
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Dilley, Nicolas (2022) Bounded Verification of Message-Passing Concurrency in Go. Doctor
of Philosophy (PhD) thesis, University of Kent,.

DOI

Link to record in KAR

https://kar.kent.ac.uk/98644/

Document Version

UNSPECIFIED

BOUNDED VERIFICATION OF MESSAGE-PASSING

CONCURRENCY IN GO

Thesis submitted

for the degree

of doctor of philosophy

at The University of Kent

By

Nicolas Dilley

School of Computing

University of Kent

April 2022

Abstract

Go is a programming language that has gained increased popularity due to its

good support for system programming and its channel-based message passing

concurrency mechanism. These features rendered Go the language of choice of

many platform software developers. Go offers a wide range of primitives to co-

ordinate lightweight threads, e.g., channels, waitgroups, and mutexes. Although,

these concurrency primitives help mitigate data races, they introduce additional

complications due to the complexity of reasoning about concurrency.

In this thesis, we first perform an empirical analysis on concurrent Go pro-

grams which analyses 125 Go projects from GitHub in order to understand how

concurrency is used in publicly available code. Our results include the following

findings: (1) concurrency primitives are used frequently and intensively, (2) most

projects use synchronous communication channels over asynchronous ones, and

(3) most Go projects use simple concurrent thread topologies, which are however

currently not fully supported by existing static verification frameworks. To ad-

dress these limitations, we propose a novel static checker for Go programs that

relies on performing bounded model checking of their concurrent behaviours. In

contrast to previous works, our approach deals with large codebases, supports

programs that have statically unknown parameters and is extensible to additional

concurrency primitives.

Our work includes an empirical analysis that studies the usage of concurrency

ii

in Go projects, a detailed presentation of the extraction algorithm from Go pro-

grams to Promela models, an algorithm to automatically check programs with

statically unknown parameters, and a large scale evaluation of our approach. The

latter shows that our approach outperforms the state-of-the-art.

iii

Acknowledgements

I dedicate this thesis to my father who always told me that; when you start

something, you should see it all the way through.

But of course, starting something is hard enough, seeing it through requires

help! I am deeply indebted to those who have helped me and want to offer a few

words of specific thanks here:

First and foremost, I would like to give my deepest thanks to my supervi-

sor, Julien Lange, without whom this thesis would have never been possible nor

achievable. From the start, even though I doubted my abilities, you have helped

me go far beyond what I think I could achieve. You have really been the best

supervisor I could ask for!

Second, I want to thank David Perez-Castro, Mahammad Mousavi, Nicholas

Ng, Stefan Marr, Bernardo Toninho, Laura Bocchi, Andy King and Alex Freitas

for their comments on earlier version of this work: Your insights, wisdom and

comments have been invaluable.

Third, this thesis would not have been possible without the support and love

of my family and my precious friends, Jessica, Thaïs, Sebastien, James and Marco:

You all have always believed in me and helped make these three years as enjoyable

and as productive as possible.

Finally, I want to thank the University of Kent and my colleagues at the PLAS

group: who have been of great support and always there when I needed them.

iv

Contents

Abstract ii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Contributions . 5

1.2 Publications . 6

1.3 Thesis outline . 7

2 Background 9

2.1 Preliminaries . 9

2.1.1 Go programs and their properties 9

2.1.2 Waitgroup . 12

2.1.3 Mutex . 12

2.1.4 Concurrency bugs in Go 13

2.2 Verification of concurrent programs 14

2.2.1 Data races . 16

v

2.2.2 Static verification . 19

2.2.3 Dynamic verification . 22

2.3 Previous work on the verification of concurrent Go programs. . . . 23

2.3.1 Static verification of Go programs. 24

2.3.2 Dynamic verification of Go programs 27

3 Empirical Analysis of Concurrency in Go Projects 31

3.1 Methodology . 34

3.1.1 Projects selection . 35

3.1.2 Analysing Go programs 37

3.1.3 Project sizes . 38

3.1.4 The Core Projects: similarly sized projects 39

3.2 Quantitative analysis . 40

3.2.1 How often are channels, waitgroups and mutexes used in Go

projects? . 40

3.2.2 How often are concurrent operations used relative to their

concurrency primitive in Go projects? 51

3.2.3 How common is the usage of asynchronous message passing

in Go projects? . 56

3.2.4 What concurrent topologies are used in Go projects? . . . 57

3.3 Limitations of our analysis . 62

3.4 Related surveys on the usage of concurrency in programs. 63

3.5 Conclusions . 65

4 Verifying Concurrent Go Programs. 68

4.1 Promela as behavioural types . 73

4.1.1 A Promela primer . 73

4.1.2 The SPIN model checker 77

4.2 Extracting parameterised models 77

vi

4.2.1 Extracting concurrency parameters 78

4.2.2 Primitive processes: channel, waitgroup, and mutex 81

4.2.3 Function processes: declaration and call sites 85

4.2.4 Operations on concurrency primitives 87

4.2.5 Control flow and branching constructs 91

4.3 Verifying models . 92

4.3.1 Properties of valuated models 93

4.3.2 Automated generations of model valuations 94

4.4 Implementation . 97

4.4.1 Supporting advanced language constructs 100

4.5 Limitations of our modelling approach 102

4.6 Conclusion . 103

5 Empirical Evaluation of Gomela 105

5.1 RQ1: How do Gomela’s functionalities compare to the state-of-

the-art? . 106

5.1.1 A Comprehensive Set of Concurrency Bugs 108

5.1.2 Instantiating parameterised contexts 111

5.1.3 Results for 220 Buggy Programs 116

5.2 RQ2: How applicable Gomela is to real-world programs? 127

5.3 RQ3: How does Gomela scale to real-world programs? 130

5.4 Conclusion . 135

6 Conclusions and Future Directions 137

6.1 Overview of the main contributions. 137

6.2 Future work . 139

Bibliography 141

vii

List of Tables

1 General information about the 150 projects. 34

2 Projects using concurrency operations (out of 125 projects). . . . 40

3 Absolute occurrences of concurrency operations and primitives in

125 projects. 43

4 Absolute occurrences of concurrency operations and primitives in

23 core projects. 43

5 Number of branches in select statements. 45

6 Relative occurrences wrt. concurrent size in 125 projects. 54

7 Relative occurrences wrt. their relative concurrency primitives in

125 projects. 55

8 Communication channels in 119 projects. 57

9 Known sizes of asynchronous channels. 57

10 Frequency of concurrency patterns in 125 projects. 60

11 Known bounds of for-loops containing go. 60

12 Relative occurrences wrt. concurrent size. 61

13 Results for the minimal context. 110

14 Verification results for all empty contexts. 117

15 Results of verifying channel deadlock code snippets in each context

(Part I). 118

16 Results of verifying channel deadlock code snippets in each context

(Part II). 119

viii

17 Results of verifying channel safety error code snippets in each con-

texts with CP = ch. 120

18 Results of verifying mutex code snippets in each context (Part I). 121

19 Results of verifying mutex code snippets in each context (Part II). 122

20 Results of verifying rwmutex code snippets in each context. 123

21 Results of verifying waitgroup code snippets in each contexts. . . 124

22 Project sizes and verification run-times. 131

23 Verification scores for generated models. 131

ix

List of Figures

1 Key statements in Go, some may be blocking (◦) and/or may trigger

a run-time error (•). 10

2 Usage of a range over a channel. 11

3 Example of containing a select statement. 12

4 Example of a program that uses a waitgroup to wait for all files

to be parsed concurrently and prints "Done". 13

5 Negative counter bug, adapted from Kubernetes (2021a). 14

6 Example of a scheduling order dependent bug. 15

7 Example where a variable (a) is read and written by multiple threads

concurrently which may lead to a data race. 16

8 Supported features of previous works in the static verification of

concurrent Go programs. 23

9 Example of a goroutine spawned dynamically. 24

10 Example of a select statement which non-deterministically choose

between the first available cases. 29

11 Instrumentation performed by GFuzz when verifying Figure 10. . 30

12 Process of the empirical analysis. 35

13 Absolute occurrences of concurrency operations and primitives in

125 projects. 41

14 Absolute occurrences of concurrency operations and primitives in

23 core projects. 41

x

15 Occurrences of concurrency operations wrt. concurrent size in 125

projects. 42

16 Simplified example from Golang (2021c) which showcase the uses

of multiple Done() per waitgroup. 46

17 Example of a program that contains more Unlock() than Lock(). 48

18 Simplified example from Labstack (2021b) which contains no re-

ceive because the receive is performed in an external function. . . 49

19 Example of a common pattern where a channel is returned via a

method call and received on. 50

20 Occurrences of concurrency operations wrt. respective concurrency

primitives. 53

21 Concurrent prime sieve. 59

22 Example of a blocking bug, adapted from Google (2021). 70

23 FindAll example adapted from Google (2020). 71

24 Key statements of Promela. 74

25 Graphical representation of if and do statements in Promela. . . 74

26 Example of the dining philosopher problem with 3 philosophers

encoded in Promela. 76

27 Example of concurrent workers. 80

28 Primitive processes for channels. 81

29 Primitive processes for waitgroups. 81

30 Primitive processes for mutexes. 82

31 Blocking vs. concurrent function calls in Go (top) and their models

in Promela (bottom). 86

32 Overview of the translation function TS(s). 88

33 Overview of the translation of control flow constructs with function

TS(s). 89

34 Program with an optional concurrency parameter. 97

xi

35 Workflow of Gomela. 98

36 Struct fields in Go (top) and its model in Promela (bottom). . . . 101

37 Declaration and usage of concurrency primitives. 107

38 List of all code snippets. 107

39 The minimal context. 111

40 The non-dynamic-for context tests whether non-dynamic for-loops

are supported. 112

41 The dynamic-for context tests whether dynamic for-loops are sup-

ported. 112

42 The primitive-for context tests whether concurrency primitives de-

clared inside for-loops are supported. 112

43 The defer context tests whether communication operations within

defer statements are supported. 112

44 The closure context tests whether closures are supported. 113

45 The recursion context tests whether recursion is supported. 113

46 The timeout context tests whether timeouts are supported. 113

47 The 2-branch-select context tests whether select statements with

two branches are supported. 114

48 The interface context tests whether interfaces are supported. . . . 114

49 A context that tests whether asynchronous channels of size 1 (left)

and 4 (right) are supported. 116

50 Summary of the evaluation on 220 benchmarks of all three tools. . 117

51 Proportion of true/false positives in 78 buggy programs, unsup-

ported indicates that the tool has aborted or crashed. 127

52 Examples of buggy programs caught by Gomela, missed by GCatch,

and unsupported by Godel2. 127

53 Run-times for true positives in 78 buggy programs. 128

xii

54 Example of a blocking bug caused by calling RLock() twice on the

same RWMutex within the same goroutine. 130

55 Simplified example from Golang (2021d) which Gomela falsely

reports as having a double close error due to data dependency. x

is never equal to -1. 133

56 Example of a tricky false alarm, adapted from Snail007 (2022). . . 134

xiii

Chapter 1

Introduction

In recent years, there has been growth in the popularity of programming languages

that natively support higher-level concurrency abilities, such as Go or Rust. These

concurrency abilities allow developers to divide a program into multiple indepen-

dents parts, which can execute in parallel when multiple cores are available. How-

ever, developing concurrent software is particularly difficult because bugs are often

non-trivial to detect since they do not occur in every execution (e.g., due to non-

determinism or because they depend on the program’s arguments) and some may

not be easily observable (e.g., they might only affect the memory footprint of the

program). The additional complexity that characterises concurrent software can

lead to unexpected bugs which can, in turn, lead to disastrous consequences. Con-

sider the example reported in Clearfield and Lofchie (2013), in which a technical

failure, due to race conditions, affected the prices of the shares of Facebook on the

NASDAQ exchange. This failure was caused by the unexpected huge enthusiasm

of the initial public offering (IPO) of Facebook (80 million shares in 30 seconds

according to Pepitone (2012)). As a result of this technical failure, NASDAQ was

fined 10 million dollars.

To avoid such costly consequences, similarly to structural engineers and archi-

tects who rely on a diverse range of specialised tools to verify the integrity of their

1

CHAPTER 1. INTRODUCTION 2

constructions, we want to help developers by implementing software verification

techniques and tools to prove the correctness of their programs before using them

in production. Developing such tools would reassure developers that executing

their concurrent software will not generate certain bugs, such as deadlocks. How-

ever, each additional thread in a program can drastically increase the number of

possible interleaving of executions of all threads in the program, which as a result

increases the complexity of implementing verification approaches that scale well

and provide appropriate feedback on large distributed software.

To overcome these challenges, one of the key ideas is to find an appropriate

abstraction that reduces the complexity of the program by keeping only the con-

structs that are relevant to the properties that need to be verified. The main

challenge in choosing an appropriate abstraction is to strike a good balance be-

tween reducing the complexity of the program while keeping the abstraction pre-

cise enough to diminish the rate of false alarms/positives. Over the years, many

techniques have been used to abstract programs such as types and separation

logic.

The abstraction technique used in this thesis is a modelling technique called

behavioural types. Behavioural types describe the dynamic behaviour of a pro-

gram such as the interactions and creation of threads in a program. Various

modelling approaches, called process calculi, have been developed to reason about

the behaviours of programs such as CCS (Calculus of Communicating Systems by

Milner (1989)) or CSP (Communicating Sequential Processes by Hoare (1978)).

These modelling languages use channels and processes to model the interactions

of various participants in an interactive system. Concurrency theory and type

disciplines such as session types have used these languages to reason about vari-

ous safety and liveness properties of distributed systems. According to one of Go

designers, Pike (2012), the channel-based concurrency model of the programming

language Go has been greatly inspired by such languages (notably CSP). This

CHAPTER 1. INTRODUCTION 3

makes Go a great candidate to apply theoretical approaches based on process

calculi to real-world programs.

Go is an open-source programming language that was initiated by Google

in 2009. It is renowned for its good support for system programming and its

channel-based concurrency mechanism. It is advertised by Golang (2018) as “an

open source programming language that makes it easy to build simple, reliable, and

efficient software”. These strengths have made it the language of choice for many

platform software such as Docker and Kubernetes, which in turn are the most

common software for containerisation management. With the growing popularity

of containerisation technology in today’s software industry Go has become a key

element of many modern software.

The native inter-thread synchronisation mechanisms in Go differ from more

traditional synchronisation mechanisms over shared memory by promoting the

motto “don’t communicate by sharing memory, share memory by communicating”

(Pike (2015)), and encouraging communication via channels. This emphasis on

channel-based communication helps to develop concurrent programs which are

conceptually simpler and better suited to be automatically verified to guarantee

the absence of communication bugs such as deadlock and thread starvation.

However, a recent survey of popular Go projects by Tu et al. (2019) has showed

that message-passing-based software is as liable to bugs as other concurrent pro-

gramming techniques such as lock-based techniques. They also showed that Go

concurrency-related bugs are hard to detect and have a long lifetime. This is re-

flected in a recent survey amongst Go programmers (team (2017)) reporting that

programmers often do not feel they are able to effectively repair bugs related to

Go’s concurrency features. It is thus essential to develop reliable static checkers

that can rule out these bugs.

Concretely, message-passing concurrency bugs in Go fall into two categories:

CHAPTER 1. INTRODUCTION 4

(i) blocking bugs, where a goroutine is permanently waiting for a matching send/re-

ceive action and (ii) channel bugs, where a goroutine attempts to close or send

to a channel that is already closed. However, beyond a rather standard type sys-

tem and a runtime global deadlock detector, the Go language and its associated

tooling do not offer any means to detect concurrency bugs.

To study how Go developers use concurrency in their programs, we have per-

formed an empirical analysis that analyses 125 of the most popular Go Github

projects. This allowed us to determine which concurrency features and patterns

not supported by previous work (notably Lange et al. (2018); Gabet and Yoshida

(2020); Liu et al. (2021)) were most commonly used in real-world applications.

Based on the result of the analysis, we implemented a practical tool based on a

behavioural types approach first formalised in Lange et al. (2017) which expands

the subset of Go supported and reduces the number of false alarms by increasing

the preciseness of the model generated. This is achieved by adding supports for

communication parameters, which are variables in the programs that affect the

concurrent topology of the programs. In addition, to increase the scalability of

previous approaches inspired by behavioural types, we partition the program into

smaller concurrency independent programs and verify them separately.

To evaluate the applicability and the false alarm rate of our approach on real-

world programs, we have devised a set of benchmarks aimed at reproducing current

concurrency patterns used in real-world projects. We evaluate our approach on

this set of benchmarks and compare the results with two of the more mature

recent static checkers, GCatch and Godel2.

Overall, we have found that our approach finds the most bugs while returning

very few false alarms compared to other tools. In addition, we have performed

a large-scale evaluation of our approach on the same set of 125 Github projects

used for the empirical analysis to test the scalability of our approach as well as

manually checking the validity of the reported bugs.

CHAPTER 1. INTRODUCTION 5

1.1 Contributions

The main contributions of this thesis are :

• An empirical analysis on the usage of concurrency in Go projects

structured around four research questions stemming from the point of view

of the static verification of concurrent Go programs. The analysis is based on

our paper (Dilley and Lange (2019)) and has been extended, in this thesis,

to analyse additional concurrency primitives (mutexes and waitgroups) and

has been used to survey 125 of the most popular Go projects. The tool used

to perform our analysis is available at Dilley and Lange (2022b)

• A novel static verification technique of concurrent Go programs,

based on our paper (Dilley and Lange (2020)) and further updated in our

following paper (Dilley and Lange (2021a)) (Section III to V), which builds

on the behavioural types approach first formalised in Lange et al. (2018),

where models, that represent the concurrent behaviours (behavioural types),

are extracted from Go programs. These models over-approximate their pro-

grams and can be verified using an off-the-shelf model checker. The imple-

mentation of our approach is available at Dilley and Lange (2022c)

• The selection of two sets of buggy benchmarks, which contain Go

features that are known to cause problems to verification tools as well as

benchmarks inspired by real-world programs. These two set of benchmarks

are used to survey the functionalities supported by static and dynamic check-

ers and their applicability to real-world programs respectively.

