I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Robert Kurinczuk and Nadir Matringe
A characterization of the relation between two $\boldsymbol{\ell}$-modular correspondences
Volume 358, issue 2 (2020), p. 201-209.
https://doi.org/10.5802/crmath.33

© Académie des sciences, Paris and the authors, 2020.
Some rights reserved.
\leftrightarrow EX This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org

A characterization of the relation between two ℓ-modular correspondences

Une caractérisation de la relation entre deux correspondances ℓ-modulaires

Robert Kurinczuk ${ }^{a}$ and Nadir Matringe ${ }^{b}$
${ }^{a}$ Department of Mathematics, Imperial College London, SW7 2AZ. U.K.
${ }^{b}$ Université de Poitiers, Laboratoire de Mathématiques et Applications, Téléport 2 BP 30179, Boulevard Marie et Pierre Curie, 86962, Futuroscope Chasseneuil Cedex. France.

E-mails: robkurinczuk@gmail.com, nadir.matringe@math.univ-poitiers.fr.

Abstract

Let F be a non archimedean local field of residual characteristic p and ℓ a prime number different from p. Let V denote Vignéras' ℓ-modular local Langlands correspondence [7], between irreducible ℓ modular representations of $\mathrm{GL}_{n}(F)$ and n-dimensional ℓ-modular Deligne representations of the Weil group W_{F}. In [4], enlarging the space of Galois parameters to Deligne representations with non necessarily nilpotent operators allowed us to propose a modification of the correspondence of Vignéras into a correspondence C, compatible with the formation of local constants in the generic case. In this note, following a remark of Alberto Mínguez, we characterize the modification $\mathrm{C} \circ \mathrm{V}^{-1}$ by a short list of natural properties. Résumé. Soit F un corps local non archimédien de caractéristique résiduelle p et ℓ un nombre premier différent de p. Soit V la correspondance de Langlands ℓ-modulaire définie par Vignéras en [7], entre représentations irréductibles ℓ-modulaires de $\mathrm{GL}_{n}(F)$ et représentations de Deligne ℓ-modulaires de dimension n du groupe de Weil W_{F}. Dans [4], l'élargissement de l'espace des paramètres galoisiens aux représentations de Deligne à opérateur non nécessairement nilpotent, nous a permis de proposer une modification de la correspondance de Vignéras en une correpsondance notée C, compatible aux constantes locales des représentations génériques et de leur paramètre. Dans cette note rédigée à la suite d'une remarque d'Alberto Mínguez, nous caractérisons la modification $\mathrm{C} \circ \mathrm{V}^{-1}$ par une courte liste de propriétés naturelles. Funding. The authors were supported by the Anglo-Franco-German Network in Representation Theory and its Applications: EPSRC Grant EP/R009279/1, the GDRI "Representation Theory" 2016-2020, and the LMS (Research in Pairs).

Manuscript received 6th December 2019, revised and accepted 4th March 2020.

1. Introduction

Let F be a non-archimedean local field with finite residue field of cardinality q, a power of a prime p, and W_{F} the Weil group of F. Let ℓ be a prime number different from p. The ℓ-modular local Langlands correspondence established by Vignéras in [7] is a bijection from isomorphism classes of smooth irreducible representations of $\mathrm{GL}_{n}(F)$ and n-dimensional Deligne representations (Section 2.1) of the Weil group W_{F} with nilpotent monodromy operator. It is uniquely characterized by a non-naive compatibility with the ℓ-adic local Langlands correspondence ($[1,2,5,6])$ under reduction modulo ℓ, involving twists by Zelevinsky involutions. In [4], at the cost of having a less direct compatibility with reduction modulo ℓ, we proposed a modification of the correspondence V of Vignéras, by in particular enlarging its target to the space of Deligne representations with non necessarily nilpotent monodromy operator (it is a particularity of the ℓ-modular setting that such operators can live outside the nilpotent world). The modified correspondence C is built to be compatible with local constants on both sides of the corrspondence $([3,4])$ and we proved that it is indeed the case for generic representations in [4]. Here, we show in Section 3 that if we expect a correspondence to have such a property, and some other natural properties, then it will be uniquely determined by V . Namely we characterize the map $\mathrm{C} \circ \mathrm{V}^{-1}$ by a list of five properties in Theorem 8. The map $\mathrm{C} \circ \mathrm{V}^{-1}$ endows the image of C with a semiring structure because the image of V is naturally equipped with semiring laws. We end this note by studying this structure from a different point of view in Section 4.

2. Preliminaries

Let $v: \mathrm{W}_{F} \rightarrow \overline{\mathbb{F}}_{\ell} \times$ be the unique character trivial on the inertia subgroup of W_{F} and sending a geometric Frobenius element to q^{-1}, it corresponds to the normalized absolute value $v: F^{\times} \rightarrow$ $\bar{F}_{\ell} \times$ via local class field theory.

We consider only smooth representations of locally compact groups, which unless otherwise stated will be considered on $\overline{\mathbb{F}_{\ell}}$-vector spaces. For \mathscr{G} a locally compact topological group, we let $\operatorname{Irr}(\mathscr{G})$ denote the set of isomorphism classes of irreducible representations of \mathscr{G}.

2.1. Deligne representations

We follow [4, Section 4], but slightly simplify some notation. A Deligne-representation of W_{F} is a pair (Φ, U) where Φ is a finite dimensional semisimple representation of W_{F}, and $U \in$ $\operatorname{Hom}_{W_{F}}(v \Phi, \Phi)$; we call (Φ, U) nilpotent if U is a nilpotent endomorphism over $\overline{\mathbb{F}_{\ell}}$.

