid is a smooth groupoid such
that its base and source-fibers are Hausdorffmanifolds; see e.g. [17] for an introduction to these
concepts. We denote the source, target, multiplication, unit and inversion maps of a Lie groupoid
M1 over M0, M1 ⇒ M0, as s, t and m, u, i respectively. In order to avoid ambiguity when dealing
with several groupoids we use a subindex s = sM1 , tM1 , mM1 to specify the groupoid under
consideration. A Lie algebroid consists of a vector bundle A over a manifold M0 endowed with a
vector bundle map a : A → T M0, called the anchor, and a Lie algebra bracket on Γ(A) that satisfies
the Leibniz rule: [X , f Y ] = f [X ,Y ]+ (La(X ) f )Y for all X ,Y ∈ Γ(A) and all f ∈C∞(M). Given a Lie
groupoid M1 ⇒ M0, there is a canonical way to endow kerT s|M0 with a Lie algebroid structure
over M0, see [17]; we call it the Lie algebroid of M1 ⇒ M0 and we denote it by AM1 .

2.2. LA-groupoids and double Lie groupoids

Definition 1 ( [15]). An LA-groupoid is a Lie groupoid in the category of Lie algebroids, that is, a
Lie groupoid A1 ⇒ A0 where A1 and A0 are Lie algebroids, the structure maps are Lie algebroid
morphisms over the structure maps of a base groupoid M1 ⇒ M0, and the map A1 → s∗

M1
A0

induced by sA1 is surjective.
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Example 2. Let M1 ⇒ M0 be a Lie groupoid. In general, T M1 ⇒ T M0 (with the structure maps
given by applying the tangent functor) and the usual Lie bracket is an LA-groupoid.

Let M1 ⇒ M0 be a Lie groupoid. Then T ∗M1 ⇒ A∗
M1

(where AM1 → M0 is the Lie algebroid of
M1 ⇒ M0) is also a Lie groupoid, called the cotangent groupoid of M1 ⇒ M0. The multiplication
m̂ in T ∗M1 is characterized by the following property:

〈m̂(ξ,η),T m(u, v)〉 = 〈ξ,u〉+〈η, v〉, (1)

for all composable u ∈ Tx M1, v ∈ Ty M1 and ξ ∈ T ∗
x M1, η ∈ T ∗

y M1 [7].
LA-groupoids are the infinitesimal counterparts to the following higher categorical structures.

Definition 3 ( [4, 15]). A double topological groupoid is a groupoid object in the category of
topological groupoids. A double topological groupoid is represented as a diagram of the form

G1 //
//

�� ��

M1

�� ��

G0 //
// M0.

A double Lie groupoid is a double topological groupoid as in the previous diagram such that: (1)
each of the side groupoids is a smooth groupoid, (2) M1 and G0 are Lie groupoids over M0, and (3)
the double source map (sM1 ,sG0 ) : G1 → M1 ×M0 G0 is a submersion (the superindices M1 , G0

denote the groupoid structures G1 ⇒ M1, G1 ⇒G0 respectively).

It is known that double Lie groupoids differentiate to LA-groupoids [15], but the integration
problem is not fully understood, see [20]. The next simple example shows that the naïve attempt
to integrate an LA-groupoid by applying Lie’s second theorem to all its structure maps fails in
general. Other integrations of the Lie algebroids involved can still carry a double Lie groupoid
structure, the best candidate being an integration whose vertical source-fibers are 1-connected
in the stacky sense, see [18].

Example 4. Consider a free action of R2 on a manifold M with at least three different orbits Oi .
Consider xi ∈Oi for i = 1,2,3 and v ∈R2 with |v | > 1 and take

N = M − ({v · x1}∪ {z · x3|z ∈S1}).

On N there is an infinitesimal action of R2 which induces a diagonal action on N 2; the image of
this action is a distribution D which is a subgroupoid of the tangent groupoid T N 2 ⇒ T N with
respect to the pair groupoid structure on N 2 ⇒ N and hence it is an LA-groupoid.