• A technique to automatically synthesise concurrent programs and

automatically apply the resulting benchmarks on static checkers.

This technique was used to produce a set of 220 benchmarks and evaluate

CHAPTER 1. INTRODUCTION 6

our tool, Gomela, against GCatch and Godel2 in Section 5.1. The tool is

freely available at Dilley and Lange (2022a).

• The evaluation of our approach on 125 Github projects to determine

the scalability of our approach on Go projects. The number of lines of these

projects varies from 126 to 30 million lines of code.

1.2 Publications

This section lists, in chronological order, the three papers I published during my

PhD thesis.

• Nicolas Dilley and Julien Lange. An Empirical Study of Messaging Pass-

ing Concurrency in Go Projects. Published at the 26th IEEE international

conference on Software ANalysis, Evolution and Reengineering (SANER

2019). This paper describes the implementation and the results of an

analysis of the usage of message-passing concurrency performed on 865 Go

projects. This analysis has been extended to support additional concur-

rency primitives and used to answer the research questions introduced in

Chapter 3.

• Nicolas Dilley and Julien Lange. Bounded verification of message-passing

concurrency in Go using Promela and Spin. Published at the 12th Inter-

national Workshop on Programming Language Approaches to Concurrency

and Communication-cEntric Software (PLACES 2020). This paper presents

the core ideas of our static approach which consists of extracting parame-

terised behavioural type models from Go programs. These models are then

verified, using the model checker SPIN, for the absence of deadlocks and

various channel safety errors. The implementation of our verification ap-

proach, described in Chapter 4, is based on the concepts first explored in

CHAPTER 1. INTRODUCTION 7

this paper.

• Nicolas Dilley and Julien Lange. Automated Verification of Go Programs

via Bounded Model Checking. Published at the 36th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE 2021). This

paper extends the verification approach of our previous paper by support-

ing additional features of the Go language as well as adding support for two

popular concurrency primitives. In addition, we evaluated and compared our

approach against two other recent state-of-the-art static checkers as well as

evaluating our approach on 99 Github projects. This paper forms the basis

of Chapter 4 as well as the evaluation performed in Section 5.2. This pa-

per received an ACM SIGSOFT Distinguished Paper Award as well as two

badges, Available and Reusable, for the accompanying tool Gomela, de-

veloped to evaluate the verification approach on several buggy benchmarks

and Github projects.

1.3 Thesis outline

The chapters of this thesis are organised as follows:

Chapter 2. Background. In this chapter, we provide a description of the Go

language as well as a review of the literature enumerating previous work in the

verification of Go programs.

Chapter 3. Empirical analysis of concurrency in Go projects. In this

chapter, we present the analysis of concurrent Go programs that we performed on

125 Github projects. We describe our methodology, including our data selection

and our Go program analyser, GoSurvey. We present the results of our analysis by

answering four research questions. The first two questions discuss how often and

CHAPTER 1. INTRODUCTION 8

how intensively concurrency primitives are used in those projects respectively.

The third question discusses how often asynchronous channels are used in Go

programs. The last question explores how often complex concurrency patterns,

known to cause problems to static checkers, are used in Go projects. In addition,

we also discuss the limitations of our analysis, related work and give concluding

remarks.

Chapter 4. Verifying Concurrent Go Programs. In this chapter, we

present a novel static verification approach which verifies the absence of deadlocks

and concurrency-related safety errors in concurrent Go programs. We give an

overview of the modelling language Promela and the model checker SPIN. We

then describe how we extract parameterised models from Go programs and the

technique used to valuate and verify each resulting model. We then discuss the

implementation of our approach into a tool called Gomela as well as explaining

how we modeled specific Go constructs such as structures or anonymous functions.

Chapter 5. Empirical Evaluation of Gomela. In this chapter, we eval-

uate the applicability and scalability of our tool, Gomela. We first assess the

concurrent functionalities supported by Gomela against two other recent static

checkers, GCatch and Godel2. Secondly, we evaluate the applicability of Gomela

on a set of benchmarks which are drawn from real-world Go programs and com-

pare the results against GCatch and Godel2. Finally, we evaluate the scalability

of Gomela by verifying 125 popular Go projects.

Chapter 6. Conclusions and Future Directions. In this chapter, we dis-

cuss the concluding remarks of this thesis as well as suggesting future works.

Chapter 2

Background

In this chapter, we introduce Go as well as giving a broad overview of the state

of research on the verification of concurrent programs as a whole and on the most

recent approaches targeted at Go programs.

2.1 Preliminaries

In this section, we review key aspects of the Go programming language.

2.1.1 Go programs and their properties

A Go program consists of a list of declarations of functions, structures (struct,

on which one can define methods), and interfaces (i.e., sets of method signatures

that can be implemented by structures). The special function main() is the en-

try point of the program. Go is known for its distinctive support for concurrent

programming, advocating for message-passing instead of shared memory. Go na-

tively supports channels (chan) over which lightweight threads (a.k.a. goroutines)

coordinate their tasks by sending and receiving messages. The standard library

also offers two popular concurrency primitives: waitgroups and mutexes.

9

CHAPTER 2. BACKGROUND 10

f (a) Call f with arguments a
go f (a) Spawn f with arguments a
if e then s1 else s2 Conditional
for i := e1; e2; r {s} For loop
for i,x := range l {s} Iteration over collection l

ch := make(chan T, e) Declare a chan. with capacity e
◦• ch ← e Send e over ch
◦ ← ch Receive on channel ch
• close(ch) Close channel ch
◦ for x := range ch {s} Iteration over channel ch
◦ select{case αi : si}i∈I Guarded choice

var wg sync.WaitGroup Declare a waitgroup wg
• wg.Add(e) Add e to wg
• wg.Done() Decrement wg by 1
◦ wg.Wait() Wait until wg reaches 0

var mu sync.Mutex Declare a Mutex mu
var mu sync.RWMutex Declare a RWmutex mu

◦ mu.Lock() Lock mutex/RWmutex
• mu.Unlock() Lock mutex/RWmutex
◦ mu.RLock() Lock for read access
• mu.RUnlock() Unlock read access

Figure 1: Key statements in Go, some may be blocking (◦) and/or may trigger a
run-time error (•).

We refer to concurrency operations as communication interactions (send, re-

ceive, etc) which are operated on concurrency primitives (channels, waitgroups,

etc).

Figure 1 gives an overview of the control-flow constructs and concurrency

operations of interests in this work. The first part of the figure lists control-

flow constructs. Call f (a) is a blocking call to function f , while go f (a) spawns

function f in a concurrent thread of execution. By convention, we write a for a

(possibly empty) sequence a1, . . . , ak (with k≥0). Conditionals (if-then-else) and

traditional iterations (for loops) are standard. Note that while loops do not exist

in Go. Go additionally provides constructs to range over collections or channels.

A for i,x := range l {s} block executes s for each x in l (i is bound to the index

of x in the collection). Instruction ch := make(chan T, e) creates a new channel

ch of capacity e (an integer expression). A channel carries a single type (T) of

CHAPTER 2. BACKGROUND 11

1 msgs := make(chan int , 2)
2 msgs ← 1
3 msgs ← 3
4 close (msgs)
5 for m := range msgs {
6 fmt. Println (m}
7)

Figure 2: Example of a range over a channel that receives all values on channel
msgs until it is empty and closed.

messages.

If e evaluates to 0, the channel is synchronous (both send and receive actions

are blocking), otherwise, it is asynchronous (send actions are non-blocking as long

as the channel has not reached full capacity). Instruction ch ← e sends e on ch,

while ←ch receives from ch. Invoking close(ch) closes ch. Receiving on a closed

channel is non-blocking, but sending on, or closing, a closed channel triggers a

runtime error.

A for x := range ch {s} block executes s for every message received from ch,

and exits when ch is closed and empty. Figure 2 shows a program using such a

construct.

This program creates an asynchronous channel that can hold up to 2 messages,

two messages are enqueued, then the channel is closed. In this case, the body of

the for-loop will execute twice as two messages were sent on channel msgs before

it was closed.

A select statement allows a goroutine to wait for several operations (e.g.,

send/receive on a channel). It blocks until one of its cases succeeds, then executes

the corresponding branch. Figure 3 shows an example of a select with multiple

branches. This block can either synchronise with a send action on x, synchronise

with a receive action on y, or, if none of these actions are available, it can take

the default branch which is executed if all other branches are blocked.

CHAPTER 2. BACKGROUND 12

1 select {
2 case ←x:
3 fmt. Println (" received ")
4 case y ← 42:
5 fmt. Println ("sent")
6 default :
7 fmt. Println (" default ")
8 }

Figure 3: Example of a select statement which waits for a receive on x or a send
on y. The default branch is taken if none of the other communication actions are
available.

2.1.2 Waitgroup

A waitgroup is a data-structure that is used to force a goroutine to wait for a

number of tasks to be performed before carrying on executing. A waitgroup is de-

clared and initialised using the instruction var wg sync.WaitGroup which creates

a new waitgroup wg. Operation wg.Add(e) adds e (which evaluates to a positive

or negative integer) to the waitgroup’s counter, while wg.Done() decrements the

counter by 1. Operation wg.Wait() blocks until wg’s counter reaches 0.

2.1.3 Mutex

Go’s standard library provides Mutex and RWMutex. The former is used to protect a

critical section with exclusive access, i.e., both writers and readers use mu.Lock()

and mu.Unlock(). The latter allows several readers to access a critical section

(but at most one writer). Readers use mu.RLock() and mu.RUnlock(). Both

primitives trigger a runtime error when invoking mu.Unlock() or mu.RUnlock()

on an unlocked mutex.

Waitgroup and mutexes in action. Figure 4 shows a program that uses a

waitgroup and a mutex to calculate the sum of the square of all numbers from 1 to

100. The program adds 1 to the counter of waitgroup wg at line 7 and creates an

anonymous goroutine that increments sum by the square of i for each iteration of

CHAPTER 2. BACKGROUND 13

1 func main () {
2 var wg sync. WaitGroup
3 var mu sync. Mutex
4 sum := 0
5
6 for i := 1; i <= 100; i++ {
7 wg.Add (1)
8 go func (i int) {
9 mu.Lock ()

10 sum += i * i
11 mu. Unlock ()
12 wg.Done ()
13 }(i)
14 }
15
16 wg.Wait ()
17 fmt. Println ("sum of square is ", sum)
18 }

Figure 4: Example of a program that uses a waitgroup to wait for all files to be
parsed concurrently and prints "Done".

the for-loop. The writing to sum at line 10 is protected by locking and unlocking

the mutexes before and after the critical section. Each goroutine decrements the

counter of the waitgroup by one at line 12. After spawning 100 goroutines, the

main goroutine waits for the counter of the waitgroup to reach 0 and prints the

sum.

2.1.4 Concurrency bugs in Go

We distinguish between blocking bugs and safety bugs. Blocking bugs occur when

a goroutine is permanently stuck waiting for a blocking operation to succeed, e.g.,

a receive waiting for a message to be sent. Potentially blocking operations are

marked with ◦ in Figure 1. Blocking bugs are often referred to as goroutine leaks

in the Go community. Blocked goroutines may notably cause the whole program

to get stuck (global deadlock) or lead to memory leaks, as they cannot be garbage

collected, see Example 2.

Safety bugs occur when an operation is invoked on a concurrency primitive

unexpectedly (and triggers a run-time error), e.g., sending on a closed channel

CHAPTER 2. BACKGROUND 14

1 func main () {
2 var wg sync. WaitGroup
3 someList := [] int {1, 2, 3}
4 for range someList {
5 go func () {
6 wg.Done () // may trigger a run -time error
7 }()
8 wg.Add (1)
9 }

10 wg.Wait ()
11 }

Figure 5: Negative counter bug, adapted from Kubernetes (2021a).

causes a run-time error. Operations that may trigger a run-time error are marked

with • in Figure 1. Observe that all three concurrency primitives we consider can

trigger such errors.

Example 1. Figure 5, adapted from Kubernetes (2021a), shows a typical

safety bug. This program spawns several worker goroutines. Each goroutine

invokes wg.Done() once they have completed their job. However, the parent

thread invokes wg.Add(1) after spawning each goroutine. In an execution where,

e.g., the first worker goroutine finishes its job quickly, it may decrement wg before

it is incremented, thus triggering a run-time error (“panic: sync: negative

WaitGroup counter”).

2.2 Verification of concurrent programs

The reliance on concurrency in programs has been a key ingredient in recent

years to increase the speed of execution of programs. This interest has been fur-

ther amplified by the fact that Moore’s Law, which states that the speed of CPU

will double each year, has been negated in recent years due to the fact that the

maximum number of transistors on a single chip has been reached. This means

that we cannot as effectively increase the speed of single cores on a computer.

Hence, programmers are relying on software techniques that tries to make the

CHAPTER 2. BACKGROUND 15

1 func main () {
2 x := make(chan int , 1)
3 y := make(chan int , 1)
4
5 go func () {
6 y ← 0
7 x ← 0
8
9 ←y

10 ←x
11 }()
12
13 x ← 0
14 y ← 0
15
16 ←y
17 ←x
18
19 }

Figure 6: Example of a program, adapted from Sulzmann and Stadtmüller (2018)
which contains a bug only when the threads of the program execute in a particular
scheduling order.

best use of multiple cores to increase the runtime speed of their programs. To

achieve this, programmers break their programs into smaller independent pro-

grams that communicate with each other by sharing memory, this technique is

called concurrency.

Although concurrency has many benefits, such as facilitates better perfor-

mance and utilisation of resources, concurrent programs can be very hard to rea-

son about and to debug due to the many interleaving of executions of threads.

Figure 6 shows a program that contains a blocking bug only when a specific order-

ing of thread execution is scheduled. If the goroutine spawned at line 5 executes

both sends and both receives in order, the program will not block. Note that both

channels are instantiated with a capacity of 1. However, if the program executes

the send at line 6 followed by the send at line 13, both goroutine will be stuck at

line 7 and 14.

CHAPTER 2. BACKGROUND 16

1 func main () {
2
3 a := 0
4 for i := 0; i < 10; i++ {
5 go func () {
6 a = a + 1
7 fmt. Println (a) // shared access to a
8
9 }()

10 }
11
12 time. Sleep (1 * time. Second)
13 }

Figure 7: Example where a variable (a) is read and written by multiple threads
concurrently which may lead to a data race.

2.2.1 Data races

A major problem that occurs when introducing concurrency in a program is the

presence of data races also known as race conditions. A data race can occur when

multiple threads access the same memory location and at least one of the threads

writes to it. Figure 7 shows a simple case of a data race. At line 5, 10 goroutines,

are spawned. Each of these threads writes the value of a at line 6 and then prints

a to the console. The expected result is that each number from 0 to 9 is printed

once in any order. However, when this program is executed this is rarely the case.

Some values are skipped while some are printed multiple times.

To mitigate the problem caused by data races, several techniques have been

developed. Three of the most notable techniques are mutexes, message-passing

concurrency and synchronisation barriers.

Mutexes. A mutex is a data-structure that is used to restrict access to a critical

part of a program to only a single thread at a time. This is achieved by requesting

a lock to enter the critical section and releasing the lock after the critical section

has been executed. When a thread requests a lock, it is blocked until the lock

is available. In Go and other languages like C++ and C#, this is implemented

via a data-structure which implements two methods, Lock() and Unlock(), which

CHAPTER 2. BACKGROUND 17

surrounds the critical section and guarantees that the critical section is executed

by only a single thread at a time. In Java, for example, mutexes are implemented

using the keyword synchronized before the type of the declaration of a method or

a block of code. This specifies that a synchronised method call or block of code

can only be executed by a single thread at a time.

Synchronisation barriers. A synchronisation barrier is a data-structure that

allows a thread to wait for one or multiple threads to terminate before carrying on

executing itself. Synchronisation barriers have been natively implemented in many

languages such as Rust (via sync::Barrier), Java (via util.concurrent.CountDownLatch

and util.concurrent.CyclicBarrier) or python (via threading.Barrier). For lan-

guages that did not implement barriers natively, libraries such as the OpenMP

library (Dagum and Menon (1998)) for C/C++ and FORTRAN contains the

implementation of synchronisation barriers.

Message-passing concurrency. Instead of sharing variables between multi-

ple threads, message-passing concurrency is a concurrent model where threads

communicate and synchronise by sending messages to each other. Three popular

approaches are the Actor model, channel-based message passing and MPI. In the

actor model introduced by Hewitt, Bishop and Steiger (1973), each thread (called

actors) holds an infinite buffer (called a mailbox) which contains all the messages

that the actor has received. If the mailbox is empty, the actors wait until they

receive a message and respond accordingly. This concurrency model has been

supported natively by languages such as Erlang or Elixir, or using libraries such

as AKKA for Scala and Java, Akka.NET for C# and F#, or CAF for C++.

In channel-based message-passing threads synchronise with each other via

sending messages over channels. The concept originates from CSP (Communi-

cating Sequential Processes) which is a formal model for concurrency introduced

CHAPTER 2. BACKGROUND 18

by Hoare (1978). A CSP program is composed of a list of named processes in-

stantiated at the start of the execution of the program. In CSP, these processes

exchange messages synchronously by receiving and sending messages from and

to other named processes. This approach has been implemented natively in Go

and in Rust. In Go, messages are exchanged via synchronous (unbuffered) or

asynchronous (buffered) channels. Whereas in Rust, in addition to asynchronous

channels, the capacity of channels may be unbounded, hence supporting true

asynchrony.