The set of morphisms between Deligne representations (Φ, U), $\left(\Phi^{\prime}, U^{\prime}\right)$ (of W_{F}) is given by $\operatorname{Hom}_{\mathrm{D}}\left(\Phi, \Phi^{\prime}\right)=\left\{f \in \operatorname{Hom}_{\mathrm{W}_{F}}\left(\Phi, \Phi^{\prime}\right): f \circ U=U^{\prime} \circ f\right\}$. This leads to notions of irreducible and indecomposable Deligne representations. We refer to [4, Section 4], for the (standard) definitions of dual and direct sums of Deligne representations.

We let $\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ denote the set of isomorphism classes of Deligne-representations; and $\operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\left(\right.$ resp. $\left.\mathrm{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right), \mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ denote the set of isomorphism classes of indecomposable (resp. irreducible, nilpotent) Deligne representations. Thus

$$
\operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right) \subset \operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right) \subset \operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right), \quad \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right) \subset \operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right) .
$$

Let $\operatorname{Rep}_{\mathrm{ss}}\left(\mathrm{W}_{F}\right)$ denote the set of isomorphism classes of semisimple representations of W_{F}, we have a canonical map $\operatorname{Supp}_{\mathrm{W}_{F}}: \operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow \operatorname{Rep}_{\mathrm{ss}}\left(\mathrm{W}_{F}\right),(\Phi, U) \mapsto \Phi$; we call Φ the W_{F}-support of (Φ, U).

For $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$ we denote by $o(\Psi)$ the cardinality of the irreducible line $\mathbb{Z}_{\Psi}=\left\{v^{k} \Psi, k \in \mathbb{Z}\right\}$; it divides the order of q in $\mathbb{F}_{\ell}^{\times}$hence is prime to ℓ. We let $\mathfrak{l}\left(\mathrm{W}_{F}\right)=\left\{\mathbb{Z} \Psi: \Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)\right\}$.

The fundamental examples of non-nilpotent Deligne representation are the cycle representations: let I be an isomorphism from $v^{o(\Psi)} \Psi$ to Ψ and define $\mathscr{C}(\Psi, I)=\left(\Phi(\Psi), C_{I}\right) \in \operatorname{Rep}_{\mathrm{ss}}\left(\mathrm{D}, \overline{\mathbb{F}_{\ell}}\right)$ by

$$
\Phi(\Psi)=\bigoplus_{k=0}^{o(\Psi)-1} v^{k} \Psi, \quad C_{I}\left(x_{0}, \ldots, x_{o(\Psi)-1}\right)=\left(I\left(x_{o(\Psi)-1}\right), x_{0}, \ldots, x_{o(\Psi)-2}\right), x_{k} \in v^{k} \Psi
$$

Then $\mathscr{C}(\Psi, I) \in \operatorname{Irr}_{\text {ss }}\left(\mathrm{D}, \overline{\mathbb{F}}_{\ell}\right)$ and its isomorphism class only depends on $\left(\mathbb{Z}_{\Psi}, I\right)$, by [4, Proposition 4.18].

To remove dependence on I, in [4, Definition 4.6 and Remark 4.9] we define an equivalence relation \sim on $\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$. We say that

$$
\left(\Phi_{1}, U_{1}\right) \sim\left(\Phi_{2}, U_{2}\right)
$$

for $\left(\Phi_{i}, U_{i}\right) \in \operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ if they both admit a decomposition (it is unique up to re-ordering)

$$
\left(\Phi_{i}, U_{i}\right)=\oplus_{k=1}^{r_{i}}\left(\Phi_{i, k}, U_{i, k}\right)
$$

as a direct sum of elements in $\operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$, such that $r_{1}=r_{2}=: r$ and for $k=1, \ldots, r$ there exists $\lambda_{k} \in \overline{\mathbb{F}}_{\ell}{ }^{\times}$such that

$$
\left(\Phi_{2, k}, U_{2, k}\right) \simeq\left(\Phi_{1, k}, \lambda_{k} U_{1, k}\right) .
$$

The equivalence class of $\mathscr{C}(\Psi, I)$ is independent of I, and we set

$$
\mathscr{C}\left(\mathbb{Z}_{\Psi}\right):=[\mathscr{C}(\Psi, I)] \in\left[\operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right] .
$$

The sets $\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right), \operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right), \operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$, and $\operatorname{Nilp} \mathrm{p}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ are unions of $\sim-c l a s s e s, ~ a n d ~$ if X denotes any of them we set $[X]:=X / \sim$. Similarly, for $(\Phi, U) \in \operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ we write $[\Phi, U]$ for its equivalence class in $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$. On Nilp $\mathrm{D}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ the equivalence relation \sim coincides with equality.

The operations \oplus and $(\Phi, U) \mapsto(\Phi, U)^{\vee}$ on $\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ descend to $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$. Tensor products are more subtle; for example, tensor products of semisimple representations of W_{F} are not necessarily semisimple. We define a semisimple tensor product operation \otimes_{ss} on $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ in [4, Section 4.4], turning $\left(\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right], \oplus, \otimes_{\mathrm{ss}}\right)$ into an abelian semiring.

The basic non-irreducible examples of elements of $\mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ are called segments: For $r \geqslant 1$, set $[0, r-1]:=(\Phi(r), N(r))$, where

$$
\Phi(r)=\bigoplus_{k=0}^{r-1} v^{k}, \quad N(r)\left(x_{0}, \ldots, x_{r-1}\right)=\left(0, x_{0}, \ldots, x_{r-2}\right), x_{k} \in v^{k} .
$$

We now recall the classification of equivalence classes of Deligne representations of W_{F} of [4].

Theorem 1 ($[4$, Section 4]).