The leaf of D through (x1, x2) is diffeomorphic to R2 with a point removed and the leaves
through (x1, x3) and (x2, x3) are diffeomorphic to a disk. Call Oi j the leaf through (xi , x j ). We have
thatπ1 (O12, (x1, x2)) ∼=Z. Take a non trivial homotopy class a in that group. Then s(a) ∈π1(O2) = 1
is the trivial class so a and the constant path based on (x2, x3) should be composable. However,
there is no element in π1(O13, (x1, x3)) = 1 which projects to t(a) ∈ π1(O1 − {v · x1}) which is
non trivial. So the monodromy groupoid of D carries no compatible groupoid structure over the
monodromy groupoid of D|N .

3. The main result

Definition 5. Let A1 ⇒ A0 be an LA-groupoid over M1 ⇒ M0. Let O ⊂ M0 be an A0-orbit and take
O ′ the A1-orbit which contains O . Let us denote by Ô the union of the connected components of
O ′∩s−1

M1
(x) which contain a unit for all x ∈O .

Theorem 6. Let A1 ⇒ A0 be an LA-groupoid over M1 ⇒ M0 and let O ⊂ G0 be an A0-orbit. Then
Ô is an immersed Lie subgroupoid of M1 over O .

C. R. Mathématique, 2020, 358, n 2, 217-226
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What motivates our main result is the following algebraic observation. If an LA-groupoid is
integrable by a double Lie groupoid, then we can use this integration to show that the orbits
through the units inherit a smooth groupoid structure.

Proposition 7. Let G1 be a double Lie groupoid with sides M1 and G0 over M0. Then the G1-orbits
of the units in M1 are immersed smooth subgroupoids over the corresponding G0-orbits in M0.

Proof. Let g ,h ∈ G1 be such that sM1 (g ) = sM1 (h) = u ∈ M0 and tG0 (g ) = x, tG0 (h) = y are
composable, i.e. sM1 (x) = tM1 (y). Then k = mM1

(
iM1 (sG0 (g )),tG0 (h)

)
is defined and so is g ′ =

mM1 (g ,k). Since sG0 (g ′) = tG0 (h) we can take l = mG0 (g ′,h) and then sM1 (l ) = u, tM1 (l ) = mG0 (x, y).
So these orbits are subgroupoids. In general, the orbits of a smooth groupoid are immersed
submanifolds even when the base is non Hausdorff. �

In general, we have to use an infinitesimal argument in order to prove the result.

Proof of Theorem 6. Let O be an A0-orbit and let O ′ be the A1-orbit which contains O . Let us
denote by sM1 = s and tM1 = t for simplicity in what follows. Recall that AM1 = kerT s|M0 is the
Lie algebroid of M1 ⇒ M0 and a= T t|AM1

is its anchor. This proof consists of the following steps:

(1) we construct a Lie subalgebroid B of the tangent Lie algebroid of M1 ⇒ M0 over O such
that the span of the right-invariant vector field in M1 induced by its inclusion in AM1

coincides with (T O ′∩kerT s)|Ô ;
(2) using Lie’s second theorem we show that Ô is the image of a Lie groupoid morphism

Ψ : H → M1, where H is the source-simply-connected integration of B . Since Ψ is the
identity on O , we see that Ô = Ψ(H) inherits a groupoid structure over O . Let us stress
that our reliance on Lie’s second theorem implies the existence of a groupoid structure
only on Ô , which can be seen as the “source-connected component” of O ′.

Step 1. Since sA1 is fiberwise surjective, the pullback of A1 to M0 splits as the sum A1|M0 =
kersA1 |M0 ⊕ A0.

By definition, we have that TxO ′ = a1(A1|x ) for all x ∈O . But the anchor map a1 of A1, being a
groupoid morphism, induces a square of morphisms of vector bundles over G0:

kersA1 |M0

a1|
��

tA1 // A0

a0

��

AM1 a
// T M0,

where a0 is the anchor of A0. So we have that TxO ′ = a1(kersA1 |x )⊕a0(A0|x ) if x ∈O .
It is known that C := kersA1 |M0 is a Lie algebroid over M0 called the core Lie algebroid of

A1 ⇒ A0 [15]. Let us recall its structure maps: Γ(C ) is identified with the space of right invariant
sections of A1 as follows: to X ∈ Γ(C ) we associate the section p 7→ X r (p) = mA1 (X (t(p)),0p ) for
all p ∈ M1. By the compatibility of the bracket with the multiplication on A1, the space of right
invariant sections is closed under the bracket of A1. Since a1 preserves the bracket and it takes
right invariant sections of A1 to right invariant vector fields on M1, the map