The message-passing interface (MPI) is a standard library for message-passing

introduced by Forum (1993) to write parallel programs running on separate ma-

chines over large networks. MPI is a library that supports point-to-point (one

machine interacting with a single machine) as well as collective communication

(one machine exchanging messages with multiple machines). These communica-

tions can be specified to be blocking or non-blocking. The library has been further

extended by Geist et al. (1996) to allow remote memory-access, parallel input/out-

put and dynamic creation of processes. MPI guarantees that the interactions

between machines are reliable (no messages are dropped) and that the messages

sent are received in the order they were sent. The communication between the

machines is managed by the MPI library which uses the fastest way of interaction

such as shared memory or TCP/IP available. MPI excels at breaking single large

technical computations over several machines over a network. The MPI library is

wildly available via two popular open-source library, OpenMPI (Graham, Woodall

and Squyres (2005)) and MPICH2 (Gropp (2002)).

Even though these techniques mitigate data races when used appropriately,

they can generate other concurrency-related problems which are difficult to detect.

In Go, several errors might occur when using :

• Mutexes: A number of goroutines might be stuck waiting for a lock that is

never released by another goroutine. Another issue that can arise is that a

CHAPTER 2. BACKGROUND 19

goroutine releases a non-locked mutex which causes a runtime error.

• Synchronisation barriers: A blocked goroutine that is waiting for multiple

threads to finish might wait forever if one or more of those threads, for any

reasons, never decrement the counter to 0.

• Message-passing concurrency: A send or receive that blocks infinitely, wait-

ing for a sender or receiver respectively.

Many works have been dedicated to developing techniques to find such bugs.

There are two types of approaches: static and dynamic.

2.2.2 Static verification

Static approaches verify that a program meets certain criteria at compile time.

Sound static approaches have the advantage of ruling out bugs before the code is

executed. Two of the main static approaches are type-based and software model

checking.

Type-based approach. In type-based approaches, every expression in the pro-

gram is given a specific type. The program is then type-checked using inductive

type rules. If the program is well-typed, then it is proven to be free of specific

bugs. Two popular type-based approaches for concurrent programs are session

types and ownership types:

• Session types is a typing discipline for synchronous and asynchronous con-

current programming languages introduced by Honda (1993) and further

developed by Honda, Vasconcelos and Kubo (1998). Session types are pro-

tocols defined between two processes in which a set of communication in-

teractions (such as sending and receiving messages) are declared by both

participants. The type system enforces that each communication interac-

tion performed by one of the participants in a session is met by the dual

CHAPTER 2. BACKGROUND 20

communication interaction of the other (a send is matched by a receive and

vice-versa). Hence, if all communications are met by the recipient, then

the program is free from deadlocks. Originally, sessions were only binary,

meaning that sessions were comprised of exactly two interacting processes.

However, this limitation was addressed by Honda, Yoshida and Carbone

(2008) with the introduction of multiparty session types which allows ses-

sions with multiple interacting processes. Over the years, the multiparty

session types framework has been extended in many ways. For instance,

Deniélou and Yoshida (2011) and Castro-Perez et al. (2019) extended mul-

tiparty session types to allow an unknown dynamic number of participants

at runtime. In addition, Castro-Perez et al. (2019) implemented a tool that

infers and decouples role variants from protocols to generate safe Go pro-

grams. Bocchi, Yang and Yoshida (2014) improved session types with clocks,

clocks constraints and resets. Coppo et al. (2016) extended multiparty ses-

sion types to support session interleaving which allows the verification of

programs with multiple simultaneous sessions at runtime.

Session types can be used to define well-typed protocols between two known

interacting components such as a client/server protocol, file transfer proto-

col or between multiple entities that have a well-defined set of interactions.

However, inferring session types statically from programming languages sim-

ilar to Go is much more complicated because all the parties involved in a

session may not be known at compile time. This might be due to a session

involving a call to an external library or one of the participants being a

third-party computer over the network with unknown message-passing be-

haviours. In addition, generating a well-typed session might not be feasible

due to the number of interactions performed by the participants in a ses-

sion being undecidable at compile time. This is why works that relies on

session types such as Castro-Perez et al. (2019) are more suited to build

CHAPTER 2. BACKGROUND 21

correct-by-construction Go software instead of infering sessions from real-

world programs. Castro-Perez et al. (2019) proposes a framework to develop

safe distributed Go programs using multiparty session types.

• Ownership types is a typing discipline introduced by Clarke, Potter and

Noble (1998) where each variable in a program is owned only by a single

object at all times during the execution of a program. The ownership of

a variable can be delegated to another object but can only be exclusively

accessed henceforth by the new owner. When applied to concurrency, the

owner object in question is a thread. This means that all variables in a

thread can only be accessed by that particular thread. This implies that

a variable cannot be shared between multiple threads. Hence, eliminating

data races. Ownership types have been successfully implemented in Rust.

Although they mitigate the problem of data races, they can not be used to

find deadlocks in concurrent programming languages like Go which is the

aim of this thesis.

Software model checking. Model checking is the process of verifying that

a model satisfies certain properties by exhaustively checking each state of the

model. The models are finite state automatons that are verified exhaustively

using a model checker such as SPIN (Holzmann (1997)) or UPPAAL (Larsen,

Pettersson and Yi (1997)). Model checking cannot be directly applied to verify

programs because, in the undecidability theorem, Turing (1937) proved that any

property cannot be soundly and completely verified on a Turing-complete pro-

gramming language. Instead, a sound (which over-approximates the program) or

a complete (which under-approximate the programs) model is extracted from the

program. By over-approximating the behaviour of a program, a sound model ex-

tracted from a program that satisfies a particular property automatically confirms

that the program it was extracted from satisfies this property in return. However,

CHAPTER 2. BACKGROUND 22

if the model does not satisfy the property then this does not mean that the pro-

gram does not either. This means that approaches that rely on soundness can

raise false alarms. The reverse can be said about models that under-approximate

the behaviours of a program. If a complete model does not satisfy a particular

property then the program does not satisfy it as well. Contrary to sound ap-

proaches, complete approaches can raise false negatives, i.e, the model satisfies a

property but not the program.

Software model checking has a long history, see Jhala and Majumdar (2009)

for a comprehensive survey.

2.2.3 Dynamic verification

Dynamic approaches execute the program and verify that the execution of the

program satisfies a property of interest. Dynamic verification tests that the pro-

gram does not contain any errors while or after the program is running. This

can be achieved by instrumenting the code and/or by having monitors that run

concurrently to the main program. Cassar et al. (2017) contains an exhaustive

survey on the different runtime monitoring instrumentation techniques. For ex-

ample, in Vetter and de Supinski (2000), MPI applications are monitored using a

tool called Umpire. This tool sits between the application itself and the MPI run-

time system. It analyses MPI operations, such as send and receive, and reports if

a deadlock occurs. In Francalanza and Seychell (2015), a safety property given in

Hennessy–Milner logic is checked against a trace produced by the Erlang Virtual

Machine (EVM) to monitor if the running program satisfies the safety property.

CHAPTER 2. BACKGROUND 23

Name Async Unknown chan
size

Chan of
chan Mutex Wg Dynamic

spawning Dynamic for Chan in for Interface Chan
safety Liveness

Dingo-hunter × × × × × × × × × × X
Gopherlyzer × × × × × × × × × × X
Gong X × × × × X X × × X X
Godel X × × × × X × × × X X
Godel2 X × × X × X × × × X X
Nano-go × × × × × × × × × × X
GCatch X × X X × X × × × × X
Gomela X X × X X X X × × X X

Figure 8: Supported features of previous works in the static verification of con-
current Go programs.

2.3 Previous work on the verification of concur-

rent Go programs.

In this section, we discuss the recent works performed by several research groups

to develop a range of theories and tools intended to support developers in finding

synchronisation bugs in Go programs, either statically or dynamically.

Table 8 shows a list of previous works based on the static verification of con-

current Go programs as well as our approach, Gomela, and which Go features

and properties they support. All of these Go features or patterns are known

to cause trouble to static checkers in terms of applicability and scalability when

applied on real world programs. The table is divided into three sections namely,

concurrency primitives, complex features of the language and which properties the

tools support. The first section shows which static checkers support asynchronous

channels, channels declared with a size that cannot be deduced at compile time

and channels sent over channels (channels of payload channels). In addition, it

shows which works support waitgroups and mutexes. The second section shows

which tools support programs that spawn goroutines dynamically, support gorou-

tine spawned or channels declared in for-loops and interfaces. Finally, the last

section shows which tools verify channel safety properties such as sending on a

closed channel and deadlocks.

CHAPTER 2. BACKGROUND 24

1 ch := make(chan int)
2 ch ← 0
3 go func () {←ch }()
4

Figure 9: Example of a goroutine spawned dynamically.

2.3.1 Static verification of Go programs.

Dingo-hunter. The first work on the static verification of concurrent Go pro-

gram, to our knowledge, is Ng and Yoshida (2016). They proposed a tool to

statically detect global deadlocks in Go programs using choreography synthesis

introduced by Lange, Tuosto and Yoshida (2015). Their approach consists of in-

ferring local session types (a control-flow graph with session primitives) from each

goroutine in the SSA representation of a Go program. These local session types

represent the concurrent operations performed by each goroutine. Each local type

is then translated to a CFSM (Concurrent Finite State Machine) which are FSM

labelled with receive and send events. These CFSMs are all synthesised into a sin-

gle global graph of transitions using the GMC-Synthesis tool introduced in Lange,

Tuosto and Yoshida (2015). If the resulting global graph satisfies the conditions

described in Lange, Tuosto and Yoshida (2015) then the program is guaranteed

to be deadlock-free.

The main limitation of this work is that all goroutines are modeled as being

created at the start of the program. This means that a simple program, shown in

Figure 9, cannot be verified because a send is performed before the spawning of

the receiving goroutine.

Gopherlyzer. Stadtmüller, Sulzmann and Thiemann (2016) proposed a differ-

ent static verification approach, based on forkable regular expressions, to detect

global deadlocks. In this work, Go programs are translated as regular expres-

sions which include a fork operator that models the spawning of a goroutine. The

CHAPTER 2. BACKGROUND 25

regular expressions are then translated into a finite state machines based on Brzo-

zowski’s derivative construction method Brzozowski (1964) which verifies that the

resulting finite state machines are free from global deadlocks (defined as stuckness

in the paper).

We can see from Table 8 that both of these work (Ng and Yoshida (2016) and

Stadtmüller, Sulzmann and Thiemann (2016)) do not support any of the concur-

rency features listed in the table and only support a small subset of the language.

Notably, they do not support asynchronous channels, range-over-channel, defer

statements, nor structs. In addition, their approaches only verify that programs

are free from global deadlocks.

Gong and Godel. Lange et al. (2017, 2018) proposed two more advanced

static verification techniques, called Gong and Godel respectively, which approx-

imate Go programs with behavioural types Hüttel et al. (2016) through their ssa

(static single-assignment) intermediate representation. Various safety and liveness

properties can be checked on these behavioural types using bounded executions

in Lange et al. (2017) and exhaustive model checking in Lange et al. (2018). The

extracted models or behavioural types closely mirror the concurrent behaviours

(send, receive, etc) of the programs while abstracting away from data elements.

These works aim at being sound. This is achieved by over-approximating the

behaviour of the program by modelling if statements and for-loops as non-

deterministic choices. In addition to using the model checker mCRL2 (Groote

and Mousavi (2014)) to verify the extracted behavioural types, Lange et al. (2018)

use the KITTeL termination analyser to check that for-loops in the program ter-

minate. Both of these approaches added support for asynchronous channels with

statically known bounds and verified various channel safety errors and partial

deadlocks. Although Lange et al. (2017) did support goroutines spawned in for-

loops, it did not scale well (up to 13 minutes to verify a program of 55 lines of

CHAPTER 2. BACKGROUND 26

code with only 4 goroutines) and support only a small subset of Go. As a result,

it cannot be used to verify real-world programs efficiently. Both are evaluated

on small handmade benchmarks which do not reflect real-world Go programs. In

the work Lange et al. (2018), the model checker mCRL2 is used to verify modal

µ-calculus byKozen (1983) properties while in Lange et al. (2017) the models are

verified from specific barbs using an ad-hoc model checker.

Godel2. The work by Gabet and Yoshida (2020) builds on the approach intro-

duced in Lange et al. (2018). In addition to checking the same properties from

Lange et al. (2018), it detects mutex-related bugs such as unlocking an unlocked

mutex or an infinitely blocked mutex, as well as data races. However, like its

predecessor by Lange et al. (2017, 2018), it has limited applicability to real-world

programs as shown in Chapter 5.

GCatch. More recently, Liu et al. (2021) developed a different static approach

that relies on approximating possible executions and uses an SMT-solver to de-

termine whether they lead to blocking bugs. This detector, dubbed GCatch,

combines several static bug detectors and includes a novel detector for blocking

bugs (bmoc). GCatch is accompanied by GFix which aims at repairing bugs in-

volving at most two goroutines and a single channel. As shown later in Chapter 5,

GCatch has a better front-end than Gomela (fewer crashes) notably, because it

relies on the SSA representation of Go program. As a consequence, Go programs

must be compiled (all their dependencies met) before they are fed into GCatch.

Nano-go. Midtgaard, Nielson and Nielson (2018) proposed a static verification

approach based on abstract interpretation for detecting global deadlocks in a small

subset of Go. It does not support asynchronous channels, waitgroups or mutexes

nor does it supports recursion.

CHAPTER 2. BACKGROUND 27

Unsupported features of previous works. The static approaches mentioned

above only provide partial support of the Go language. For instance, as shown

in Table 8, none of the static verification frameworks in Ng and Yoshida (2016);

Stadtmüller, Sulzmann and Thiemann (2016); Lange et al. (2018); Midtgaard,

Nielson and Nielson (2018); Liu et al. (2021); Gabet and Yoshida (2020) can verify

programs that spawn new threads within a for-loop. The work in Lange et al.

(2017) only provides an unsound approximation for such programs. In addition,

model checkers based on behavioural types tend to raise too many false alarms, do

not scale to large codebases, and support a very limited subset of Go. In contrast,

GCatch can handle large codebases, has a low rate of false alarm, but tends to

miss many bugs (see Chapter 5). Additionally, it is not easy to predict the type

of bugs that GCatch misses.

Limitations of static approaches. One of the key advantages of static ap-

proaches is that they verify programs without actually executing them. However,

static approaches have certain disadvantages with regards to the scalability and

the correctness of feedback of the approaches. Verifying a program with a few

lines of code can take a large amount of time to verify, in some cases, only to pro-

vide a result that is not correct. Due to these limitations, Johnson et al. (2013)

has found that developers were unhappy with static checkers because the feedback

provided was unclear and often wrong as well as being too slow.

2.3.2 Dynamic verification of Go programs

In this section, we give an overview of all work related to the dynamic verification

of concurrent Go programs. An advantage of dynamic verification approaches

is that they raise fewer false alarms because they verify specific executions of

the program and may support a larger subset of the language since supporting

additional features only requires further instrumentation. However, instrumenting

CHAPTER 2. BACKGROUND 28

the code has an impact on the execution of the program which slows down the

speed of execution of the programs as well as hiding certain bugs or creating bugs

that were not in the original code. In addition, dynamic approaches focus only

on a small subset of the potential execution traces that a program can produce

which can result in missed bugs in the potential traces that were not verified.

Gopherlyzer-GoScout. Sulzmann and Stadtmüller (2017, 2018) proposed a

trace-based method to analyse Go programs which only supports synchronous

channels in Sulzmann and Stadtmüller (2017) and an improved approach in Sulz-

mann and Stadtmüller (2018) which relies on vector clocks and adds supports for

asynchronous channels. Both works require the code to be instrumented before

the analysis. Their trace-based method explores additional traces by recording

which branches in select statements have not been chosen at runtime and re-

plays the trace to exhaustively analyse all possible branches using vector clocks.

Concretely, the approach instruments the code by reporting pre(x) and post(x)

conditions which specify that the communication action x is available or that

it has been successfully carried out respectively. If multiple pre-conditions are

available at the same time (concurrently) during the execution of the program,

the approach exhaustively analyse all possible interleavings. They developed a

tool called gopherlyzer-Goscout which can reveal potential global deadlocks and

send-on-closed safety errors. This technique mitigates one of the main problems

inherent to dynamic approaches, which analyses only one specific trace of execu-

tion, by analysing exhaustively (concurrent) alternative traces available. However,

they are impacted by the intensive usage of message-passing primitives. For in-

stance, Sulzmann and Stadtmüller (2018) report up to 41% of tracing overhead

for programs with high level of concurrency.

GOAT. Another dynamic approach has been proposed by Taheri and Gopalakr-

ishnan (2021) called GOAT. GOAT extends the built-in Go’s execution trace

CHAPTER 2. BACKGROUND 29

1 select {
2 case ←ch:
3 fmt. Println (" Received on ch")
4 case ch1 ← 0:
5 fmt. Println ("Send on ch1")
6 }

Figure 10: Example of a select statement which non-deterministically choose
between the first available cases.

mechanism runtime/trace by adding events around concurrency operations in the

Go program. GOAT verifies that the trace produced by the program is free

from deadlocks. To explore a greater number of potential interleavings rather

than a single execution of the program, GOAT injects certain handlers (called

goat.handler()) which randomly calls the Go runtime to stop executing the

currently running goroutine to let other goroutines have a chance to execute.