(1) Let $\Phi \in \operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$, then there is either a unique $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$ such that $\Phi=\Psi$, or a unique irreducible line \mathbb{Z}_{Ψ} such that $[\Phi]=\mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$.
(2) Let $[\Phi, U] \in\left[\operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$, then there exist a unique $r \geqslant 1$ and a unique $\Theta \in\left[\operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ such that $[\Phi, U]=[0, r-1] \otimes_{\mathrm{ss}} \Theta$.
(3) Let $[\Phi, U] \in\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$, there exist $\left[\Phi_{i}, U_{i}\right] \in\left[\operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ for $1 \leqslant i \leqslant r$ such that $[\Phi, U]=\oplus_{i=1}^{r}\left[\Phi_{i}, U_{i}\right]$.
We recall the following classical result about tensor products of segments.
Lemma 2. For $n \geqslant m \geqslant 1$, one has

$$
[0, n-1] \otimes_{\text {ss }}[0, m-1]=[0, n+m-2] \oplus[1, n+m-3] \oplus \cdots \oplus[m-1, n-1] .
$$

Proof. Denote by $v_{\overline{\mathbb{Q}_{\ell}}}$ the normalized absolute value of W_{F} with values in $\overline{\mathbb{Q}}_{\ell} \times$, and by $[0, i-1] \overline{\mathbb{Q}_{\ell}}$ the ℓ-adic Deligne representation with W_{F}-support $\oplus_{k=0}^{i-1} v_{\overline{\mathbb{Q}_{\ell}}}^{i}$ and nilpotent operator $N(i) \frac{\mathbb{Q}_{\ell}}{}$ sending $\left(x_{0}, \ldots, x_{i-1}\right)$ to $\left(0, x_{0}, \ldots, x_{i-2}\right)$. The relation

$$
\begin{equation*}
[0, n-1]_{\overline{\mathbb{Q}_{\ell}}} \otimes[0, m-1]_{\overline{\mathbb{Q}_{\ell}}}=[0, n+m-2]_{\overline{\mathbb{Q}_{\ell}}} \oplus[1, n+m-3]_{\overline{\mathbb{Q}}_{\ell}} \oplus \cdots \oplus[m-1, n-1]_{\overline{\mathbb{Q}_{\ell}}} \tag{1}
\end{equation*}
$$

can be translated into a statement on tensor product of irreducible representations of $\mathrm{SL}_{2}(\mathbb{C})$, which is well-known and easily checked by the highest weight theory. Because all powers of $v_{\overline{\mathbb{Q}_{\ell}}}$ take values in $\overline{\mathbb{Z}}_{\ell}{ }^{\times}$, the canonical $\overline{\mathbb{Z}_{\ell}}$-lattice in $\oplus_{k=0}^{i-1} v_{\overline{\mathbb{Q}_{\ell}}}^{i}$ is stable under both the actions of W_{F} and $N(i)_{\overline{Q_{\ell}}}$, and this defines a $\overline{\mathbb{Z}_{\ell}}$-Deligne representation $[0, i-1]_{\overline{\mathbb{Z}_{\ell}}}$. Taking the canonical lattices on both sides of Equation (1) we get

$$
\begin{equation*}
[0, n-1]_{\overline{\mathbb{Z}_{\ell}}} \otimes[0, m-1]_{\overline{\mathbb{Z}_{\ell}}}=[0, n+m-2]_{\overline{\mathbb{Z}}_{\ell}} \oplus[1, n+m-3]_{\overline{\mathbb{Z}}_{\ell}} \oplus \cdots \oplus[m-1, n-1]_{\overline{\mathbb{Z}_{\ell}}} \tag{2}
\end{equation*}
$$

Now tensoring Equation (2) by $\overline{\mathbb{F}_{\ell}}$ we obtain the relation

$$
[0, n-1] \otimes[0, m-1]=[0, n+m-2] \oplus[1, n+m-3] \oplus \cdots \oplus[m-1, n-1]
$$

Finally by definition (see [4, Defintion 4.37]) one has $[0, n-1] \otimes_{\text {ss }}[0, m-1]=[0, n-1] \otimes[0, m-1]$, hence the sought equality.

2.2. L-factors

We set $\operatorname{Irr}_{\text {cusp }}(\mathrm{GL}(F)):=\coprod_{n \geqslant 0} \operatorname{Irr}_{\text {cusp }}\left(\mathrm{GL}_{n}(F)\right)$ where $\operatorname{Irr}_{\text {cusp }}\left(\mathrm{GL}_{n}(F)\right)$ is the set of isomorphism classes of irreducible cuspidal representations of $\mathrm{GL}_{n}(F)$.

Let π and π^{\prime} be a pair of cuspidal representations of $\mathrm{GL}_{n}(F)$ and $\mathrm{GL}_{m}(F)$ respectively. We denote by $\mathrm{L}\left(X, \pi, \pi^{\prime}\right)$ the Euler factor attached to this pair in [3] via the Rankin-Selberg method, it is a rational function of the form $\frac{1}{Q(X)}$ where $Q \in \overline{\mathbb{F}_{\ell}}[X]$ satisfies $Q(0)=1$. We recall that a cuspidal representation of $\mathrm{GL}_{n}(F)$ is called banal if $v \otimes \pi \neq \pi$. The following is a part of [3, Theorem 4.9].
Proposition 3. Let $\pi, \pi^{\prime} \in \operatorname{Irr}_{\text {cusp }}(\mathrm{GL}(F))$. If π or π^{\prime} is non-banal, then $\mathrm{L}\left(X, \pi, \pi^{\prime}\right)=1$.
Let $[\Phi, U] \in\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$, for brevity from now on we often denote such a class just by Φ, we denote by $\mathrm{L}(X, \Phi)$ the L -factor attached to it in [4, Section 5], their most basic property is that

$$
\mathrm{L}\left(X, \Phi \oplus \Phi^{\prime}\right)=\mathrm{L}(X, \Phi) \mathrm{L}\left(X, \Phi^{\prime}\right)
$$

for Φ and Φ^{\prime} in $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$. We need the following property of such factors.
Lemma 4. Let $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$ and $a \leqslant b$ be integers, put $\Phi=[a, b] \otimes_{\mathrm{sS}} \Psi$ and $\Phi^{\prime}=[-b,-a] \otimes_{\mathrm{SS}} \Psi^{\vee}$, then $\mathrm{L}\left(X, \Phi \otimes_{\mathrm{ss}} \Phi^{\prime}\right)$ has a pole at $X=0$.
Proof. According to [4, Lemma 5.7], it is sufficient to prove that $\mathrm{L}\left(X, \Psi \otimes_{\mathrm{ss}} \Psi^{\vee}\right)$ has a pole at $X=0$ for $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$, but this property follows from the definition of the L-factor in question, and the fact that $\Psi \otimes_{\mathrm{ss}} \Psi^{\vee}$ contains a nonzero vector fixed by W_{F}.