φ := a1| : C → AM1

is a Lie algebroid morphism. As a consequence, C is a Lie algebroid over M0 with anchor a◦a1|C .
Let X be a section of C , define ρ(X ) ∈X(O ) as the vector field (a◦φ)(X )|O = (a0 ◦tA1 )(X )|O . We

have that ρ defines an action Lie algebroid i∗C over O , where i : O ,→ M0 is the inclusion. In fact,
take X ,Y ∈ Γ(C ), then tA1 |p (X r |p ) = tA1 |t(p)(X ) for all p ∈G1. But tA1 is a Lie algebroid morphism
so we get that

tA1 |p ([X r ,Y r ]|p ) = [tA1 (X r ),tA1 (Y r )]|t(p)

C. R. Mathématique, 2020, 358, n 2, 217-226
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for all p ∈ M1. Since [X ,Y ] = [X r ,Y r ]|M0 by definition, we get that

tA1 |x ([X ,Y ]|x ) = [tA1 (X ),tA1 (Y )]|x

for all x ∈ M0. Therefore,ρ([X ,Y ]) = a0([tA1 (X ),tA1 (Y )])|O = [ρ(X ),ρ(Y )] since a0 commutes with
the Lie brackets.

By construction, φ induces a Lie algebroid morphism φ′ : i∗C → AM1 over i . Indeed, let∑
a f a ⊗Xa ,

∑
b g b ⊗Yb be elements of C∞(O )⊗C∞(M0) Γ(C ) ∼= Γ(i∗C ). Then

φ′
(∑

a
f a ⊗Xa

)
=∑

a
f a ⊗φ(Xa), φ′

(∑
b

g a ⊗Yb

)
=∑

b
g b ⊗φ(Yb)

are elements of C∞(O )⊗C∞(M0) Γ(AM1 ) ∼= Γ(i∗AM1 ). Hence we have that

φ′
([∑

a
f a ⊗Xa ,

∑
b

g b ⊗Yb

])
= ∑

a,b
f a g b ⊗ [φ(Xa),φ(Yb)]

+∑
a,b

f aLρ(Xa )g b ⊗φ(Yb)−∑
a,b

g bLρ(Yb ) f a ⊗φ(Xa);

and so φ′ is a Lie algebroid morphism, see [17] for the definition of Lie algebroid morphism that
we used.

The imageφ′(i∗C ) is a Lie subalgebroid of AM1 as long as it is a smooth subbundle. This follows
from the following dimension counting:

dimO ′
x = ranka1|A1|x = ranka1|Cx + ranka0|x

for all x ∈ O . The map a1 has constant rank over O and the term ranka0|x is constant over O so
φ′

x is of rank equal to ranka1|Cx which is constant for x ∈O . Since the anchor of i∗C restricted to
kerφ′ vanishes, we have that the quotient B := i∗C /kerφ′ inherits a Lie algebroid structure over
O . Then φ′ induces an injective Lie algebroid morphism ψ : B ,→ AM1 over i .

Step 2. Since O ,→ M0 is an immersed submanifold and B ,→ AM1 is a Lie subalgebroid, Lie’s
second theorem implies that B is integrable and the morphism ψ : B ,→ AM1 is integrable by a
Lie groupoid morphism Ψ : H → M1 which is an immersion, see [17]. We claim that Ô =Ψ(H). In
fact, T O ′ fits into the fiberwise exact sequence

0 // T O ′∩kerT s // T O ′ T s // T O // 0

and TΨ(H) spans both (T O ′∩kerT s)|Ô and T O by construction. Since O ′ is weakly embedded
in M1 [12],Ψ is also smooth with respect to the immersed submanifold structure on O . Then Ô is
an open subset of O thanks to the fact that Ψ is an immersion and dim H = dimO . Therefore, Ô

is also an immersed weakly embedded submanifold. Finally, Ψ is a groupoid morphism which is
injective on its base so its image is a subgroupoid of M1. Therefore, the result holds. �

Remark 8. It is natural to ask whether the groupoid structure that we find on Ô extends to the
whole A1-orbit O ′. We do not know if that is the case. Let us note that, thanks to Proposition 7, a
counterexample would have to come to from an LA-groupoid which does not admit any source-
connected double groupoid integrating it, even in a weak sense as the Weinstein groupoids
integrate general Lie algebroids [8].