This is achieved by calling runtime.GoSched() internally. A downside of this

approach is that these injected handlers (purposefully) affect the running time of

the program.

GFuzz. The most recent dynamic approach was developed by Liu et al. (2022)

called GFuzz. GFuzz uses message reordering (Yuan and Yang (2020)) by mutat-

ing the order in which messages are exchanged over channels to find concurrency-

related bugs. Instead of looking at all the potential interleaving of messages which

increase significantly with every additional communications operation, they use

fuzzing guided heuristics to prioritise certain ordering (such as orderings that lead

to a full channel). This technique relies on prioritising branches of select state-

ments by turning them into sequential conditional statements with timeouts that

fall back on the original select. In other terms, each case branch of the select

statement is tested one by one alongside a timeout statement. As an example,

the Go program that will result from the instrumentation performed by GFuzz on

the select statement in Figure 10 is shown in Figure 11.

CHAPTER 2. BACKGROUND 30

1 switch FetchOrder (_) {
2 case 0: // branch one
3 select {
4 case ←ch:
5 fmt. Println (" Received on ch")
6 case ←time. After (T):
7 select { // fall back
8 case ←ch:
9 fmt. Println (" Received on ch")

10 case ch1 ← 0:
11 fmt. Println ("Send on ch1")
12 }
13 }
14 case 1: // branch two
15 select {
16 case ch1 ← 0:
17 fmt. Println ("Send on ch1")
18 case ←time. After (T):
19 select { // fall back
20 case ←ch:
21 fmt. Println (" Received on ch")
22 case ch1 ← 0:
23 fmt. Println ("Send on ch1")
24 }
25 }
26 }

Figure 11: Instrumentation performed by GFuzz when verifying Figure 10.

From these figures, we can see that both branches have been turned into a

switch statement that prioritises certain branches over other branches by using

a timeout. When comparing GFuzz against GCatch, Liu et al. (2022) found

that GFuzz could find many more bugs than GCatch could. However, GFuzz

is a dynamic approach that requires running the program and performing much

instrumentation to the code.

Limitations of dynamic approaches. Although dynamic approaches have

many advantages such as allowing analysis of external libraries, they also have

limitations. Firstly, they require the code to be instrumented. Hence, they affect

the runtime and behaviours of the program which might, in turn, affect the ver-

ification results. In addition, dynamic analysis will always verify a subset of all

possible executions of a program whereas static verification attempts to verify all

possible traces of execution.

Chapter 3

Empirical Analysis of

Concurrency in Go Projects

In this chapter, we present the implementation and results of the empirical analysis

on the usage of concurrency that we performed on real-world Go projects. The

goal of this empirical analysis is to obtain a better understanding of how and how

often the concurrency primitives of Go, and their concurrency operations, are used

in practice by analysing publicly available Go projects. This empirical analysis

helps us determine what portion of Go code is supported by previous work as well

as give us a clearer idea of what needs to be supported the most. In addition,

this empirical analysis can also be used by other researchers and practitioners to

make well-informed decisions on which direction to take their research in terms of

the scalability (towards larger programs) and the applicability (towards a larger

subset of Go) of their approaches. In total, we have analysed 125 of the most

popular Github projects. To achieve this, we have built a tool that given a Go

project, uses Go’s native libraries to generate the abstract syntax tree (AST) of

the program and pursue an intra-procedural analysis which reports on particular

patterns and Go features of interest found in the resulting AST. The empirical

analysis aims at answering four research questions:

31

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 32

• RQ1: How often are channels, waitgroups and mutexes used in Go projects?

The Go language provides three popular concurrency mechanisms: channels,

waitgroups and mutexes. This research question is about how frequently and

intensively these concurrency mechanisms are used in practice and compares

which are used more often. We have found that most (96%) Go projects use

channel-based operations and use them intensively while 76% use waitgroups

and only 58% had at least one mutex declaration.

• RQ2: How often are concurrent operations used relative to their concur-

rency primitive in Go projects? The number of concurrency operations per

primitive greatly affects the size of the models generated when modelling

Go programs. This research question inquires how often each operation is

used with regard to their concurrency primitive. This is relevant to both

static and dynamic verification since both are impacted by the number of

operations and primitives occurring in a program. Static verification frame-

works often rely on checking properties of a model (e.g., behavioural type

or forkable expression, see Section 2.3) whose size grows with the number

of operations and primitives used in the program. In dynamic verification

frameworks, the code needs to be instrumented around each operation (see

Section 2.3). Hence, if more operations are used, more data need to be

recorded and analysed. We have found that the number of operations per

concurrency primitives is relatively low, which suggests that programmers

use simple protocols or patterns to synchronise threads over concurrency

primitives.

• RQ3: How common is the usage of asynchronous message passing in Go

projects? The communication channels in Go are synchronous by default,

which means that both send and receive operations are blocking unless chan-

nels are given an explicit bound. The language offers the option of creating

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 33

bounded asynchronous channels for which send operations are not blocking

as long as the channel is not full. Bounded asynchrony is challenging for a

static verification point of view because (i) the channel bounds may not be

known statically and (ii) the state space of the program grows exponentially

with the capacity of the channel.

We have found that 59% of the channels in the projects we have analysed are

synchronous, while most asynchronous channels are created with a bound

of 1 (and 75% have a bound of 4 or less). This suggests that the maximal

capacity of asynchronous channels might often be reached in practice.

• RQ4: What concurrent topologies are used in Go projects? One of the main

challenges of statically analysing message passing programs is related to their

concurrent topologies, e.g., the number of concurrent threads executing,

the number of channels over which they communicate, and whether these

numbers are known and finite. It is often impossible to statically determine

the (possibly infinite) number of threads and/or channels a program may

create at runtime. An infinite or complex concurrent topology may lead

to an infinite state-space which renders techniques such as model checking

prohibitively costly or impossible. This research question investigates how

often complex concurrent topologies are used in practice.

We found that 97 out of 125 (78%) projects contained programs for which

it is not possible to determine the number of threads at compile-time. How-

ever, most projects use a number of channels which can be determined stat-

ically (78% of projects).

Contributions. In this chapter, in Section 3.1, we describe our methodology,

including our data selection and our Go program analyser. In Section 3.2, we

present the results of our analysis, answering the four research questions. In

Section 3.3, we discuss the limitations of our analysis. We discuss related work in

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 34

Table 1: General information about the 150 projects.

Total number of visited projects 150
Number of analysed projects 125
Number of channel-based projects 119
Number of waitgroup projects 95
Number of mutex projects 73
Number of median-sized projects 23

Section 3.4 and give concluding remarks in Section 3.5. Our tool-chain (Dilley and

Lange (2022b)) and experimental data (Dilley and Lange (2021d)) are available

online.

3.1 Methodology

In this section, we describe the GitHub projects that we have collected and the

approach we have used to answer the research questions we set out in the intro-

duction of Chapter 3.

GoSurvey. To obtain a better understanding of how the concurrency primitives

of Go are used in practice, we implemented a tool-chain, dubbed GoSurvey, which

analyses publicly available Go projects from a list of projects given as input.

Table 1 gives an overview of the total number of projects we have analysed.

We have thoroughly analysed 125 projects, totalling 32 million (physical) lines of

code. Part of our analysis focuses on two sub-groups: 125 projects which contain

at least one concurrency primitive or operation and 23 of similar sizes. From the

list of 125 projects, we found that 119, 95, and 73 contained at least one channel,

waitgroup and mutex respectively.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 35

150
projects

Manual
filter

125
app.
projects

25
other
projects

Git
clone

Parsing
&

Metric
extrac-
tion

csv
files

html
files

Figure 12: Process of the empirical analysis.

3.1.1 Projects selection

The goal of our empirical analysis is to investigate how and how much developers

use the concurrency features of Go in a wide range of application domains. Fig-

ure 12 gives an overview of the selection procedure. First, we have selected the 150

most popular Go projects on GitHub, according to the number of stars associated

with these projects. Even though this metric might not be the most accurate,

Borges and Valente (2018) found that the number of stars generally reflects how

many people appreciate or are interested in a project. The selection was made in

September 2021 when the star counts of the selected projects ranged from 9899

to 90067 stars. The list was retrieved using a Python script which connects to

GitHub’s rest api and returns a list of project identifiers. Next, we manually

filtered the list of projects to remove repositories that do not contain human-made

applications. In total, we removed 10 of these projects:

• quii/learn-go-with-tests,chai2010/advanced-go-programming-book,

unknwon/the-way-to-go_ZH_CN,hoanhan101/ultimate-go,

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 36

greyireland/algorithm-pattern and yeasy/docker_practice which con-

tain exercices from textbooks.

• astaxie/build-web-application-with-golang which is a tutorial to build

web application in Go.

• tmrts/go-patterns which is a list of idiomatic designs and patterns in Go.

• halfrost/LeetCode-Go which is a list of Go solutions to difficult interview

questions in Go from the famous text platform LeetCode.

• avelino/awesome-go which is a list of popular Go frameworks.

We also filtered out 5 projects which could not be parsed by the go/parser

library, which we use to extract the abstract syntax trees from Go programs,

because these projects either contained pre-processors for their programs or were

structured in non-conventional ways. These are golang/dep, cockroachdb/cockroach,

google/gvisor, jaegertracing/jaeger, and coreybutler/nvm-windows.

For each of the remaining projects, we have executed a git clone command

to retrieve the source code locally. Then we automatically removed the top-

level test and vendor directories, to reduce potential noise due to, e.g., usage of

third party libraries exposing channels. We note that we preserved unit tests, as

they provide insights on, e.g., how an API exposing channels is used. Unit tests

related to a given <file>.go file are located in the same directory (in a file called

<file>_test.go). After our analysis, we removed an additional 10 projects from

the original list that did not contain any communication feature resulting in a

total of 125 projects overall. Note that only 8% of the projects did not contain

any concurrency features.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 37

3.1.2 Analysing Go programs

In the next step, our GoSurvey traverses the abstract syntax tree of all .go files in

each cloned repository. The GoSurvey is written in Go and relies on Go’s internal

parser (the go/ast, go/parser and go/types libraries) to compute the number

of occurrences of several concurrency-related features. We count the occurrences

of the following features:

• The channel creation primitive, make(chan T, e), with or without a capacity.

This feature is useful to determine whether or not a project uses channel-

based message-passing concurrency. We also record the capacity e and the

type T of each channel to determine whether it is asynchronous and/or

whether the channel is used to carry other channels respectively.

• The basic channel-based operations: send, receive, and select. As well as

the close operation and the range-over-channel statement. These features

are useful to determine how intensively channels are used.

• The spawning of a goroutine (e.g., line 16 of Figure 21). We consider occur-

rences of goroutine and channel creations in for-loops as special cases (e.g.,

lines 22 and 21 of Figure 21).

• The aliasing (or assignment) of a channel within a for-loop, as in line 23

of Figure 21. These constructions are used to determine whether a complex

topology of concurrent threads is created.

• The usage of channel direction annotations in formal parameters, as in line 6

of Figure 21. These annotations allow us to determine whether developers

use this optional stronger typing discipline.

• The declaration of a variable of type waitgroup, var wg sync.WaitGroup.

Variables of type waitgroup or mutex are automatically initialised when

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 38

declared in Go compared to channels that needs to be explicitly initialised.

This construct is used to determine how intensively synchronisation barriers

are used.

• The basic waitgroup operations: Add(x), Done() and Wait(). We also

record the value of x when it is a constant and report on the number of

Add(x) where x is a constant.

• The declaration of a variable of type mutex, var wg sync.WaitGroup. This

construct allows us to determine how often developers rely on shared memory

concurrency compared to message-passing concurrency.

• The two basic operations on mutex: Lock() and Unlock().

We expand on some of these features and how they help us answer our research

questions in Section 3.2.

The analyser generates a set of csv files storing the number of occurrences

of concurrency-related features, as well as other metrics related to the size of the

projects (number of lines of code, files, and packages etc). The analyser addition-

ally generates html files. Each html file contains the list of features occurring in

a given project as well as hyperlinks to their locations on the associated GitHub

repository (the links point to a specific line of code and commit snapshot), see Dil-

ley and Lange (2021d).

3.1.3 Project sizes

To compare the level of intensity of message-passing concurrency in projects of

significantly different sizes and structures, we present some of our measurements

relative to the number of physical lines of code (ploc) using the cloc command

(see Danial (2021) (v1.80)) which discards, e.g., blank and comment lines. Given

a project P , we write |P | for its concurrent size, i.e., the sum of physical lines of

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 39

code in all .go files that contain at least one of the concurrency features described

in Section 3.1.2. Mathematically, |P | = ∑
f∈F (P) kploc(f) where F (P) is the set

of files in P which have at least one concurrency-related feature. Focusing on the

files with a concurrency aspect allows us to compare the message-passing intensity

of projects which may have significantly different sizes but a comparable use of

concurrency.

The three biggest projects of the 125 projects in terms of concurrent size are:

Golang (2021a) (concurrent size = 156 kploc), Vitessio (2021) (concur-

rent size = 126 kploc), and Pingcap (2021) (concurrent size = 115 kploc).

The Pingcap (2021) project holds the well-known distributed Hybrid Transac-

tional and Analytical Processing (HTAP) database TiDB. The Vitessio (2021)

project is a database clustering system for horizontal scaling of MySQL through

generalised sharding. This project also has the largest number of waitgroups

and mutexes declarations. Finally, Golang (2021a) contains the Go compiler,

standard library, and runtime. Given the nature of these software, it is not too

surprising that they rely heavily upon concurrency-related features, e.g., to allow

multiple concurrent requests and having a concurrent runtime engine.

3.1.4 The Core Projects: similarly sized projects

To visualise the usage of concurrency primitives and their operations in absolute

terms over similarly sized projects, we selected the projects whose size falls within

30% of the median concurrent size |P | of all 125 projects. This resulted in 23

projects. We call these the core projects. The median concurrent size of our

sample is 4.5 kploc, hence the core projects consist of projects whose size is

between 3.2 and 5.9 kploc.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 40

Table 2: Projects using concurrency operations (out of 125 projects).

Feature projects proportion
chan 119 95%
receive 120 96%
send 118 94%
select 108 86%
close 83 66%
range 51 41%
waitgroup 95 76%
Add(x) 95 76%
Done() 94 75%
Wait() 95 76%
mutex 73 58%
Lock() 72 58%
Unlock() 72 58%

3.2 Quantitative analysis

In this section, we report and discuss the quantitative results of our analysis for

each research question. To answer our research questions, we use our tool-chain to

collect occurrences of the different features described in Section 3.1.2. We present

our results through descriptive statistics (box plots and numerical tables) and

summaries of several manual investigations of a few remarkable projects.

3.2.1 How often are channels, waitgroups and mutexes

used in Go projects?

We use the framework described in Section 3.1 to collect occurrences of Go’s native

concurrency primitives and their operations. Table 2 summarises our findings wrt.

occurrence of operations in the 125 projects we have analysed. We note that only

6 projects out of 125 (∼5%) do not create any communication channels, whereas

30 out of 125 (∼24%) do not use waitgroups, and 52 out of 125 (∼42%) do not

use mutexes. All 23 core projects had at least one channel creation, one project

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 41

chan send receive select close range Waitgroup Add(x) Done() Wait() Mutex Lock() Unlock()

100

101

102

103

Nu
m

be
r o

f f
ea

tu
re

s

Figure 13: Absolute occurrences of concurrency operations and primitives in 125
projects (y-axis is log scaled). The mean and the median are shown with a green
triangle and an orange line respectively.

chan send receive select close range Waitgroup Add(x) Done() Wait() Mutex Lock() Unlock()

100

101

Nu
m

be
r o

f f
ea

tu
re

s

Figure 14: Absolute occurrences of concurrency operations and primitives in 23
core projects (y-axis is log scaled).

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 42

chan send receive select close range Waitgroup Add(x) Done() Wait() Mutex Lock() Unlock()

10 1

100

101

Nu
m

be
r o

f f
ea

tu
re

s /
 k

PL
OC

Figure 15: Occurrences of concurrency operations wrt. concurrent size in 125
projects (y-axis is log scaled).

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 43

Table 3: Absolute occurrences of concurrency operations and primitives in 125
projects.

Features mean std min 25% 50% 75% max
chan 58.69 119.75 0 4 15 54 826
send 55.296 105.95 0 4 15 54 762
receive 123.97 235.84 0 6 27 118 1357
select 51.12 93.59 0 2 10 49 499
close 16.54 35.12 0 0 2 11 204
range 2.31 5.08 0 0 0 2 28

waitgroup 12.36 27.33 0 1 3 9 193
Add(x) 13.82 31.08 0 1 3 9 214
Done() 15.15 33.37 0 1 4 11 220
Wait() 12.90 29.37 0 1 3 10 197
mutex 4.98 10.65 0 0 1 5 82
Lock() 8.08 16.43 0 0 2 9 113
Unlock() 8.21 16.78 0 0 2 9 113

Table 4: Absolute occurrences of concurrency operations and primitives in 23 core
projects.