2.3. The map CV

For $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$ we set $\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)=\bigoplus_{k=0}^{o(\Psi)-1} v^{k} \Psi$. By Theorem 1, an element $\Phi \in \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ has a unique decomposition

$$
\Phi=\Phi_{\mathrm{acyc}} \oplus \bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathrm{l}\left(\mathrm{~W}_{F}\right)}[0, k-1] \otimes_{\mathrm{SS}} n_{\mathbb{Z}_{\Psi}, k} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)
$$

where for all $k \geqslant 1$ and $\mathbb{Z}_{\Psi} \in \mathfrak{l}\left(\mathrm{W}_{F}\right), \Phi_{\text {acyc }}$ has no summand isomorphic to $[0, k-1] \otimes_{\text {Ss }} \operatorname{St}_{0}(\mathbb{Z} \Psi) ;$ i.e. we have separated Φ into an acyclic and a cyclic part. Then following [4, Section 6.3], we set:

$$
\mathrm{CV}(\Phi)=\Phi_{\mathrm{acyc}} \oplus \bigoplus_{k \geqslant 1, \mathbb{Z} \Psi \in \mathfrak{l}\left(\mathrm{~W}_{F}\right)}[0, k-1] \otimes_{\mathrm{SS}} n_{\mathbb{Z}_{\Psi}, k} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)
$$

We denote by $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ the image of $\mathrm{CV}: \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$, and call $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ the set of C -parameters.

2.4. ℓ-modular local Langlands

We let $\operatorname{Irr}(\mathrm{GL}(F))=\amalg_{n \geqslant 0} \operatorname{Irr}\left(\mathrm{GL}_{n}(F)\right)$ where $\operatorname{Irr}\left(\mathrm{GL}_{n}(F)\right)$ denotes the set of isomorphism classes of irreducible representations of $\mathrm{GL}_{n}(F)$.

In [7], Vignéras introduces the ℓ-modular local Langlands correspondence: a bijection

$$
\mathrm{V}: \operatorname{Irr}(\mathrm{GL}(F)) \rightarrow \mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}},
$$

characterized in a non-naive way by reduction modulo ℓ. For this note, we recall $\operatorname{Supp}_{\mathrm{W}_{F}} \circ \mathrm{~V}$, the semisimple ℓ-modular local Langlands correspondence of Vignéras, induces a bijection between supercuspidal supports elements of $\operatorname{Irr}\left(\mathrm{GL}_{n}(F)\right)$ and $\operatorname{Rep}_{\mathrm{ss}}\left(\mathrm{W}_{F}\right)$ compatible with reduction modulo ℓ.

In [4], we introduced the bijection

$$
\mathrm{C}=\mathrm{CV} \circ \mathrm{~V}: \operatorname{Irr}(\mathrm{GL}(F)) \rightarrow \mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right) ;
$$

which satisfies $\operatorname{Supp}_{\mathrm{W}_{F}} \circ \mathrm{~V}=\operatorname{Supp}_{\mathrm{W}_{F}} \circ \mathrm{C}$. Moreover, the correspondence C is compatible with the formation of L-factors for generic representations, a property V does not share; in the cuspidal case:
Proposition 5 ([4, Proposition 6.13]). For π and π^{\prime} in $\operatorname{Irr}_{\operatorname{cusp}}(\operatorname{GL}(F))$ one has $\mathrm{L}\left(X, \pi, \pi^{\prime}\right)=$ $\mathrm{L}\left(X, \mathrm{C}(\pi), \mathrm{C}\left(\pi^{\prime}\right)\right)$.

We note another characterization of non-banal cuspidal representations:
Proposition 6 ($\left[4\right.$, Sections 3.2 and 6.2]). A representation $\pi \in \operatorname{Irr}_{\text {cusp }}(\operatorname{GL}(F))$ is non-banal if and only if $\mathrm{V}(\pi)=\ell^{k} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)$, or equivalently $\mathrm{C}(\pi)=\ell^{k} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$, for some $k \geqslant 0$ and $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$.

Amongst non-banal cuspidal representations, those for which $k=0$ in the above statement, shall play a special role in our characterization. We denote by $\operatorname{Irr}_{\text {cusp }}^{\star}(\operatorname{GL}(F))$ the subset of $\operatorname{Irr}_{\text {cusp }}(\mathrm{GL}(F))$ consisting of those $\pi \in \operatorname{Irr}_{\text {cusp }}(\mathrm{GL}(F))$ such that $\mathrm{C}(\pi)=\mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$, for some $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$

3. The characterization

In this section, we provide a list of natural properties which characterize CV : $\operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow$ $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$.
Proposition 7. Let $\mathrm{CV}^{\prime}: \mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ be any map, and $\mathrm{C}^{\prime}:=\mathrm{CV}^{\prime} \circ \mathrm{V}$. Suppose
(i) $\operatorname{Supp}_{\mathrm{w}_{F}} \circ \mathrm{C}^{\prime}$ is the semisimple ℓ-modular local Langlands correspondence of Vignéras; in other words, CV^{\prime} preserves the W_{F}-support;
(ii) C^{\prime} (or equivalently CV^{\prime}) commutes with taking duals;
(iii) $\mathrm{L}\left(X, \pi, \pi^{\vee}\right)=\mathrm{L}\left(X, \mathrm{C}^{\prime}(\pi), \mathrm{C}^{\prime}(\pi)^{\vee}\right)$ for all non-banal representations $\pi \in \operatorname{Irr}_{\text {cusp }}^{\star}(\operatorname{GL}(F))$.