C. R. Mathématique, 2020, 358, n 2, 217-226



222 Daniel Álvarez

4. Applications

4.1. Symplectic leaves of Poisson groupoids

Definition 9 ( [24]). A Poisson groupoid is a Lie groupoid M1 ⇒ M0 with a Poisson structure on
M1 such that the graph of the multiplication map is a coisotropic submanifold1 of M1 ×M1 ×M 1,
where M 1 denotes M1 with the opposite Poisson structure.

A Poisson groupoid over a point is a Poisson group [10]; a Poisson groupoid whose Poisson
bracket is nondegenerate, and hence induced by a symplectic form, is a symplectic groupoid [11,
23]. The infinitesimal counterpart of a Poisson groupoid is provided by the following objects.

Definition 10 ( [16]). Consider a Lie algebroid A. If A∗ possesses also a Lie algebroid structure such
that its differential d∗ satisfies

d∗[X ,Y ] = [d∗X ,Y ]+ [X ,d∗Y ],

for all X ,Y ∈ Γ(A), then we call (A, A∗) a Lie bialgebroid.

The cotangent bundle of a Poisson manifold is canonically endowed with a Lie algebroid
structure. In the case of a Poisson groupoid M1 ⇒ M0 such a Lie algebroid structure is compatible
with the cotangent groupoid structure thus producing an LA-groupoid. In fact, it follows from
equation (1) that the canonical symplectic form on T ∗M1 makes T ∗M1 ⇒ A∗

M1
into a symplectic

groupoid; from this fact it follows that the conormal bundle of the graph Γ of m in G3
1 coincides

with the bundle
E = {(ξ,η,−m̂(ξ,η)) : ξ, η ∈ T ∗M1 composable} ⊂ (T ∗M1)3

since E ⊂ (TΓ)◦ and both vector bundles have the same rank. Using these observations it is not
difficult to prove the following.

Theorem 11 ( [16]). Let Π be a bivector field on a Lie groupoid M1 ⇒ M0. The map Π] : T ∗M1 →
T M1 is a groupoid morphism if and only if the graph of m in (M 3

1 ,Π⊕ΠªΠ) is coisotropic.

As a consequence of Theorem 11, if (M1,Π) is a Poisson groupoid, then its cotangent groupoid
with the Lie bracket induced by Π is an LA-groupoid.

Let A be the Lie algebroid of a Poisson groupoid M1 ⇒ M0. We have that M0 inherits a
unique Poisson structure such that the target map t : M1 → M0 is a Poisson morphism [24].
The symplectic leaves of this Poisson structure are contained in the connected components of
the intersection of the A and A∗-orbits [16]. Let O be an A∗-orbit, we have that O is a Poisson
submanifold of M0, being a union of symplectic leaves. Theorem 6 applied to T ∗M1 ⇒ A∗ gives
us a symplectic groupoid structure on Ô ⇒O which integrates this Poisson structure.

Proposition 12. Let M1 ⇒ M0 be a Poisson groupoid with tangent Lie bialgebroid (A, A∗) and let
O ⊂ M0 be an A∗-orbit. Then Ô is an immersed subgroupoid of M1 and it inherits a symplectic
groupoid structure which integrates the Poisson structure on O .

Proof. The symplectic structure on Ô is automatically multiplicative: if we see it as a nondegen-

erate Poisson bracket, then we have that graph(mG )∩ (Ô × Ô × Ô ) = graph(mÔ ) is coisotropic in

Ô × Ô × Ô .
Now we just have to compare the Poisson structure on O induced by the target map of Ô with

the Poisson structure on O induced as a submanifold of M0. We have that i : Ô ,→ M1 is a Poisson
morphism and hence so it is the composition t◦ i : Ô → M0. But t◦ i is the target map of Ô ⇒ O

so both Poisson structures on O coincide. �

1Let M be a Poison manifold with Poisson tensor π. A submanifold C of M is coisotropic if π](T ◦C ) ⊂ TC , where T ◦C
is the annihilator of TC .
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4.2. Orbits of Lie 2-algebra actions on Lie groupoids

The symmetries of Lie groupoids are described by the following objects.