Features mean std min 25% 50% 75% max
chan 11.82 7.97 3.00 6.00 9.00 18.50 27.00
send 9.61 7.28 2.00 4.50 6.00 14.00 29.00
receive 21.52 15.58 3.00 8.50 16.00 32.50 58.00
select 8.61 7.18 0.00 2.50 6.00 13.00 26.00
close 2.65 3.05 0.00 0.00 1.00 5.50 10.00
range 0.43 0.84 0.00 0.00 0.00 0.50 3.00

waitgroup 2.57 1.56 0.00 1.00 3.00 4.00 6.00
Add(x) 2.91 1.95 0.00 1.50 3.00 4.00 8.00
Done() 3.13 2.49 0.00 1.50 2.00 4.00 10.00
Wait() 2.61 1.62 0.00 1.00 3.00 4.00 6.00
mutex 2.39 5.19 0.00 0.00 1.00 2.50 25.00
Lock() 3.65 7.76 0.00 0.00 2.00 4.00 37.00
Unlock() 3.91 8.93 0.00 0.00 2.00 4.00 43.00

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 44

did not use any waitgroup, and 10 did not contain any mutex. This suggests

that more projects rely on channel-based concurrency and waitgroups rather than

mutexes.

Absolute measurements. Figure 13 shows the average (green triangle) and

five-number summary (minimum, Q1, median, Q3 and maximum values) of the

number of occurrences of primitives and operations in the 125 projects. Note that

the y-axis is in logarithmic scale. Figure 13 is divided into three sections, the left

part shows the occurrences of channel-based operations, the center part shows

the occurrences of waitgroup-related operations while the right section shows the

occurrences of mutex-related operations. On average, the 125 projects contained

61.65 occurrences of a channel creation primitive (with a median of 13), 16.26

occurrences of a waitgroup declaration (with a median of 5) and 8.64 occurrences

of a mutex declaration (with a median of 4). From this, we can conclude that, on

average, channels are used more intensively (more occurrences per lines of code)

in Go projects than other concurrency mechanisms. This conclusion also holds

for the core projects that can be seen in Figure 14 where the average number

of channel creations is 11.82 compared to 2.56 waitgroups and 2.39 mutexes per

projects. In the rest of this section, we focus on those 125 projects that contain

at least one channel, waitgroup or mutex declaration operation. We present both

absolute and relative measurements. To give two distinct perspectives on the

relative occurrences of concurrent operations, we present results with respect to

the concurrent size of projects (see Section 3.1.3) and the number of occurrences

of concurrency operation with regards to concurrency primitive declarations.

Chanel-based absolute measurements. From Figure 13, we can see that the

most used operation is the receive operation. The average number of occurrences

of receive operations is 130.18 with a median of 28. This operation is also used

to model delays and timeouts, which explains why the number of projects with

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 45

Table 5: Number of branches in select statements.

mean std min 25% 50% 75% max
branches 2.17 0.65 0.00 2.00 2.00 2.00 14.00

receive operations is greater than the number of projects with channel creations.

For instance, the program below waits 2 seconds then prints “Done.”.

←time. After (2 * time. Second) // receive

fmt. Println ("Done.")

Table 3 also shows that the range-over-channel construct is not used intensively.

On average, the projects we have analysed contained only 2.43 of such constructs

(with a median of 0).

Table 5 shows the size of select statements in terms of the number of cases

they contain (including a possible default branch). We observe that select state-

ments have ∼2.17 branches on average. Over the 6390 select statements we have

analysed, 1829 (28.6%) included a default branch.

The top project in terms of absolute numbers of channel-oriented features is

Golang (2021a) (concurrent size = 156 kploc) which contains the Go compiler,

standard library, and runtime. This project has the largest number of concurrency-

related features, i.e., 826 channel creations, 762 send, 1357 receive, 204 close

operations, and 412 select statements.

Waitgroup-related absolute measurements. From Table 2 (middle section),

we observe that Add(x), Done () and Wait() appear in 76% of the projects. 95

projects overall contained the occurrence of at least one waitgroup, Add(x), and

Wait(). However, one of them, K3s-io (2021b), did not contain any Done() call

because the method is passed as a higher-order function parameter in K3s-io

(2021a) as shown below:

once.Do(wg.Done)

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 46

1 wg.Add (2)
2 didRead := make(chan bool , 1)
3
4 go func () {
5 defer wg.Done ()
6 ...
7 didRead ← true
8 }()
9

10 go func () {
11 defer wg.Done ()
12 ...
13 ←didRead
14 }()
15 wg.Wait ()
16 }

Figure 16: Simplified example from Golang (2021c) which showcase the uses of
multiple Done() per waitgroup.

The construct once is found in the go/sync package and includes a method Do(f)

which invokes the high order function x exactly once even if Do(x) is called multi-

ple times. Essentially, once.Do(wg.Done) certifies that wg.Done() will be called

once no matter how many times once.Do(wg.Done) is invoked.

In the rest of this section, we focus on those 95 projects that contain at least

one waitgroup declaration primitive. In Figure 13 (middle section) and Table 3

(middle section), we can see that the average numbers of occurrences of waitgroup

declaration, Add(x), Done() and Wait() primitives are very similar which sug-

gests that waitgroup usage is generally very simple with one of every action per

waitgroup declaration.

The top project in terms of absolute numbers of waitgroup-related operations

is Vitessio (2021) (concurrent size = 126 kploc)

which is the project with the largest amount of waitgroup-related operations

overall. It contains 193 waitgroup declarations, 214 Add(x), 220 Done() and 194

Wait().

Mutex-related absolute measurements. From Table 2 (bottom section), we

observe that Lock() and Unlock() appear in 58% of the projects. A total of 73

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 47

projects contained the occurrence of at least one mutex declaration. However, one

of them, Sirupsen (2021b), contained neither a Lock() or an Unlock() because

the mutex variable declared at line 593 in Sirupsen (2021a) is passed to a struct

and subsequently referred to as a field of the struct (see lines 603, 607, 617 and

621 in Sirupsen (2021b)) which our tool does not support. Interestingly, we can

see that from Figure 13 (right section) and Table 3 (bottom section), the average

numbers and medians of Lock() and Unlock() are double the average of mutex

declaration. This suggests that a mutex, on average, is locked and unlocked twice.

308 and to Unlock() at lines 272 and 309.

The Vitessio (2021) project (concurrent size = 126 kploc) contains the

highest absolute number of mutex primitives. It contains 82 mutex declarations,

113 Lock() and Unlock().

Measurements from the 23 core project. Similarly to Figure 13 and Table 3,

Figure 14 and Table 4 show the average, standard deviation and five-number

summary for the occurrence of concurrency operations in the 23 core projects.

From these projects, we observe that, even though the y-axis does not show the

same numbers, the shapes of the box plots are very similar to the absolute values

of Figure 13 and Table 3.

We can also see that, overall, the usage of waitgroup declarations is roughly

similar to the number of Wait() and that the Done() operation is used more

intensively than others as explained in section 3.2.1. Within the core projects,

two projects, Docker-slim (2021) and Drone (2021), have the most channel

creation with 27 creations per project in total. Docker-slim (2021) (an API that

optimizes and secures docker containers) is the project with the highest project

size with 5296 ploc. It contains the second largest number of receive operations

(41). The Drone (2021) project provides a continuous delivery system built on

container technology. This project contains the most receive and close operations

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 48

1 func wsWriter (... , writeMutex *sync. Mutex) {
2 pingTicker := time. NewTicker (15 * time. Second)
3 ...
4 for {
5 select {
6 case ←pingTicker .C:
7 writeMutex .Lock ()
8
9 if ... {

10 writeMutex . Unlock ()
11 return
12 }
13
14 if ... {
15 writeMutex . Unlock ()
16 return
17 }
18
19 writeMutex . Unlock ()
20 ...
21 }
22 }
23 }

Figure 17: Simplified example from Photoprism (2021a) that shows why in some
project the number of Unlock() is greater than Lock().

(58 and 18 respectively). The project with the highest amount of waitgroup

operations is Chi (2021a) (a router for building Go HTTP services) with an

average of 24.04 waitgroup declarations and Wait() operations, and 33.65 Add(x)

and Done() operations per 1000 concurrent lines. This is mainly due to one single

test file Chi (2021b) making heavy usages of waitgroups.

A project that stands out from the rest of the core projects is Photoprism

(2021b) because it has four times the amount of mutex declarations (25) and

six times the amount of Lock() (37) and Unlock() (43) than the second largest

project.

The fact that the number of Unlock() is higher than Lock() is explained

by the repetition of a pattern shown in Figure 17 from Photoprism (2021a). The

parameter writemutex of function wsWriter, is used as part of a for-select pattern

which infinitely waits for one of the branches of the select to fire. In this case, a

ticker is used to trigger the branch at line 6 every 15 seconds (the other branches

are omitted for brevity). Then, if certain properties hold at lines 9 and 14, the

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 49

1 func TestEchoStart () (...) {
2 errChan := make(chan error)
3
4 go func () {
5 // code omitted
6 if err != nil {
7 errChan ← err
8 }
9 }()

10
11 waitForServerStart (e, errChan , false)
12 }

Figure 18: Simplified example from Labstack (2021b) which contains no receive
because the receive is performed in an external function.

mutex is unlocked and the function returns. Otherwise, the mutex is also unlocked

and the rest of the branch is executed.

Measurements relative to concurrent size. Our first relative measurements

are given with respect to the concurrent size of projects, i.e., |P |, the ploc in the

files which contain at least one concurrency feature. For each project P , we divide

the number of occurrences of each concurrency feature by |P |. Figure 6 and Table 6

summarise our findings for all concurrency operations per 1000 concurrent lines.

Channel-based measurements. On average, we observe that message passing

operations are used intensively in concurrency-related files. We find 6.34 channels

for every 1000 concurrent lines of code (with a median of 3.01). The relative

average number of occurrences of send, receive and select operations are 6.65, 10.31

and 2.67 respectively. The other operations are used significantly less intensively

(less than 2).

The Labstack (2021a) project, a minimalist web framework, has the largest

number of channel creations and send operations relative to its concurrent size

(30.94 per kploc in concurrency-related files). The fact that their number is sim-

ilar is explained by the occurrence of a pattern similar to the shown in Figure 18.

In Figure 18, errChan is used to specify if an error occurred in the spawned gorou-

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 50

1 func ThrottleWithOpts (ctx context .context , limit int) {
2
3 tokens := make(chan token , limit)
4 backlogTokens := make(chan token , limit)
5
6 select {
7
8 case ←ctx.Done ():
9 return

10
11 case ←backlogTokens :
12 timer := time. NewTimer (time. Second * 60)
13
14 select {
15 case ←timer .C:
16 return
17 case ←ctx.Done ():
18 timer .Stop ()
19 return
20 case tok := ←t. tokens :
21 defer func () {
22 timer .Stop ()
23 tokens ← tok
24 }()
25 }
26 }
27 }

Figure 19: Simplified example from Go-chi (2021) that shows a common pattern
where a channel is returned via a method call and received on. This pattern is
generally used to implement timeouts and cancellation signals.

tine. The number of receive primitives (21.04 per 1000 concurrent lines) is inferior

to the number of send operations because the channel is then passed to a function

waitForServerStart which takes care of the reception.

The Chi (2021a) project, a router for building Go HTTP services, has the

largest number of receives relative to its concurrent size with 28.85 receives per

1000 concurrent lines of code and the second largest amount of select with 9.61

select operations. This can be explained by the fact that the project makes use

of multiple selects that are guarded by receives on timing data-structures (such

as Go’s native libraries time and context) which contains a channel that will send

after a given amount of time or after a specific action has been performed respec-

tively. A simplified example of this pattern taken from Go-chi (2021) is shown

in Figure 19. The timer declared at line 12 will send on its channel C after 60

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 51

seconds. Hence, after 60 seconds the branch at line 15 will be available. Whereas

the ctx field is a context data-structure which is used to carry cancellation signals

and deadlines. The channel returned by calling ctx.Done() will be closed when

the context is cancelled or as reached a timeout. As a result, the receives at lines

8 and 17 will become available.

Waitgroup-related measurements. On average, we observe from Figure 6

and Table 6 that waitgroups are used three times less intensively than channels.

We can see that, overall, the usage of waitgroup declarations is roughly similar

to the number of Wait() and that the Done() operation is used more intensively

than others. The project with the highest amount of waitgroup operations is Chi

(2021a) with an average of 24.04 waitgroup declarations and Wait() operations,

and 33.65 Add(x) and Done() operations per 1000 concurrent lines. This is mainly

due to one single test file (see Chi (2021b)) making heavy usage of waitgroups.

Mutex-related measurements. Figure 6 (bottom section) and Table 6 (bot-

tom section) summarise our findings for mutex-related operations per 1000 con-

current lines. On average, we observe that mutexes are used less intensively than

channels and waitgroups. The project with the highest amount of mutex-related

operations per 1000 concurrent lines is Photoprism (2021b) with 5.03 mutex,

7.44 Lock() and 8.65 Unlock() per 1000 concurrent lines of code.

3.2.2 How often are concurrent operations used relative

to their concurrency primitive in Go projects?

Our second relative measurements are made relative to the number of occurrences

of concurrency operations over their relative primitive in each project. Hence, we

divide the number of occurrences of each operation such as send, Add(x), etc. by

the number of occurrences of its relative concurrency primitive (channel creation

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 52

RQ1: We found that 95% of the projects we have analysed used at least one
concurrency primitive. This suggests that concurrency is heavily used in real-
world Go projects and therefore, developing approaches and implementing
tools that verify the concurrent behaviour of Go programs is relevant and
important.
We found that channels were used in 20% more projects than waitgroups and
37% more projects than mutexes. This suggests that Go developers rely more
on channels than other forms of concurrency.
We found that the receive primitive is the most commonly used operation
because we have seen that it is commonly used for implementing delays and
timeouts. However, in some cases, the syntactic number of receives were
lower than the number of sends and channel creations due to receives being
performed within function calls.
We have found that, on average, a mutex is locked and unlocked twice while
waitgroups are incremented and decremented on average once.

for sends, waitgroup declaration for Done(), etc.). This measurement gives us an

approximation of the number of operations invoked on each concurrency primitive.

Figure 20 and Table 7 summarise our results.

Measurements relative to the number of channels declarations. On av-

erage, there are 1.26 send operations per channel creation (with a median of 1)

while there are 2.08 receive operations per channel creation(with a median of

1.56). The slightly higher number of receive operations can be explained by the

fact that on average there is approximately a select for every other channels. In

turn, select statements have more than two branches on average, see Table 5, and

they are generally guarded by receive operations.

Two projects stand out with respect to the number of channel-oriented oper-

ations per channel creation: grpc-gateway and node_exporter, which we have

manually analysed. In the grpc-gateway project (a gRPC to JSON proxy gen-

erator) most channel usages are contained in examples showing how to use the

gRPC API.

https://github.com/grpc-ecosystem/grpc-gateway
https://github.com/prometheus/node_exporter
https://github.com/grpc-ecosystem/grpc-gateway

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 53

send receive select close range Add(x) Done() Wait() Lock() Unlock()

0

2

4

6

8

Nu
m

be
r o

f f
ea

tu
re

s /
 c

on
cu

rre
nc

y
m

ec
ha

ni
sm

s

Figure 20: Occurrences of concurrency operations wrt. respective concurrency
primitives.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 54

Table 6: Relative occurrences wrt. concurrent size in 125 projects.

Features mean std min 25% 50% 75% max
chan 6.34 6.43 0.23 2.78 4.69 7.83 71.43
send 6.65 7.86 0.00 2.33 4.63 7.84 75.28
receive 10.31 10.28 0.00 4.26 7.95 12.95 123.66
select 2.67 3.09 0.00 0.52 1.92 3.70 34.41
close 1.54 2.99 0.00 0.00 0.51 1.79 34.48
range 0.44 2.60 0.00 0.00 0.00 0.20 58.82
waitgroup 1.39 2.65 0.10 0.43 0.89 1.30 24.03
Add(x) 1.66 3.66 0.10 0.45 0.89 1.46 33.65
Done() 1.81 3.72 0.00 0.46 1.00 1.68 33.65
Wait() 1.46 2.74 0.10 0.42 0.86 1.39 24.04
mutex 0.59 0.70 0.04 0.23 0.38 0.68 5.03
Lock() 0.90 1.06 0.00 0.34 0.62 1.10 7.44
Unlock() 0.92 1.16 0.00 0.34 0.61 1.10 8.65

The node_exporter project contains several instances of send operations send-

ing several (53) hard-coded variations of a struct. These two examples are extreme

cases of the operation to channel ratio. However, as shown in Figure 20 (left sec-

tion) and Table 7 (top section), the interquartile range is very close to the mean.

Therefore, our results suggest that the number of syntactical occurrences of fea-

tures over a given channel is fairly low, which further suggests that channels are

used to support simple synchronisation protocols.

Measurements relative to the number of waitgroups declaration. Our

second relative measurements are made relative to the number of occurrences of

waitgroup declarations in each project. Hence, we divide the number of occur-

rences of each waitgroup operation Add(x), Done() and Wait() by the number of

occurrences of waitgroup declarations. This measurement gives us an approxima-

tion of the number of operations invoked on each waitgroup. Figure 20 (middle

section) and Table 7 (middle section) summarise our results.

https://github.com/prometheus/node_exporter

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 55

Table 7: Relative occurrences wrt. their relative concurrency primitives in 125
projects.