Then for all $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$, one has $\mathrm{CV}^{\prime}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)=\mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$.
Proof. Thanks to (i), $\mathrm{CV}^{\prime}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)$ has W_{F}-support $\oplus_{k=0}^{o(\Psi)-1} v^{k} \Psi$. Hence, by Theorem 1, its image under CV^{\prime} is either $\mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$ or a sum of Deligne representations of the form $[a, b] \otimes_{\mathrm{SS}} \Psi$ for $0 \leqslant a \leqslant b \leqslant o(\Psi)-1$. If we are in the second situation, writing $\mathrm{CV}^{\prime}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)=\left([a, b] \otimes_{\text {SS }} \Psi\right) \oplus W$, we have $\mathrm{CV}^{\prime}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)^{\vee}=\left([-b,-a] \otimes_{\mathrm{SS}} \Psi^{\vee}\right) \oplus W^{\vee}$, thanks to (ii). However, writing τ for the nonbanal cuspidal representation $\mathrm{V}^{-1}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)$, we have $\mathrm{L}\left(X, \tau, \tau^{\vee}\right)=1$ according to Theorem 3 and Proposition 6, whereas

$$
\begin{aligned}
\mathrm{L}\left(X, \mathrm{C}(\tau), \mathrm{C}\left(\tau^{\vee}\right)\right) & =\mathrm{L}\left(X,\left(\left([a, b] \otimes_{\mathrm{ss}} \Psi\right) \oplus W\right) \otimes_{\mathrm{ss}}\left(\left([-b,-a] \otimes_{\mathrm{ss}} \Psi^{\vee}\right) \oplus W^{\vee}\right)\right) \\
& =\mathrm{L}\left(X,\left([a, b] \otimes_{\mathrm{ss}} \Psi\right) \otimes_{\mathrm{sS}}\left([-b,-a] \otimes_{\mathrm{ss}} \Psi^{\vee}\right)\right) \mathrm{L}^{\prime}(X)
\end{aligned}
$$

for $\mathrm{L}^{\prime}(X)$ an Euler factor. Now, observe that $\mathrm{L}\left(X,\left([a, b] \otimes_{\mathrm{SS}} \Psi\right) \otimes_{\mathrm{SS}}\left([-b,-a] \otimes_{\mathrm{SS}} \Psi^{\vee}\right)\right)$ has a pole at $X=0$ according to Lemma 4 , hence cannot be equal to 1 . The conclusion of this discussion, according to (iii) is $\mathrm{CV}^{\prime}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)\right)=\mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$.

It follows that (i)-(iii) characterize $\mathrm{C}_{\mathrm{Irrcusp}^{\star}(\mathrm{GL}(F))}$ without reference to Vignéras' correspondence V.

On the other hand any map CV^{\prime} satisfying (i)-(iii) must send each $v^{k} \Psi$ to itself if $o(\Psi)>1$ by (i). So there is no chance that CV^{\prime} will preserve direct sums because $\oplus_{k=0}^{o(\Psi)-1} \mathrm{CV}^{\prime}\left(v^{k} \Psi\right) \neq \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$. In particular any compatibility property of CV^{\prime} with direct sums will have to be non-naive. Here is our characterization of the map CV:

Theorem 8. Suppose $\mathrm{CV}^{\prime}: \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ satisfies (i)-(iii) of Proposition 7, and suppose moreover
(a) If $\Phi^{\prime} \in \operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ and $\Phi^{\prime}=\Phi_{1}^{\prime} \oplus \Phi_{2}^{\prime}$ in $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ then $\Phi_{1}^{\prime}, \Phi_{2}^{\prime} \in \operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$. Moreover, if $\Phi^{\prime}=$ $\mathrm{CV}^{\prime}(\Phi), \Phi_{i}^{\prime}=\mathrm{CV}^{\prime}\left(\Phi_{i}\right)$ for $\Phi, \Phi_{i} \in \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$, and $\Phi^{\prime}=\Phi_{1}^{\prime} \oplus \Phi_{2}^{\prime}$, then $\Phi=\Phi_{1} \oplus \Phi_{2}$.
(b) $\mathrm{CV}^{\prime}\left([0, j-1] \otimes_{\mathrm{ss}} \Phi\right)=[0, j-1] \otimes_{\mathrm{ss}} \mathrm{CV}^{\prime}(\Phi)$ for $j \in \mathbb{N}_{\geqslant 1}$ and $\Phi \in \mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$.

Then $\mathrm{CV}^{\prime}=\mathrm{CV}$.
Proof. For $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right)$, it follows at once from Proposition 7 and (b) that

$$
\begin{aligned}
\mathrm{CV}^{\prime}\left([0, j-1] \otimes_{\mathrm{ss}} \Psi\right) & =[0, j-1] \otimes_{\mathrm{ss}} \Psi, \quad \text { if } o(\Psi)>1 \text { and } \\
\mathrm{CV}^{\prime}\left([0, j-1] \otimes_{\mathrm{ss}} \mathrm{St}_{0}(\mathbb{Z} \Psi)\right) & =[0, j-1] \otimes_{\mathrm{ss}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right) .
\end{aligned}
$$

Next we prove that $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right) \subset \mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$. By (a), an element of $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ can be decomposed as a direct sum of elements in $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right) \cap\left[\operatorname{Indec} \mathrm{c}_{\mathrm{D}, \mathrm{ss}}\right]$, and (a) reduces the proof of the inclusion $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right) \subset \mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ to showing that $[0, j-1] \otimes_{\mathrm{ss}} \mathrm{St}(\Psi) \notin \operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ for $\Psi \in \operatorname{Irr}\left(\mathrm{W}_{F}\right), j \geqslant 1$.