Definition 13 ( [2, 5]). A Lie 2-group is a groupoid object in the category of Lie groups.

A groupoid in the category of (Lie) groups is the same thing as a group in the category of
(Lie) groupoids. This means that, given a Lie 2-group, G : G1 ⇒ G0, the multiplication maps
Gi ×Gi →Gi and the group inversion map Gi →Gi , i = 0,1, determine Lie groupoid morphisms,
in the first case from G ×G to G and in the second from G to itself.

Definition 14 ( [1]). A groupoid in the category of Lie algebras is called a strict Lie 2-algebra. An
abelian Lie 2-algebra is called a 2-vector space.

It is straightforward to see that the Lie functor establishes an equivalence of categories be-
tween the categories of 1-connected Lie 2-groups and Lie 2-algebras.

Lie 2-algebras are equivalent to crossed modules of Lie algebras.

Definition 15 ( [1]). Let φ : h→ g be a Lie algebra morphism and let g act on h by derivations in
such a way that for all x ∈ g and a,b ∈ h

φ(x ·a) = [x,φ(a)]

φ(a) ·b = [a,b];

then this structure is called a differential crossed module or a crossed module of Lie algebras. The
Lie 2-algebra associated toφ is the action groupoidG : hog⇒ gwith action map t(a, x) =φ(a)+x,
for a ∈ h, x ∈ g. Here hog is the semidirect product Lie algebra given by the g-action.

Let M1 ⇒ M0 be a Lie groupoid and let G= hog⇒ g be a Lie 2-algebra. Suppose that we have
an infinitesimal action G→X(M1) such that the induced vector bundle map a : G×M1 → T M1

is a groupoid morphism with the product groupoid structure on G× M1. Then the action Lie
algebroid G× M1 becomes an LA-groupoid over M1. As another corollary of Theorem 6 we get
the following result.

Proposition 16. Let O ⊂ M0 be a g-orbit, then Ô is a Lie subgroupoid of M1 over O . �

4.3. Dressing orbits of Poisson 2-groups

Now se shall see a family of examples that illustrate both Proposition 12 and Proposition 16.

Definition 17. Consider a Lie 2-algebra G : hog⇒ g associated to the differential crossed module
φ : h → g. The map −φ∗ : g∗ → h∗ produces an action groupoid (given by the induced action by
translations) we shall denote G∗; the source and target maps of G∗ have to be reversed in order to
have the pairing G∗×G→R as a groupoid morphism, that is, for all (α,θ) ∈ (hog)∗:

s(α,θ) =α−φ∗(θ), t(α,θ) =α.

Definition 18. The coadjoint action of a Lie 2-group G : H oG ⇒ G on G∗ is the usual (right)
coadjoint action of H oG on (hog)∗ at the level of arrows and, at the level of objects, it is the dual
of the G-action on h.

Remark 19. The coadjoint action above is multiplicative in the sense that the action map
G∗×G →G∗ is a groupoid morphism.

Definition 20 ( [6]). A Poisson 2-group is a Lie 2-group which is a Poisson groupoid and whose
group of arrows is a Poisson group with the same Poisson bivector.
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Example 21. The pair groupoid of a Poisson group is a Poisson 2-group.

Example 22. Let G be a Lie 2-group over G . Then the dual of its Lie 2-algebra G∗ is a Poisson 2-
group with respect to the vector space addition as group structure and with the classical Lie–
Poisson bracket as its Poisson structure. This follows from Theorem 11 by observing that the
coadjoint action G∗×G →G∗ of Definition 18 is multiplicative and hence the contraction map
Π] : T ∗G∗ ∼= G∗ ×G → TG is a groupoid morphism since it is just the associated infinitesimal
action.