Features mean std min 25% 50% 75% max
send 1.11 0.67 0.00 0.71 1.00 1.39 5.00
receive 2.13 1.20 0.00 1.23 1.86 2.55 6.67
select 0.46 1.33 0.00 0.28 0.50 0.77 2.50
close 0.21 0.28 0.00 0.00 0.17 0.31 1.00
range 0.12 0.15 0.00 0.00 0.00 0.04 1.00
Add(x) 1.15 0.52 0.57 1.00 1.00 1.14 5.50
Done() 1.30 0.70 0.00 1.00 1.12 1.36 6.00
Wait() 1.04 0.43 0.60 1.00 1.00 1.00 5.00
Lock() 1.70 1.17 0.00 1.00 1.48 2.00 9.00
Unlock() 1.72 1.17 0.00 1.00 1.5 2.00 9.00

The project with the highest number of waitgroup-related operations per wait-

group declarations is Etcd-io (2021) with 5.5 Add(x), 6 Done() and 5 Wait() per

waitgroup declarations. After manual analysis, we have found such high numbers

can be explained by the fact that one waitgroup is declared as a global variable

and used by several functions in the package. However, for all the projects on

average, the number of Add(x), Done() and Wait() is very close to the number of

waitgroup declarations (1.15, 1.30, 1.04 respectively). This also shows that wait-

groups are generally used for simple protocols where one waitgroup declaration is

followed, on average, by a single occurence of each waitgroup operation (Add(x),

Done() and Wait()).

Measurements relative to the number of mutex declarations. The project

with the highest number of mutex-related operations per mutex declaration is

Beego (2021a) with 9 Lock() and Unlock() per mutex declarations. After man-

ually analysing the project, we found that such large numbers are explained by

the fact that a mutex is declared as a global variable and used in the body of 15

function declarations in the same package. This pattern can be found in Beego

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 56

(2021b).

Except for this project, the average number of Lock() and Unlock() is almost

double the number of mutex declarations (1.70 and 1.72 respectively).

RQ2: We found that the number of operations per concurrency primitive is
low. Waitgroups and mutexes had slightly more than one of each operation on
average per declaration, while channels had 1.11 sends and 2.13 receives per
channel declaration. This suggests that concurrency primitives are used for
simple synchronisation protocols. This also suggests that, as the protocols are
simple, slicing techniques based on the usage of concurrency primitives might
drastically reduce the size of the models generated. In Chapter 4, we discuss
how we partition Go programs into independently verifiable components.

3.2.3 How common is the usage of asynchronous message

passing in Go projects?

Go offers two types of channels: synchronous (default) and asynchronous. In

this section, we study how frequently programmers use asynchronous channels

compared to synchronous ones. For asynchronous channels, we investigate how

often their bounds can be determined statically and give statistics on their sizes.

We use the framework described in Section 3.1 to collect occurrences of channel

creation primitives and record channel bounds, whenever the capacity of a channel

is known at compile time. Table 8 lists the number of occurrences of each type of

channel. Overall the projects we have analysed contained more than 7k channels.

For a large majority (91%) of the channels, we were able to determine their bounds

statically: either synchronous (60%) or a non-zero capacity known at compile time

(32%), i.e., a hard-coded integer or a constant.

Table 9 gives our results concerning the sizes of asynchronous channels whose

bounds are statically known. We observe that most asynchronous channels are

set to hold at most one message, while a capacity of over 4 is uncommon. A

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 57

Table 8: Communication channels in 119 projects.

Type occurrences proportion
All channels 7336 100%
Channels with known bounds 6680 91%
Synchronous channels 4338 60%
Asynchronous channels (known) 2342 32%
Channels with unknown bounds 656 9%

Table 9: Known sizes of asynchronous channels.

mean std min 25% 50% 75% max
size 125.04 2129.28 1 1 1 4 105

few projects use channels with a very large capacity to simulate unbounded asyn-

chrony. For instance, the project dgraph contains one channel of size 105 to

implement a channel which is used to receive a statically unknown number of re-

quests without blocking. Similar uses-cases can be found in the minio and vitess

projects with channels of size 104.

RQ3: We observed that synchronous channels are the most commonly used
channels (60%). Whenever asynchronous channels are used, they are gener-
ally created with a statically known bound, which is less than or equal to
4 in 75% of the cases. This means that model-based static approaches can
generate models that are far more precise when the size of a channel is known
statically. Otherwise, static approaches must model asynchronous channels as
unbounded channels which increases the complexity of the model and increase
the number of false alarms or, generate multiple models with different bounds
for the channel which might not reflect the actual bound given at runtime.

3.2.4 What concurrent topologies are used in Go projects?

In this section, we investigate whether programs containing complex concurrent

topologies are common in practice. We measure the complexity of a concurrent

topology by counting the occurrences of programming patterns which may (i)

https://github.com/dgraph-io/dgraph
https://github.com/minio/minio
https://github.com/vitessio/vitess

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 58

create one or more goroutines, (ii) create one or more channels, or (iii) store

channels in complex data structures.

Figure 21, adapted from Golang (2021b), gives an example of a complex con-

current program implementing a concurrent version of the Sieve of Eratosthenes

(an algorithm to compute all prime numbers under a bound) which contains sev-

eral of such concurrent programming patterns.

The program consists of three functions. Function generate iteratively sends

an integer on channel ch. Function filter iteratively reads an integer from

channel in and, if it is not divisible by p, sends it over channel out. Function main

is the entry point of the program. It spawns an instance of function generate,

then reads a bound given by the user (the definition of readFromUser() is elided).

Next, the function loops bound times, spawning new instances of filter which

are linked together by freshly created channels (ch1).

The concurrent prime sieve program contains several complex concurrency pat-

terns which are generally not supported by existing static verification techniques,

e.g., a goroutine is spawned within a for-loop, see line 22 and a channel is also

spawned within the same for-loop at line 21. In particular, bound is not known

at compile time. Hence, for any statically computed abstraction to be sound, one

needs to assume that the number of goroutines and channels created by the pro-

gram is potentially infinite. Additionally, because of the channel aliasing occurring

in line 23, these goroutines and channels form a complex topology by linking each

pair of threads with a distinct channel.

Goroutine creation. The first part of Table 10 summarises our analysis on

the frequency of different patterns of goroutine creations in the 125 projects. The

table shows that 99% of the projects we have analysed contain at least one thread

creation (i.e., the keyword go) and 85% contain at least one occurrence of a thread

creation within a for-loop (i.e., go in (any) for). We distinguish between thread

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 59

1 func generate (ch chan int) {
2 for i := 2; ; i++ {
3 ch ← i // send
4 }
5 }
6 func filter (in ←chan int , out chan← int , p int) {
7 for {
8 i := ←in // receive
9 if i%p != 0 {

10 out ← i // send
11 }
12 }
13 }
14 func main () {
15 ch := make(chan int)
16 go generate (ch)
17 bound := readFromUser ()
18 for i := 0; i < bound ; i++ {
19 prime := ←ch // receive
20 fmt. Println (prime)
21 ch1 := make(chan int)
22 go filter (ch , ch1 , prime)
23 ch = ch1
24 }
25 }

Figure 21: Concurrent prime sieve.

creation within a bounded for-loop, as in line 7 of Figure 7 and unknown for-

loop, as in line 18 of Figure 21. A for-loop is bounded if our analyser found a

constant limiting the number of iterations. For the purpose of static verification, a

for-loop with a known bound could be unfolded. Table 11 summarises the size of

the bounds we have encountered and the top of Table 12 summarises the relative

occurrences of patterns in projects which contain at least one occurrence of such

a pattern. Note that the bounds of bounded for-loops are generally rather large

(∼603 on average, with a median of 10).

Channel creation. The second part of Table 10 gives the proportion of projects

where channels are created within a for-loop. The second part of Table 12 sum-

marises the relative number of occurrences of these patterns in projects which

contain at least one occurrence of such a pattern. Such patterns can be used to

create potentially infinitely many communication links between threads. Observe

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 60

Table 10: Frequency of concurrency patterns in 125 projects.

Feature projects proportion
go 124 99%
go in (any) for 106 85%
go in bounded for 61 49%
go in unknown for 97 78%
chan in (any) for 27 22%
chan in bounded for 10 8%
chan in unknown for 26 21%
channel aliasing in for 1 0.08%
channel in slice 31 8%
channel in map 0 0%
channel of channels 14 11%

Table 11: Known bounds of for-loops containing go.

mean std min 25% 50% 75% max
bound 603.34 5858.85 1 5 10 100 120000

that channel creation within a for-loop is much less common that thread spawn-

ing. Again, we distinguish between channel creations within bounded for-loops as

these could be unfolded as part of a static analysis. Only 22% of the projects that

we have analysed included a for-loop containing a channel creation. The usage

of channel creation within a bounded for-loop is less common (8%). A pattern of

specific interest is “channel aliasing in for” which corresponds to for-loops where

a channel variable is assigned to another channel (as in line 23 of Figure 21).

Channel aliasing can be used to create a potentially unbounded chain of linked

threads as in the concurrent prime sieve program (Figure 21). We have manually

analysed all occurrences of “channel aliasing in for” in our sample and found no

occurrence resembling the pattern in Figure 21. In fact, our investigation revealed

that most occurrences of channel aliasing or creation within a for-loop are used to

initialise dynamic structures containing channels (e.g., an array of struct whose

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 61

Table 12: Relative occurrences wrt. concurrent size.

Patterns mean std min 25% 50% 75% max
go 245.09 338.64 1.99 30.38 132.61 314.24 1844.19
go in (any) for 54.46 86.79 0.66 7.17 24.75 64.12 474.49
go in unknown for 44.94 71.75 0.66 6.69 18.52 55.29 433.67
go in bounded for 23.17 39.53 1.85 4.59 9.43 22.66 208.47
chan in (any) for 13.38 16.68 1.01 3.64 8.50 13.31 84.75
chan in unknown for 10.43 11.38 1.01 3.66 6.83 12.42 55.93

records contain channels). See Elastic (2021) for a concrete example.

Channel storage. Another challenge for static verification is related to the

usage of dynamic structures (arrays, lists, etc.) to store channels because, e.g.,

static analyses generally cannot determine at compile time which index of an array

is being accessed. Go supports arrays, slices (lists in Go) and maps natively. The

last part of Table 10 shows that only 8% of the projects we have analysed use slices

(including arrays) to directly store channels. Note that there was no occurrence

of a map of channels. The last line of Table 10 shows that very few projects (11%)

use channels to carry other channels, i.e., make(chan chan T). Channel passing

is a remarkable feature as it allows channel references to be passed around, as in

the π-calculus (see Milner, Parrow and Walker (1992)).

Finally, we have analysed the occurrences of channels as formal parameters

of Go functions, which may be specified as send or receive only, as in line 6 of

Figure 21. Channel direction annotations restrict the concurrent topologies: they

enforce channels to be unidirectional. We found that in 55% of the cases channel

formal parameters had a specified direction.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 62

RQ4: 85% of the projects we have analysed include thread creations within
for-loops, a pattern which is not (soundly) supported by earlier static veri-
fication frameworks. This is the main challenge that we are tackling in our
approach. Most projects (79%) use a bounded number of communication
channels. In addition, we found that channel passing and channel contained
in slices were rarely used (<11% of projects).

3.3 Limitations of our analysis

The main limitations of our analysis are related to data selection and metric ex-

traction. Kalliamvakou et al. (2014) found that extracting data from GitHub

involves the risks of including repositories which contain personal or inactive

projects, or are used as free storage. For this analysis, we are interested in any

code written as part of a Go program, hence inactive or personal projects do not

pose a particular problem. Repositories used as free storage are unlikely to attract

more than 9899 GitHub stars.

Our analysis relies on a traversal of the abstract syntax tree of Go files in

which we count the syntactical occurrences of different concurrency features. All

of the projects we have analysed parsed successfully. We do not conduct an

inter-procedural analysis. This implies that we under-approximate the number

of goroutines and concurrency created in for-loops if these are created within a

(non-anonymous) function itself called within the for-loop. Also, we may fail to

recognise channels that are sent over channels if they are packaged into a struct.

It is also possible that some programmers may wrap Go primitives such as send

and receive in ad-hoc functions in which case the number of such primitives will

be under-approximated by our approach. To count the number of occurrences of

channel aliasing in for-loops, our tool records which identifier refers to channels

with respect to syntactic equality. Hence, we may fail to identify channels which

are referred to by two equivalent, but syntactically different, identifiers, e.g., ar-

rayChan[2] and arrayChan[1+1]. This implies that we may under-approximate

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 63

the number of occurrences of channel aliasing within a for-loop. The analysis

of concurrent topologies considers for-loops as the only iterative construct from

which complex topologies can be created. This assumption rules out complex

topology constructions based on recursive functions. However, we note that Go

being an imperative programming language, for-loops are more common. We

note that while loops do not exist in Go.

We have chosen two metrics to study the relative occurrences of message pass-

ing primitives: the size |P | of a project and the number of channels. It is possible

that choosing different measurements would be a better choice to study the in-

tensity at which message passing is used in Go projects.

Concerning the applicability of our study, we note that our experimental data

and analyser are available online at Dilley and Lange (2022b, 2021d).

3.4 Related surveys on the usage of concurrency

in programs.

Tu et al. (2019) have performed a study on concurrency bugs in real-world Go

programs. They manually analyzed a total of 171 bugs that they found in six of the

most popular open-source Go projects (these included Docker and Kubernetes).

Their main observation is that Go developers tend to rely more on shared memory

primitive such as Mutex. However, our analysis shows that channels are the

most used concurrency primitive overall. This can be explained by the fact that

our analysis looks at the syntactical occurrence of specific constructs (such as

ch := make(chan T, e) or var wg sync.Mutex) and, therefore, may undermine the

actual numbers. Tu et al. (2019) also showed that message-passing-based software

is as liable to errors as other concurrent programming techniques.

Chabbi and Ramanathan (2022) have studied the Uber Github repository for

the presence of data races. They have found over 2000 data races spread over 46

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 64

million lines of code and fixed 1011 of them. One of their observations was that

Go developers tends to use more concurrency and synchronisation constructs than

in Java. They also observe that mixing the use of channels and shared memory

makes code more difficult to reason about and, as a result, more susceptible to

data races.

Several studies have investigated the usage of concurrency constructs in dif-

ferent programming languages, using publicly available source code. Marinescu

(2014) studied the usage of Message Passing Interface (mpi) in open source appli-

cations, where the usage of mpi functions were extracted using a string matching

algorithm rather than traversing the abstract syntax tree. Wu et al. (2016, 2015)

studied the usage of concurrency in C++ through an analysis of nearly 500 open-

source applications and a developers’ survey. Their analysis focuses on traditional

concurrency mechanisms such as thread-based and lock-based constructs. Pinto

et al. (2015); Torres et al. (2011) have conducted a study of more than 2000

Java projects from Sourceforge and a survey of 164 programmers. Their find-

ings show that traditional concurrent programming constructs (e.g., threads and

synchronized methods) are used often (contained in more than 75% projects)

and intensively. These results echo the frequency and intensity at which message-

passing is used in Go projects. Okur and Dig (2012) analysed 655 open-source ap-

plications which use Microsoft’s libraries for parallel programming. They notably

show that 37% of their data-set of C] applications use multi-threading and that

90% of library usage was focused on a small fraction of API methods. Tasharofi,

Dinges and Johnson (2013) studied Scala programs that mix actor-based concur-

rency and other concurrency models. They found that 80% of them mix the actor

model with another concurrency model. Whether Go programmers mix channel-

based concurrency with other concurrency models is currently an unanswered

question.

The applicability of static analyses in real-world programs is the focus of other

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 65

related works. Landman, Serebrenik and Vinju (2017) study the usage of Java re-

flection in a wide range of open source applications. They focus on understanding

the limits of a large corpus of static analysis approaches due to the usage of Java

reflection. They found that most projects include parts that are hard to analyse.

Our findings lead to a similar conclusion for Go projects, most of which include

code that is hard to verify statically. We note that the current literature on verifi-

cation of Go programming is much more limited than that of Java programming.

Saboury et al. (2017) study the presence of code smells in JavaScript projects

and their relationship to faulty software. Our work may be a starting point for a

similar study on code smells and message-passing-related errors in Go.

Other studies have investigated the concurrency-related problems program-

mers face and how they address them. Lu et al. (2008) study the characteristics

of real-world concurrency bugs. They analysed a set of randomly selected bugs

from the bug tracking databases of MySQL, Apache, Mozilla, and OpenOffice. All

the bugs analysed concern traditional shared-memory concurrency. Pinto, Torres

and Castor (2015) study the top 250 most popular questions about concurrent

programming on StackOverflow. They have found that most common questions

concern threading and synchronisation in mainstream programming languages

such as Java. It would be interesting to conduct similar studies with a focus on

message-passing programming languages.

3.5 Conclusions

To conclude, through a syntactic analysis of Go projects on GitHub, we have

discovered that most projects do use message-passing concurrency, but most use

simple synchronisation patterns involving a few send and receive primitives for

each (generally synchronous) channel, a few Lock () and Unlock() per mutex

and a few Add(x), Done () and Wait() per waitgroup.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 66

Furthermore, we have identified a set of popular concurrency constructs which

are not supported by previous works that rely on extracting behavioural types.

These constructs are goroutines spawned in for-loops, waitgroups, mutexes and

unbounded asynchronous channels.

Goroutines spawned in for-loops. One of the most important challenges

for future static verification tools of concurrent Go programs concerns for-loops

which spawn a statically unknown number of goroutines. We have shown that this

pattern appears frequently in Go projects. We have found that 85% of projects

(see Figure 10) contained at least one for-loops which spawned goroutines. In ad-

dition, 49% of the projects contained a goroutine spawned in a for-loop where the

bound of the for-loop could not be determined statically. Goroutine spawned in

for-loop are not supported (soundly) by previous works. Supporting this feature

will greatly increase the number of Go projects supported.

Mutex and Waitgroups. We have found that waitgroups and mutexes are

commonly used in Go projects. They are used in 76% and 58% of projects respec-

tively. All previous work do not support waitgroups nor mutex except Liu et al.

(2021) and Gabet and Yoshida (2020) which supports mutexes.

Asynchronous channels. We have found that out of 7336 channels, 2998

(40%) were asynchronous and 656 (9%) had a bound that could not be deter-

mined statically. Asynchronous channels with a statically unknown bound are

not supported by previous works.