We first assume that $o(\Psi)=1$, so $\mathrm{St}_{0}(\Psi)=\Psi$. The only possible pre-image of Ψ by CV^{\prime} is Ψ
 $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ for $j \geqslant 2$, then by (b) this would imply that $[0, j-1] \otimes_{\mathrm{SS}}[0, j-1] \otimes_{\mathrm{ss}} \Psi \in \operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$, hence that

$$
[0, j-1] \otimes_{\mathrm{ss}}[0, j-1] \otimes_{\mathrm{ss}} \Psi=[0,2 j-2] \otimes_{\mathrm{sS}} \Psi \oplus \cdots \oplus[j-1, j-1] \otimes_{\mathrm{sS}} \Psi
$$

also belongs to $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ thanks to Lemma 2. However as $o(\Psi)=1$, the Deligne representation $[j-1, j-1] \otimes_{\text {ss }} \Psi$ is nothing else than Ψ, which does not belong to $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$, contradicting (a).

If $o(\Psi)>1$, then $\mathrm{CV}^{\prime}\left(v^{k} \Psi\right)=v^{k} \Psi$. If $\mathrm{St}_{0}(\Psi)$ belonged to $\operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ then (a) would imply that $\mathrm{St}_{0}(\Psi)=\mathrm{CV}^{\prime}\left(\oplus_{k=0}^{o(\Psi)-1} v^{k} \Psi\right)$, which is not the case thanks to Proposition 7. To see that $[0, j-1] \otimes_{\mathrm{sS}} \mathrm{St}_{0}(\Psi) \notin \operatorname{Im}\left(\mathrm{CV}^{\prime}\right)$ for all $j \geqslant 2$ we use the same trick as in the $o(\Psi)=1$ case.

Now take $\Phi \in \operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}$, as we just noticed $\mathrm{CV}^{\prime}(\Phi)$ is a C-parameter and we write it

$$
\mathrm{CV}^{\prime}(\Phi)=\mathrm{CV}^{\prime}(\Phi)_{\mathrm{acyc}} \oplus \bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathrm{I}\left(W_{F}\right)}[0, k-1] \otimes_{\mathrm{ss}} n_{\mathbb{Z}_{\Psi}, k} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)
$$

as in Section 2.3, where for each irreducible line \mathbb{Z}_{Ψ} we have fixed an irreducible $\Psi \in \mathbb{Z}_{\Psi}$. Then (a) and the beginning of the proof imply that

$$
\Phi=\mathrm{CV}^{\prime}(\Phi)_{\mathrm{acyc}} \bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathrm{l}\left(\mathrm{~W}_{F}\right)}[0, k-1] \otimes_{\mathrm{ss}} n_{\mathbb{Z} \Psi, k} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right),
$$

hence that $\mathrm{CV}^{\prime}(\Phi)=\mathrm{CV}(\Phi)$.

4. The semiring structure on the space of C-parameters

As $\left(\operatorname{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right), \oplus, \otimes_{\mathrm{ss}}\right)$ is a semiring, the map CV endows $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ with a semiring structure by transport of structure. We show that this semiring structure on $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ can be obtained without referring to CV directly, thus shedding a slightly different light on the map CV.

We denote by $\mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ the Grothendieck group of the monoid $\left(\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right], \oplus\right)$. We set

$$
\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right)=\left\langle[0, k-1] \otimes_{\mathrm{SS}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)-[0, k-1] \otimes_{\mathrm{ss}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)\right\rangle_{\mathbb{Z}_{\Psi} \in \mathrm{l}\left(\mathrm{~W}_{F}\right), k \in \mathbb{N}_{\geqslant 1}},
$$

the additive subgroup of $\mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ generated by the differences $[0, k-1] \otimes_{\mathrm{ss}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)-[0, k-$ $1] \otimes_{\text {SS }} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)$ for $\mathbb{Z}_{\Psi} \in \mathfrak{l}\left(\mathrm{W}_{F}\right)$ and $k \in \mathbb{N} \geqslant 1$.

Proposition 9. The canonical map $h_{\mathrm{C}}: \mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \rightarrow \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right) / \mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$, obtained by composing the canonical projection $h: \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right) \rightarrow \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right) / \mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ with the natural injection of $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right) \hookrightarrow \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$, is injective. Moreover, its image is stable under the operation \oplus. In particular, this endows the set $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ with a natural monoid structure.

Proof. Note that h_{C} is the restriction of the canonical surjection h to $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$. Let Φ, Φ^{\prime} be Cparameters, as in Section 2.3 and the last proof, we write

$$
\left.\begin{array}{l}
\Phi=\bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathrm{l}\left(\mathrm{~W}_{F}\right)}[0, k-1] \otimes_{\mathrm{SS}}\left(\left({\underset{i=0}{o\left(\mathbb{Z}_{\Psi}\right)-1} m_{\mathbb{Z}_{\Psi}, k, i} i}{ }^{i} \Psi\right) \oplus n_{\mathbb{Z}_{\Psi}, k} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)\right. \\
\Phi^{\prime}=\bigoplus_{k \geqslant 1, \mathbb{Z} \in \mathrm{I}\left(\mathrm{~W}_{F}\right)}[0, k-1] \otimes_{\mathrm{SS}}\left(\left(\bigoplus_{i=0}^{o\left(\mathbb{Z}_{\Psi}\right)-1} m_{\mathbb{Z}_{\Psi}, k, i}^{\prime} i^{i} \Psi\right) \oplus n_{\mathbb{Z}_{\Psi}, k}^{\prime} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)\right.
\end{array}\right)
$$