The Lie algebroid structure induced by the Poisson bracket on the cotangent bundle of a
Poisson group is isomorphic to an infinitesimal Lie algebra action called dressing action [19]. If
G is a Poisson group, we have that the cotangent groupoid T ∗G is isomorphic to the product
groupoid G ×G∗ and, as a consequence of the previous observation and Theorem 11, there is a
Lie 2-algebra structure on G∗ in such a way that the dressing action Π] : T ∗G ∼=G ×G∗ → T G is a
groupoid morphism. Proposition 12 implies the following:

Corollary 23. Let G be a Poisson 2-group over G with tangent Lie bialgebroid (A, A∗) and let O be
an A∗-orbit on G. Then Ô is a symplectic groupoid. �

Now we shall see a situation in which the cotangent groupoid of a Poisson 2-group is integrable
by a double Lie groupoid. Suppose that a Lie 2-algebra G is such that there is also a Lie 2-algebra
structure on the 2-vector space G∗ with the property that (G,G∗) is a usual Lie bialgebra. Then
we say that (G,G∗) is a Lie 2-bialgebra [6]. The classical correspondence between Lie bialgebras
and 1-connected Poisson groups implies, in particular, that 1-connected Poisson 2-groups are
classified by Lie 2-bialgebras [6]. If (G,G∗) is a Lie 2-bialgebra, it is immediate to check that the
double G⊕G∗ with its classical Lie bracket [10, 13] is also a Lie 2-algebra.

Suppose that G and G∗ are 1-connected Poisson 2-groups which correspond to the Lie 2-
bialgebra (G,G∗). Then there are Lie 2-group morphisms i : G → D and j : G∗ → D, where D

is the 1-connected integration of the double G⊕G∗. Let us recall the integration of the Poisson
structures on Poisson groups given in [14]. We take

S = {(g ,u, v,h) ∈G ×G∗×G∗×G : i (g ) j (u) = i (v) j (h)}.

The source and target of this groupoid are the projections to G and the multiplication is given by

m((a,u, v,b), (b,u′, v ′,c)) = (a,uu′, v v ′,c);

see [13] for a description of the symplectic form on S . Since i and j are Lie 2-group morphisms,
we have that S is a double Lie groupoid with sides G and S0 = {(g ,u, v,h) ∈ G0 ×G∗

0 ×G∗
0 ×G0 :

i (g ) j (u) = i (v) j (h)} over G0, where G0 and G∗
0 denote the groups of units of the corresponding

Lie 2-groups. So in this situation we can apply Proposition 7 instead of Theorem 6 to deduce
that the S -orbits that pass through the units in G are symplectic groupoids, which is a stronger
statement than the one provided by Corollary 23.

Remark 24. The double Lie groupoid S is actually a double symplectic groupoid [14], i.e. its
symplectic form is multiplicative with respect to both groupoid structures on S . This means that
also S0 ⇒G0 is a Poisson groupoid. Therefore, Corollary 12 gives us another family of symplectic
groupoid as subgroupoids of S0 ⇒G0. It would be interesting to know whether Poisson 2-groups
are integrable by double symplectic groupoids in general.
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Example 25. In the case of Example 22, Proposition 7 implies that the whole coadjoint orbit of
a unit is a subgroupoid of G∗ and hence it is a symplectic groupoid. In fact, as we have seen, the
infinitesimal coadjoint action on G∗ is integrable by the double Lie groupoid

G∗×G //
//

�� ��

G∗

�� ��

h∗×G //
// h∗

given by the coadjoint action. The Poisson structures that these symplectic groupoids integrate
are the G-orbits in h∗ and these can be quite varied, for instance:

• if G∗ is isomorphic to the pair groupoid on the dual of a Lie algebra G∗ ∼= (g∗×g∗ ⇒ g∗),
then the symplectic groupoids that we get in this manner are the pair groupoids over the
coadjoint orbits in g∗ endowed with their canonical symplectic structures,

• if G∗ is given by a differential crossed module defined by the zero map 0 : h→ g, then the
coadjoint orbits of the units in G∗ integrate the null Poisson structures on the G-orbits
in h∗.

• Take V a symplectic vector space and let φ : h → g be the differential crossed module
associated to the Heisenberg Lie algebra h = V ×R, where g is the Lie algebra of deriva-
tions of h and φ is defined by u 7→ adu . In this case we can integrate h with the Heisen-
berg group H and we can integrate g with G = Aut(h). So we can see that there are three
kinds of G-orbits in h∗: two open orbits {(α,µ) ∈ h∗|µ 6= 0} isomorphic to V × (0,∞) with
its canonical Lie–Poisson structure and the orbits of the form O × {0} ⊂ h∗, where O is
an orbit of the linear symplectic group of V , which are endowed with the zero Poisson
bracket.
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