Other concurrency constructs. Finally, we have found that other potentially

un-tractable topologies involving an unbounded number of channels or channels

carrying other channels are much less common.

CHAPTER 3. ANALYSIS OF CONCURRENCY IN GO PROJECTS 67

Main takeaways. This empirical analysis allowed us to define which of the

concurrency features not supported by previous work was used most often in real-

world projects. In particular, we have found that a majority of the projects had

at least one goroutine spawned in a for-loop and made use of waitgroups and

mutexes which are all features not fully supported by previous work. We have

also found that the number of concurrency operations per concurrency primitives

were low which convinced us that Go programs could effectively potentially be

partitioned based on the usage of concurrency primitives. In the next chapter, we

give a detailed explanation of how we added support for those features and the

strategy we use to partition Go programs.

Chapter 4

Verifying Concurrent Go

Programs.

In this chapter, we present the static verification approach that we have devel-

oped which extracts parametrized Promela models from Go programs and verifies

each model from a set of user-provided bounds using the model checker SPIN.

The verification process verifies that the resulting models are free from various

concurrency-related safety errors and global deadlocks. Our approach is inspired

by a behavioural types approach first formalised in Lange et al. (2017) and Lange

et al. (2018) and adds support for additional key constructs that are often used

in real-world projects as we have seen in Chapter 3. These constructs are gorou-

tines spawned in for-loops, waitgroups, mutexes and statically unknown bounded

channels. Our approach consists of a combination of four key insights:

(1) To deal with programs whose concurrent structure depends on arguments

that are decided at run-time, we extract parameterised behavioural types (i.e.,

models) from programs. These models can then be verified up-to user-provided

bounds. Tracking parameters that affect the concurrent structure of programs al-

lows us to decrease the number of false alarms, which plagued earlier behavioural

types-based approaches.

68

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 69

(2) Based on the results of the empirical analysis in Chapter 3, we have found

that, on average, there were few concurrent operations per concurrency primitive

which suggests that the concurrency primitives are used for simple protocols.

With this in mind, our approach isolates the concurrent behaviours and scopes

of concurrency primitives by partitioning the program into the function declara-

tions in the program that do not take concurrency primitives as parameters. We

infer a model for each of these function declarations. These models can then be

verified separately reducing the overall verification time. Software model-checking

verification approaches are known to have scalability issues due to the state explo-

sion problem. Thus, reducing the size of the model by partitioning the program

into smaller models can greatly reduce the overall number of state in the models.

As we will see in Chapter 5, this technique allows us to deal with large codebases

which means that we can verify a large project such as Kubernetes (2021b) (more

than 3 million LoC) in 26 minutes. Most projects are checked in under 4 minutes.

(3) Our approach supports programs that coordinate over the three main concur-

rency primitives (channels, waitgroups, mutexes), which are used in the majority

of projects analysed as we have seen in the empirical analysis from Chapter 3.

Our approach can easily be extended to support more primitives.

(4) Our approach is explicit wrt. the subset of Go it supports, and which con-

structs are over-approximated. Additionally, our tool returns confidence levels

when it is applied to parameterised programs. Hence, it is easier for developers

to understand the risk and potential cause of false alarms.

We describe the technical insights of our approach using two bugs our tool

called Gomela discovered in the wild with Example 2 and Example 3.

Example 2. The program in Figure 22 is adapted from code found on the

GitHub repository of trillian Google (2021), a verifiable data store developed

at Google. At line 5, function preload() spawns |trees| worker goroutines which

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 70

1 func preload (trees [] string , n int) {
2 ch := make(chan string , n) // new chan with capacity n
3 limitCh := make(chan int , runtime . NumCPU ())
4 for i := 0; i < runtime . NumCPU (); i++ {
5 limitCh ← 1 // send token on chan limitCh
6 }
7 var wg sync. WaitGroup
8 for _, t := range trees {
9 wg.Add (1) // increment wg counter

10 go func (v string) { // spawn goroutine
11 ←limitCh // receive token before starting work
12 s := DoSomeWork (v)
13 ch ← s
14 limitCh ← 1 // return token
15 wg.Done () // decrement wg counter
16 }(t)
17 }
18 go func () { // spawn goroutine
19 wg.Wait () // wait for wg to reach 0
20 close (ch) // set ch to closed
21 }()
22 for s := range ch { // receive message from ch
23 if IsError (s) {
24 return
25 }
26 }
27 }

Figure 22: Example of a blocking bug, adapted from Google (2021).

send the result of DoSomeWork() over channel ch. To limit the number of concur-

rent threads, each goroutine acquires a token (receive at line 11) before executing

DoSomeWork(), and returns it (send at line 14) before terminating. Note that the

parent thread fills channel limitCh with tokens at lines 4-5.

At line 18 the parent thread spawns another goroutine that waits for the

worker goroutines to finish using a waitgroup (wg). When all goroutines have

invoked wg.Done(), operation wg.Wait() succeeds, and channel ch is closed.

After spawning |trees|+1 goroutines, the parent is ready to consume the data

sent on ch via a range loop on ch (line 22). This construct iterates over each

element sent on ch until the channel is closed. If a message contains an error

(i.e., isError(s) returns true), preload() returns.

Figure 22 contains a subtle bug that leads to several goroutines becoming

permanently stuck. Consider the case where 0 < runtime.NumCPU() and

0 < n < |trees|−1. The number of send actions on channel ch is greater than

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 71

1 func FindAll (K int , M int) []P {
2 var wg sync. WaitGroup
3 wg.Add(K)
4 found := make(chan int)
5 limitCh := make(chan bool , M)
6
7 for _, pr := range K {
8 limitCh ← true
9 go func () {

10 found ← ... // Produce value
11 wg.Done ()
12 ←limitCh
13 }()
14 }
15 go func () {
16 wg.Wait ()
17 close (found)
18 }()
19 var results []P
20 for p := range found {
21 results = append (results , p)
22 }
23 return results
24 }

Figure 23: FindAll example adapted from Google (2020).

its capacity, hence some worker goroutines will be blocked at line 13 until the

parent thread receives some messages (line 22). If preload() returns (line 24)

before consuming all messages, it may leave up to |trees|−runtime.NumCPU()

goroutines permanently blocked.

Example 3. Figure 23 shows an example of a bug found by our approach in a

Google open source project called GOPS. The program makes use of two channels,

found and limitCh, to coordinates the K threads spawned at line 9. found is

used to receive the values computed by each goroutine synchronously (line 20)

while limitch limits the number of goroutines executing simultaneously to M (the

capacity of the channel). Furthermore, the program uses a waitgroup wg (line 2)

that waits for all goroutines (line 16) to finish executing to close channel found

(line 17). This piece of code contains a global deadlock when the value of K is

strictly greater than M which are both given as parameters of function FindAll.

This is because the number of sends at line 8 will be greater than the size of

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 72

channel limitCh and therefore the Mth send will block forever and all goroutines

spawned at line 9 will block waiting to send on found.

Blocked goroutines are problematic even when the program as a whole is not

stuck. They cannot be garbage collected, hence they silently consume resources

until the whole program terminates. For instance, if function preload or FindAll

is called often with the “wrong” arguments, this would affect significantly the

memory footprint of the program.

Programs like Example 2 and Example 3 are difficult to reason about because

they use several coordination mechanisms in non-trivial ways which makes it hard

to enumerate all possible interleavings. This is particularly challenging when the

number of spawned goroutines and/or the capacity of channels are unknowns,

as the programmer has to think of how different values will affect the possible

executions.

Our main insight to verify these programs in a scalable way is to first identify

the parameters which directly affect their concurrent structures, e.g., |trees|,

n, and runtime.NumCPU() in Example 2. Given such parameters, we extract

parameterised models from Go code which are then verified using bounded model

checking. We use SPIN as a back-end, but our approach is not necessarily bound to

it. Given a user-defined set of values, we model-check every possible instantiation

of a parameterised model. Our tool returns the result of each verification, as well

as an aggregate score to reflect the number of instantiations that failed.

Contributions. In this chapter, we describe in Section 4.2.1 a novel algorithm

to extract parameterised behavioural types from Go code. In addition, we de-

scribe a bounded model checking technique to verify these behavioural types in

Section 4.3. We have implemented these algorithms in a tool, Gomela, outlined

in Section 4.4.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 73

4.1 Promela as behavioural types

The crux of our technique is to over-approximate Go programs with behavioural

types as in Lange et al. (2017), where each Go function is assigned a type codify-

ing its interactions with concurrency primitives, thus abstracting away from non-

concurrency related constructs but preserving the concurrent behaviours. Our

approach has three key differences compared to earlier works. (i) We use a subset

of Promela (the language of SPIN) as our behavioural type language. This has the

advantage of giving us a direct implementation strategy, while keeping the extrac-

tion function relatively abstract. Indeed the subset of Promela we consider here

is very close to the language of types defined in Lange et al. (2017). (The model

extraction we present in Section 4.2 can easily be adapted to other modelling lan-

guages that feature processes communicating over channels.) (ii) While the work

in Lange et al. (2017) and its extensions Lange et al. (2018); Gabet and Yoshida

(2020) abstract away from all computational aspect, our behavioural types do

keep track of some data when it directly affects the structure of the concurrent

programs. (iii) We support the three main concurrency primitives of Go.

SPIN, implemented by Holzmann (1997), verifies models specified in Promela

wrt. properties expressed in linear temporal logic (LTL). A Promela model consists

of a set of processes that interact over channels.

4.1.1 A Promela primer

In this section, we present a brief overview of the subset of Promela used in

our approach using Figure 24 which shows the main Promela constructs. Promela

processes are declared using proctype f (p){S} where f is the name of the process,

p is a list of (typed) parameters, and S is a list of Promela statements. The starting

state of the model is declared using a special proctype called init. Promela

statements and expressions include basic Boolean and arithmetic expressions, as

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 74

S A Promela statements
p A (typed) parameters
proctype f (p){S} Definition of process f
init{S} Initial state of the model
for n..m {S} Bounded for-loop
g A guard (Boolean expression)
do g od Unbounded iteration statement
if g fi Conditional
[g]α/S Guard statement

run f (e) Spawn f with arguments e
chan c [x] of {T} Channel creation of size x with type T
ch?〈x〉 Receive
ch!〈e〉 Send
break Terminates an iteration statement

Figure 24: Key statements of Promela.

α1

αn

S1

Sn

[g1]

[gn]
α1

αn

S1

Sn

[g1]

[gn]

τ

break

Figure 25: Graphical representation of if and do statements in Promela.

well as declarations and instantiations of variables and structures.

Promela provides two types of control-flow constructs: loops and branching.

Loop for n..m {S} repeats statements S for (m−n) + 1 iterations. Branching con-

structs encode (possibly non-deterministic) choices between several behaviours.

Promela uses if and do constructs to encode choices. The branches of a choice

may be guarded or not. A guarded branch is labelled with [g] or [g]α/S where

g is a guard (Boolean expression), α is either a send or receive action, and S

is a Promela instruction. An if statement, which has a similar semantic as

switch statements in other programming languages, is a non-deterministic choice

between multiple guarded branches, while do statements are used as an itera-

tive guarded choice between multiple guarded branches. In other words, a do

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 75

statements infinitely repeats a conditional statement until its execution is ter-

minated by a break statement. Figure 25 shows a graphical representation of

an if (left) and a do (right) statements. A guarded branch is fireable when its

guard g holds and a matching event for α is available. Upon firing, instruction

S is executed. Unguarded branches (labelled with τ) can fire (silently) at any

point. Statement run f (e) spawns a new instance of process f with arguments

e. Channels are a special data-type over which processes can communicate. For

example, chan c [2] of {bool} creates a new channel c with capacity 2 that can

carry Boolean values. Like goroutines in Go, processes may send expressions 〈e〉

over channel ch with ch!〈e〉. They can receive messages with ch?〈x〉 which binds

the received values to variables x. We omit the payload 〈e〉 when a send/receive

is used as signal only.

Example 4. The Promela model shown in Figure 26 shows a non-deadlocking

implementation of the well-known dining philosophers problem in Promela. The

program is made of 3 proctypes (processes), init, philo and aFork. The init

proctype creates three channels, which represent the forks of the model, spawns

three philosophers by giving them their respective left and right forks and finally

spawns the aFork processes. The forks in the model can be taken by the philoso-

phers via receiving from their respective channels and put back via sending. This

is why the aFork process infinitely does a sequence of sends and receives to allow

the philosophers to take and put the fork back respectively. A philo process takes

two channels as parameters, the left and right forks and repeatedly tries to grab

either the left or the right fork at line 22 and line 31 respectively. If it succeeds

to grab the left fork at line 24, it will either try to grab the right fork or put back

the left fork at line 28. If it succeeds at grabbing both forks, it releases both forks

by sending on both forks and goes back to the outer do loop.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 76

1 init {
2 chan f o rk1 = [0] of {int}
3 chan f o rk2 = [0] of {int}
4 chan f o rk3 = [0] of {int}
5 run ph i l o sophe r (fork1 , f o rk2)
6 run ph i l o sophe r (fork2 , f o rk3)
7 run ph i l o sophe r (fork3 , f o rk1)
8 run aFork (fo rk1)
9 run aFork (fo rk2)

10 run aFork (fo rk3)
11 }
12

13 proctype aFork (chan f o rk) {
14 do
15 : : f o rk ! 0 →
16 f o rk ?0
17 od
18 }
19

20 proctype ph i l o (chan lFork , rFork) {
21 do
22 : : lFork ?0 →
23 do
24 : : rFork ?0 →
25 rFork ! 0 ; lFork ! 0 // r e l e a s e both f o r k s
26 break
27 : : true →
28 lFork ! 0
29 break
30 od
31 : : rFork ?0 →
32 do
33 : : lFork ?0 →
34 lFork ! 0 ; rFork ! 0 // r e l e a s e both f o r k s
35 break
36 : : true →
37 rFork ! 0
38 break
39 od
40 od
41 }

Figure 26: Example of the dining philosopher problem with 3 philosophers en-
coded in Promela using channels as forks (adapted from Lange et al. (2017)).

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 77

4.1.2 The SPIN model checker

SPIN checks properties of Promela models that are encoded either via an LTL

formula and/or using assertions (error states) in the model. SPIN checks that all

possible executions of the model validate the LTL formula and/or that no execu-

tion reaches an error state. SPIN explores all possible states of a model, hence

models must be finite-state, i.e., they cannot spawn infinitely many processes.

While other general-purpose model checkers have support for inter-process

communication such as mCRL2 (Groote and Mousavi (2014)) or the LTS Ana-

lyzer (Magee and Kramer (1999)), we found that Promela is closer to Go and

thus allows a nearly one-to-one translation from Go. SPIN has notably been used

to verify multi-threaded Java programs in Havelund and Pressburger (2000) and

multi-threaded C programs in Zaks and Joshi (2008).

4.2 Extracting parameterised models

In this section, we describe our approach to extract several Promela models from

a Go program and how they are verified using SPIN.

Partitioning a Go program. For each Go function that does not take a con-

currency primitive as parameter, we generate a model. Each function becomes an

entry point to a model that can be verified independently. Concretely, a parti-

tion corresponds to a function whose concurrent behaviour (wrt. message-passing

concurrency) is not affected by other parts of the program, i.e., the function does

not send/receive messages to/from other parts of the program. We say that a

function is independent when it does not take channels, waitgroups nor mutexes

as arguments and it does not return a channel, a waitgroup nor a mutex. We

generate a model for each declaration of an independent function, and each model

is verified independently. This strategy allows us to decompose the verification of

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 78

large programs into smaller pieces. Besides the benefit wrt. scalability, this de-

composition allows our tool to give function-level feedback when a bug is detected

by the model checker.

The model extraction is done via three procedures: (i) a top level procedure

translates declarations of Go functions to Promela processes; (ii) procedure ES(s)

identifies the concurrency parameters in Go statements s; (iii) procedure TS(s)

extracts a (parameterised) model from Go statements s.

The models we generate consist of two types of Promela processes: a) primitive

processes which model concurrency primitives (channels, waitgroups, mutexes)

and b) function processes which model Go functions and goroutines.

4.2.1 Extracting concurrency parameters

Our goal is to identify the computational elements of a function that affect its

concurrent structure, i.e., integer expressions in the source program that affect

the number of spawned goroutines, the number of exchanged messages, and the

values held in the counters of waitgroups.

We define function EE(e) which extracts the concurrency parameters from a

Go expression e, by computing its free variables and other unknown references.

We give the definition EE(e) for the key cases below:

EE(e),

∅ if e is an integer literal

{x} if e is an integer variable

EE(e1) ∪ EE(e2) if e = e1⊗e2 with ⊗ ∈ {+, *, . . .}

{l} if e = l or e = len(l)

{f.a} if e = f (a)

The first two cases deal with integer literals and variables. The second cases

applies EE(ei) recursively on arithmetic expressions. The fourth case deals with

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 79

collections which are abstracted to the name of the collection itself. The final case

deals with function calls for which we generate a fresh name, based on the name

of the function — these will become global parameters in the generated models.

We extend the definition of EE(e) to lists of expressions in the natural way.

Next, we define ES(s) which extracts concurrency parameters from expressions

that occur in selected Go statements.

1. If s = ch := make(chan T, e), then ES(s) , EE(e), i.e., the parameters that set

the capacity of the channel.

2. If s = wg.Add(e), then ES(s) , EE(e), i.e., we return the parameters that set

the delta added to the waitgroup.

3. If s = for i := e1; e2; r {s}, we apply heuristics depending on the shape of the

loop to identify a variable that can represent the number of iterations.