where for each $\left(\mathbb{Z}_{\Psi}, k\right)$, there are i, i^{\prime} such that $m_{\mathbb{Z}_{\Psi}, k, i}=0$ and $m_{\mathbb{Z}_{\Psi}, k, i^{\prime}}^{\prime}=0$. Suppose that both Φ and Φ^{\prime} have same the image under h_{C}, then $\Phi^{\prime}-\Phi \in \operatorname{Ker}(h)=\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$. We thus get an equality of the form

$$
\Phi-\Phi^{\prime}=\bigoplus_{k \geqslant 1, \mathbb{Z}_{\Psi} \in \mathrm{l}\left(\mathrm{~W}_{F}\right)} a_{\mathbb{Z}_{\Psi}, k}\left([0, k-1] \otimes_{\mathrm{SS}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)-[0, k-1] \otimes_{\mathrm{SS}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)\right),
$$

where all sums are finite. Set J^{+}to be the set of pairs (\mathbb{Z}_{Ψ}, k) such that $a_{\mathbb{Z}_{\Psi}, k} \geqslant 0$ and J^{-}to be the set of pairs $\left(\mathbb{Z}_{\Psi}, k\right)$ such that $b_{\mathbb{Z}_{\Psi}, k}:=-a_{\mathbb{Z}_{\Psi}, k}>0$. We obtain

$$
\begin{aligned}
\Phi \oplus \bigoplus_{\left(\mathbb{Z}_{\Psi}, k\right) \in J^{-}} b_{\mathbb{Z}_{\Psi}, k}[0, k-1] \otimes_{\mathrm{SS}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right) \oplus \oplus & \bigoplus_{\left(\mathbb{Z}_{\Psi}, k\right) \in J^{+}} a_{\mathbb{Z}_{\Psi}, k}[0, k-1] \otimes_{\mathrm{SS}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right) \\
& =\Phi^{\prime} \oplus \bigoplus_{\left(\mathbb{Z}_{\Psi}, k\right) \in J^{-}} b_{\mathbb{Z}_{\Psi}, k}[0, k-1] \otimes_{\mathrm{SS}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right) \oplus \bigoplus_{\left(\mathbb{Z}_{\Psi}, k\right) \in J^{+}} a_{\mathbb{Z}_{\Psi}, k}[0, k-1] \otimes_{\mathrm{SS}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right)
\end{aligned}
$$

in $\left[\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$. Now take $\left(\mathbb{Z}_{\Psi}, k\right) \in J^{+}$, there is i such that $m_{\mathbb{Z}}, k, i=0$. Comparing the occurence of $[0, k-1] \otimes_{\mathrm{ss}} v^{i} \Psi$ on the left and right hand sides of the equality we obtain

$$
0=m_{\mathbb{Z}_{\Psi}, k, i}^{\prime}+a_{\mathbb{Z}_{\Psi}, k} \Rightarrow a_{\mathbb{Z}_{\Psi}, k}=0
$$

Hence we just proved thet $a_{\mathbb{Z} \Psi, k}=0$ for all $\left(\mathbb{Z}_{\Psi}, k\right) \in J^{+}$. The symmetric argument shows that for $\left(\mathbb{Z}_{\Psi}, k\right) \in J^{-}$, there is i^{\prime} such that

$$
m_{\mathbb{Z}_{\psi}, k, i^{\prime}}+b_{\mathbb{Z}_{\Psi}, k}=0 \Rightarrow b_{\mathbb{Z}_{\Psi}, k}=0,
$$

which is impossible by assumption. Hence $J=J^{+}$and $a_{\mathbb{Z}_{\Psi}, k}=0$ for all $\mathbb{Z}_{\Psi} \in J$, which implies $\Phi=\Phi^{\prime}$, so h_{C} is indeed injective.

For the next assertion, suppose that $h_{\mathrm{C}}\left(\oplus_{\Phi \in\left[\operatorname{Indec} \mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]} n_{\Phi} \Phi\right) \in \operatorname{Im}\left(h_{\mathrm{C}}\right)$. Take $\Phi_{0} \in$ [Indec $\left.{ }_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right]$ and consider $\left.h_{\mathrm{C}}\left(\oplus_{\Phi \in[\operatorname{Indec}}^{\mathrm{D}, \mathrm{ss}} \mathrm{W}_{F}\right]{ }^{\left(n_{\Phi}\right.} \Phi\right) \oplus h_{\mathrm{C}}\left(\Phi_{0}\right)$. If Φ_{0} "completes a cycle" of $\oplus_{\Phi \in \text { Indec }_{\text {D.ss }}\left(\mathrm{W}_{F}\right)} n_{\Phi} \Phi$, i.e. if $\Phi_{0}=[0, k] \otimes_{\text {sS }} \Psi$ with Ψ an irreducible representation Ψ of W_{F}, and if all other elements of $[0, k] \otimes_{\text {ss }} \mathbb{Z}_{\Psi}$ appear in $\oplus_{\Phi \in \operatorname{Indec}}^{\mathrm{D}, \text { ss }}\left(\mathrm{W}_{F}\right) n_{\Phi} \Phi$ as representations $[0, k] \otimes_{\mathrm{Ss}} v^{j} \Psi$ with corresponding multiplicities $n_{[0, k] \otimes_{\mathrm{ss}} \nu} \nu^{j} \Psi \geqslant 1$, then setting $I=\left\{[0, k] \otimes_{\mathrm{ss}} \nu^{j} \Psi, j=1, \ldots, o(\Psi)-1\right\}$, one gets

$$
h_{\mathrm{C}}\left(\oplus_{\Phi \in\left[\operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right]} n_{\Phi} \Phi\right) \oplus h_{\mathrm{C}}\left(\Phi_{0}\right)=h_{\mathrm{C}}\left(\oplus_{\Phi \notin I} n_{\Phi} \Phi \oplus \oplus_{\Phi \in I}\left(n_{\Phi}-1\right) \Phi \oplus \mathscr{C}\left(\mathbb{Z}_{\Psi}\right)\right) .
$$

If Φ_{0} does not complete a cycle, one has

$$
\left.h_{\mathrm{C}}\left(\oplus_{\Phi \in[\operatorname{Indec}}^{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right] ~ n_{\Phi} \Phi\right) \oplus h_{\mathrm{C}}\left(\Phi_{0}\right)=h_{\mathrm{C}}\left(\oplus_{\Phi \in \operatorname{Indec}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)} n_{\Phi} \Phi \oplus \Phi_{0}\right) .
$$

The assertion follows by induction.
In fact the tensor product operation descends on $\operatorname{Im}\left(h_{\mathrm{C}}\right)$.
Proposition 10. The additive subgroup $\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ of the ring $\mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ is in fact an ideal. Moreover $\operatorname{Im}\left(h_{\mathrm{C}}\right)$ is stable under \otimes_{ss}. In particular this endows $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ with a natural semiring structure, and h_{C} becomes a semiring isomorphism from $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ to $\operatorname{Im}\left(h_{\mathrm{C}}\right)$.

Proof. For the first part, taking $\Psi_{0} \in \operatorname{Irr}\left(\mathrm{~W}_{F}\right)$, it is enough to prove that for any $\Phi_{1} \in \operatorname{Irr}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ and $k, l \geqslant 0$, the tensor product $[0, k] \otimes_{\text {ss }}\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right)-\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right)\right) \otimes_{\mathrm{SS}}[0, l] \otimes_{\mathrm{ss}} \Phi_{1}$ belongs to $\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$. By associativity and commutativity of tensor product, and because $[0, i] \otimes_{\mathrm{ss}}[0, j]$ is always a sum of segments by Lemma 2 , it is enough to check that $\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right)-\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right)\right) \otimes_{\text {ss }} \Phi_{1}$ belongs to $\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$. Suppose first that Φ_{1} is nilpotent, i.e. $\Phi_{1}=\Psi_{1} \in \operatorname{Irr}\left(\mathrm{~W}_{F}\right)$. Because $\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\mathrm{sS}} \Psi_{1}$ is fixed by v under twisting and because its Deligne operator is zero, we get that

$$
\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\mathrm{SS}} \Psi_{1}=\bigoplus_{\mathbb{Z} \Psi \in\left(W_{F}\right)} a_{\mathbb{Z}_{\Psi}} \mathrm{St}_{0}\left(\mathbb{Z}_{\Psi}\right) .
$$

On the other hand because $\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\text {sS }} \Psi_{1}$ is fixed by v and because its Deligne operator is bijective we obtain

$$
\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\mathrm{SS}} \Psi_{1}=\bigoplus_{\mathbb{Z}_{\Psi} \in \mathrm{l}\left(W_{F}\right)} b_{\mathbb{Z}_{\Psi}} \mathscr{C}\left(\mathbb{Z}_{\Psi}\right) .
$$

Now observing that both $\operatorname{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\mathrm{SS}} \Psi_{1}$ and $\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\text {SS }} \Psi_{1}$ have the same W_{F}-support, it implies that $a_{\mathbb{Z}_{\Psi}}=b_{\mathbb{Z}_{\Psi}}$ for all lines \mathbb{Z}_{Ψ}, form which we deduce that $\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right)-\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right)\right) \otimes_{\text {SS }} \Phi_{1} \in$ $\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$. With the same arguments we obtain that $\left(\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right)-\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right)\right) \otimes_{\mathrm{sS}} \Phi_{1}=0 \in$ $\mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)\right)$ when Φ_{1} is of the form $\mathscr{C}\left(\mathbb{Z}_{\Psi_{1}}\right)$ (because in this case both $\mathrm{St}_{0}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\mathrm{ss}} \Phi_{1}$ and $\mathscr{C}\left(\mathbb{Z}_{\Psi_{0}}\right) \otimes_{\text {ss }} \Phi_{1}$ have bijective Deligne operators).

The following proposition is proved in a similar, but simpler manner than the propositions above.

Proposition 11. Let h_{Nilp} be the restriction of

$$
h: \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right) \rightarrow \mathscr{G}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right) / \mathscr{G}_{0}\left(\operatorname{Rep}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{~W}_{F}\right)\right)
$$

to $\mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$, then $h_{\text {Nilp }}$ is a semiring isomorphism and $\operatorname{Im}\left(h_{\text {Nilp }}\right)=\operatorname{Im}\left(h_{\mathrm{C}}\right)$.
The above propositions have the following immediate corollary.
Corollary 12. One has $\mathrm{CV}=h_{\mathrm{C}}^{-1} \circ h_{\text {Nilp }}$, in particular it is a semiring isomorphism from $\mathrm{Nilp}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$ to $\mathrm{C}_{\mathrm{D}, \mathrm{ss}}\left(\mathrm{W}_{F}\right)$.

Acknowledgements

We thank the referee for useful comments and corrections.

References

[1] M. Harris, R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, 2001, with an appendix by Vladimir G. Berkovich, viii+276 pages.
[2] G. Henniart, "Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique", Invent. Math. 139 (2000), no. 2, p. 439-455.
[3] R. Kurinczuk, N. Matringe, "Rankin-Selberg local factors modulo ℓ ", Sel. Math., New Ser. 23 (2017), no. 1, p. 767-811.
[4] ——, "The ℓ-modular local Langlands correspondence and local constants", to appear in J. Inst. Math. Jussieu, 2018.
 (1993), no. 2, p. 217-338.
[6] P. Scholze, "The local Langlands correspondence for GL n over p-adic fields", Invent. Math. 192 (2013), no. 3, p. 663715.
[7] M.-F. Vignéras, "Correspondance de Langlands semi-simple pour GL($n, F)$ modulo $l \neq p$ ", Invent. Math. 144 (2001), no. 1, p. 177-223.