4. If s = for i,x := range l {s}, then ES(s) , {l} ∪ ES(s), i.e., we abstract a

collection to its size.

5. If s = f (a) or s = go f (a), we first extract the concurrency parameter of f .

Assume we have func f(x T) T {s} such that ES(s) = Y . Then we construct the

sub-sequence of arguments whose position match a concurrency parameter of f ,

i.e., b = [ai | xi ∈ Y, 1 ≤ i ≤ k]. We have ES(s) , EE(b).

6. For select, conditionals, and range over channels, we apply EE(_) recursively

following the abstract syntax tree, e.g., if s = if e then s1 else s2, then ES(s) ,

ES(s1) ∪ ES(s2).

We define two families of concurrency parameters: mandatory and optional. An

optional parameter x is only used as bounds of a non-dynamic for-loop, i.e.,

Cases (3) or (4) above when the loop is not dynamic. All other parameters are

mandatory. We will see below that mandatory parameters must be instantiated to

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 80

1 func main () {
2 a := make(chan int)
3

4 numWorkers := os.Args [1]
5 numResponses := os.Args [2]
6

7 for i := 0; i < numWorkers ; i++ {
8 go worker (i, a)
9 }

10 for i := 0; i < numResponses ; i++ {
11 k := ←a // receive
12 fmt. Println (k)
13 }
14 close(a)
15 }
16

17 func worker (j int , x chan← int) {
18 x ← j: // send
19 }

Figure 27: Example of concurrent workers. This program contains a bug when
numResponses 6= numWorkers. If numResponses < numWorkers the programs
leads to a send on close runtime error. In the case where numWorkers <
numResponses, executing the program leads to a global deadlock.

construct models that can be verified effectively. Instantiating optional parameters

is not necessary, but helps discard false alarms (see Section 4.3).

Example 5. Let s be the body of preload() from Figure 22. We extract three

concurrency parameters from these statements, i.e.,

ES(s) = {n, trees, runtime.NumCPU}. These are all mandatory parameters. The

first two are instantiated at every invocation to preload, and runtime.NumCPU

is a global (implicit) parameter (instantiated once per model).

Example 6. Let s be the body of ThrottleWithOpts() from Figure 19. In

this example, there is only one mandatory communication parameter limit which

defines the capacity of channel tokens , i.e., ES(s) = {limit}.

Example 7. In this example, we showcase the extraction of an optional param-

eter. Let s be the body of main() from Figure 27. In this example, there are two

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 81

I

S

R

A

C

D

X

ch.rcving?
ch.snding?

[n=0]ch.sync!〈1, 0〉
ch.rcving?

{
ch.snding?,
ch.close?,
ch.enq?

}[n<k]ch.enq?/n++

[n>0]ch.deq!〈0, n〉/n--

[n>0]ch.deq!〈0, n〉/n--

[k>0]

[k=0]

ch.close?

ch.close?

Figure 28: Primitive processes for channels.

W

X

[n+i ≥ 0]wg.update?i/n+=i

[n=0]wg.wait!

[n+i < 0]wg.update?i

Figure 29: Primitive processes for waitgroups.

communication parameters, numWorkers and numResponses. In this case, ES(s)

returns {numWorkers, numResponses}.

numWorkers is used as the bound of a dynamic for-loop and is, as a result,

mandatory while numResponses is used as the bound of a non-dynamic for-loop

and, as a result, is optional.

4.2.2 Primitive processes: channel, waitgroup, and mutex

We describe Promela processes which model the main concurrency primitives of

the Go language (channels, waitgroups, and mutexes). Each of these processes

uses several Promela channels and variables stored in a structured data type.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 82

U

R P

W

X

mu.rlock?/r++

[r=1]mu.runlock?

mu.rlock?/r++

[r>1]mu.runlock?/r--

mu.prelock?

mu.prelock?

[r=0]mu.lock?

[r>0]mu.runlock?/r--

[r=0]mu.runlock?

mu.runlock?/r--
{mu.unlock?,mu.runlock?}

Figure 30: Primitive processes for mutexes.

The declaration of a concurrency primitive in Go is translated to spawning the

corresponding primitive process in Promela.

Channels. Figure 28 gives a graphical representation of the Promela process

(channel process) that models a Go channel. This process monitors all channel

interactions: it keeps track of the state of the channel to detect any safety bug.

Interactions over asynchronous Go channels are fully mediated by the channel

process; interactions over Go synchronous channels also rely on Promela’s own

synchronous channels.

The channel process uses two (local) variables: k represent the capacity of the

buffer (k=0 when the channel is synchronous), and n is the number of messages

currently stored in the buffer (note that n≤k).

The channel process interacts with its environment via six synchronous Promela

channels: sync is a channel which directly models the corresponding synchronous

Go channel; snding and rcving monitor sending and receive actions on the syn-

chronous channel; enq and deq model enqueue (send) and dequeue (receive) op-

erations on asynchronous channels; close is used to receive closing requests. Only

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 83

channels sync and deq carry payloads, i.e., pairs 〈c, n〉 where c represents the state

of the channel (c=1 if the channel is closed, c=0 otherwise) and n is the number

of messages in the channel.

The behaviour of the channel process depends on its capacity (k). If k=0,

the channel is synchronous and the channel process merely monitors sending and

receiving actions on channel ch. Goroutine processes send on snding (resp. rcving)

whenever they send (resp. receive) on channel sync (see Section 4.2.4). If k>0, the

channel is asynchronous and all interactions over that channel are mediated via

the channel process. When the channel is not full (n<k), it is ready to enqueue

more messages (via enq); as long as the channel is not empty, it is ready to emit

messages (via deq).

Synchronous and asynchronous channels behave equivalently once they are

closed. Sending on a closed channel (via sync or enq), or closing it again (via

close), leads to the error state. It is always possible to receive from a closed

channel, the channel process is always ready to match such requests on ch.sync or

ch.deq. In Section 4.2.4, we show that all function processes are always ready to

interact with either the synchronous or asynchronous version of a channel process.

The interactions allowed by the processes exactly mirror the behaviours of

synchronous and asynchronous channels in Go except that Gomela abstracts away

the exchanged data as explained in Section 4.1 and only model the (possibly

blocking) concurrent operations. Essentially, instead of modelling channels as

First in First out (FIFO) queues, each channel primitives holds a counter (n) to

model the number of messages currently held by the channel.

Waitgroups. Figure 29 gives a representation of the Promela waitgroup process,

representing a Go waitgroup. The process uses one local variable and two syn-

chronous Promela channels: wait and update. Variable n represents the current

number of threads wg is waiting for. When n=0, it is ready to fire wg.wait! (thus

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 84

unblocking a process waiting on it). Other processes interact with the waitgroup

by adding value i to n (where i ∈ Z). Any update that renders n negative leads

to the error state. The waitgroup primitives exactly model the behaviours al-

lowed by waitgroups in Go. The specification of waitgroups in Go can be found

in Google (2022a). Note that, Done() calls are modelled as wg.update?-1 .

Mutex. Figure 30 gives an automata representation of the mutex process, rep-

resenting a mutex mu. We use the same process to model Go’s Mutex (traditional

mutex) and RWMutex (read/write mutex).

The mutex process models interactions over a Go mutex using one local vari-

able (r) and four synchronous Promela channels. Channel lock (resp. unlock) is

used to take (resp. release) the lock of a traditional mutex. Channel rlock (resp.

runlock) is used to take (resp. release) the lock of a read/write mutex. Variable

r keeps track of the number of readers that have acquired the read-only lock.

Unlocking a mutex that is not locked leads to the error state.

The mutex primitive was inspired and generated from Go’s own documenta-

tion(Google (2022b)). When evaluating our tool in Section 5.2, we found one

intricate behaviour when using RWMutex in Go that is not modelled appropri-

ately. The bug arises due to the behaviour of rwmutex which blocks subsequent

Rlock() when a Lock() is ready to trigger. This behaviour is missed by our ap-

proach because it is not supported by our current implementation of rwmutexes.

The automaton of rwmutex can be seen in Figure 30. There are two reasons why

this behaviour is missed. Firstly, when in state R, the mutex does not allow for

any mu.lock?. Secondly, when the automaton reaches the W state, it does not

allow any mu.runlock?. We plan to remedy this in future work. This behaviour

is discussed in more detail in Section 5.2.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 85

4.2.3 Function processes: declaration and call sites

Given a Go program, we generate a Promela model for each of its functions that

does not take any concurrency primitive as parameter and that initialises at least

one concurrency primitive in its body. For instance the program in Figure 27 will

produce one Promela model, whose entry point corresponds to function main().

Given such a function, we analyse all the functions it invokes (inter-procedurally),

and for each invoked function that takes at least one concurrency primitive (such

as worker(i, a) which takes a, a channel, as parameter at line 8), we model it

with a Promela function process, which we include in the model of the entry point

function.

Function declarations. Our models abstract away from non-concurrency re-

lated aspects, hence the definitions of function processes include only parame-

ters of their corresponding Go functions that pertain to concurrency. Given a

function signature func ExampleFunction(..., x T,...), parameter x is ab-

stracted away if x is not a concurrency parameter of ExampleFunction or if T

is not the type of a concurrency primitive. Each parameter x whose type is a

concurrency primitive is mapped to one primitive process. Each parameter x that

is a concurrency parameter is mapped to an integer parameter, e.g., if the type of

x is a collection in Go, it is mapped to an int in Promela (corresponding to the

size of the collection).

We illustrate the approach with the Go program in Figure 31 (top). As-

sume OuterFunc does not take any concurrency primitive as parameter, hence it

becomes the entry point of a Promela model. Because InnerFunc is invoked by

OuterFunc, the model will also contain a (function) process definition correspond-

ing to its declaration.

Assume x is the only concurrency parameter of InnerFunc, i.e., y /∈ ES(s).

Then, InnerFunc is mapped to a Promela process which takes three parameters:

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 86

1 func InnerFunc (ch1 chan int , x map[string]int , y int) { s }
2 func OuterFunc (...) {
3 // ...
4 InnerFunc (ch2 , 10, 20)
5 // ...
6 go InnerFunc (ch2 , z, z*2)
7 // ...
8 }

1 init { // model entry po int
2 // . . .
3 run OuterFunc (. . .)
4 }
5 proctype InnerFunc (ChannelProcess ch1 , int x , chan r e t) {
6 TS(s)
7 r e t ! 0
8 }
9 proctype OuterFunc (. . .) {

10 // . . .
11 chan r e t1 = [1] of {bool}
12 run InnerFunc (ch2 , 10 , r e t1)
13 r e t1 ?0
14 // . . .
15 chan r e t2 = [1] of {bool}
16 run InnerFunc (ch2 , z , r e t 2)
17 run (r e t2 ?0)
18 // . . .
19 }

Figure 31: Blocking vs. concurrent function calls in Go (top) and their models in
Promela (bottom).

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 87

(i) a ChannelProcess (ch1) structure which implements the channel process dis-

cussed in Section 4.2.2; (ii) an integer (x) which corresponds to the length of the

map parameter; and (iii) the return channel, i.e., a buffered Promela channel with

capacity 1 (ret) which is used to model blocking function calls, as we explain

below. The body of a function process consists in the translation of the body of

its Go counterpart — using TS(s), see Section 4.2.4 and Section 4.2.5 — followed

by a send on ret (notifying that the function has returned).

Call sites. Our translation deals with statements of the form f (a) or go f (a) as

follows. If f is an external function or if it does not take a concurrency primitive

as a parameter, the corresponding call site is skipped. In the former case, we

optimistically assume that f is not buggy; in the latter case, f is an entry point to

its own model which is verified independently. If the declaration of f is available,

then we translate both f (a) and go f (a) to the creation of a new Promela channel

followed by the spawning of a new function process. For blocking calls, the process

spawning is followed by a (blocking) reception on the return channel. We illustrate

this aspect with the translation of calls to InnerFunc in Figure 31.

4.2.4 Operations on concurrency primitives

All operations on channels, waitgroups, and mutexes are translated to Promela

operations that interact with one of the primitive processes. Figure 32 gives

an overview of the mapping from Go operations to Promela using a graphical

representation of the latter.

Translating channel operations is slightly more involved as the bounds of Go

channels might not be known at compile-time, hence a function process taking a

channel ch as a parameter needs to be ready to send or receive on a synchronous or

asynchronous version of ch. As a consequence, both send and receive operations

are modelled as composite Promela operations. A send operation (ch ← e) is

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 88

ch ← e

ch.enq!

ch.sync!〈0, 0〉 ch.snding!

← ch

ch.deq?〈c, n〉

ch.sync?〈c, n〉 ch.rcving!

close(ch) ch.close!

wg.Add(e) wg.update!TE(e)

wg.Done() wg.update!〈−1〉

wg.Wait() wg.wait?

mu.Lock() mu.lock!

mu.Unlock() mu.unlock!

mu.RLock() mu.rlock!

mu.RUnlock() mu.runlock!

Figure 32: Overview of the translation function TS(s).

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 89

for i := e1; e2; r {s}
with n ∈ ES(i:=e1;e2;r)

for i,x := range l {s}
with n ∈ EE(l)

where s is dynamic

for 1 ..n {TS(s)}
τ τ

for i := e1; e2; r {s}
with b ∈ ES(i:=e1;e2;r)

for i,x := range l {s}
with b ∈ EE(l)

where s is not dynamic

TS(s)

for 1 ..n {TS(s)}

[b = ∗]

[b = n] τ
τ

τ

for x := range ch {s}
where s is not dynamic

TS(s)

ch.deq?〈c, n〉

ch.sync?〈c, n〉 ch.rcving!

[c>0 ∧ n=0]

[c=0 ∨ n>0]

τ

if e then s1 else s2
TS(s1)

TS(s2)

τ

τ

select{case αi : si}
where 1 ≤ i ≤ n

TS(α1)

TS(αn)

TS(s1)

TS(sn)

Figure 33: Overview of the translation of control flow constructs with function
TS(s).

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 90

translated to a guarded choice between two branches that represent an operation

on a synchronous channel, or an asynchronous one. In the synchronous case,

the process synchronises directly with another by sending on the (synchronous)

Promela channel ch.sync, then notifying the channel process over ch.snding. The

process sends a pair 〈0, 0〉 over ch.sync (where the first 0 means that the channel

is not closed, and second is the number of messages stored on the channel). In

the asynchronous case, the process sends a message to its corresponding channel

process over channel ch.enq. Notice that in both cases, we abstract away from

the data sent over the channel (expression e is not modelled).

A receive operation (← ch) is modelled in the dual way. The process executing

the receive operation may either receive a pair 〈c, n〉 from another process over

ch.sync or from the channel process over ch.deq. We assume that variables c and

n are fresh. They are unused for simple receive operations but are necessary when

channels are ranged over.

Closing a channel (close(ch)) is translated as a Promela send operation over

channel ch.close.

Go operations on waitgroups (wg.Add(e), wg.Done(), wg.Wait()) are translated

to send and receive operations on the Promela channels of the corresponding

waitgroup process (using channels wg.update or wg.wait). Note that wg.Add(e)

may increment or decrement the waitgroup counter by (the evaluation of) e, hence

it is necessary to translate e to Promela. Function TE(e) is a partial function from

Go expressions to Promela expressions (when e cannot be translated, it aborts).

The translation of Go operations on mutexes to Promela is straightforward.

Each operation is mapped to a send on the corresponding Promela channel of the

mutex process.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 91

4.2.5 Control flow and branching constructs

The core idea behind our modelling technique is to generate models that can

perform at least all concurrent actions that can be performed by the program.

Hence, if the program performs a particular send, the model must be able to

perform the send as well. In this section, we describe how each Go statement is

over-approximated by the model.

Figure 33 gives an overview of the mapping from Go constructs to Promela

constructs using a graphical notation. Traditional for-loops and loops over col-

lections are translated differently depending on whether they are dynamic, see

Section 4.2.1. When a loop is dynamic, its number of iterations must be known

before checking the model (e.g., the bounds are constant or they are instantiated

by some concurrency parameters). Hence such loops are translated to Promela’s

own (finite) iteration constructs. When a loop is not dynamic, then it behaves as

a fixed loop (as above) or as a non-deterministic loop (i.e., a loop that executes an

arbitrary number of times). To enable this behaviour, we use the special value ∗

to flag a concurrency parameter as unspecified. When a bound is unspecified, the

number of iterations is non-deterministic; if it is provided at model checking time,

a fixed for-loop is used.

A for-loop that ranges over a channel ch executes its body every time a

message is received on ch (until the channel is empty and closed). To encode

this behaviour in Promela, we use a similar technique to the translation of the

receive operation (see the second line of Figure 32). After each receive operation

the values of variables c and n are tested, c = 1 means that the channel is closed,

while n is the number of messages held in it. Note that because such a loop might

be executed an arbitrary number of times, they can be translated only when the

loop is not dynamic (we abort otherwise).

Go conditionals are mapped to internal choices with two branches(i.e., a choice

with two unguarded branches). Hence, while only one branch of a Go if-then-else

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 92

may be taken, both branches are fireable in its generated model. A select block

is translated to a choice in Promela, where each branch is either unguarded or

guarded by the translation of a send or receive operation, each branch leads to

the translation of the bodies si. For send and receive operations, we use the

construction given in the first two lines of Figure 32. Any branch of the select

block that is default or guarded by a timeout is mapped to an unguarded branch

(τ). Hence, the default of a select is always fireable by the model.

As in the work by Lange et al. (2017) which this technique is inspired by,

the translation of loops, if-then-else, and select statements over-approximates

the behaviour of a Go program. Hence, since the models over-approximate the

program, our abstraction technique is sound as proven by Theorem 5.1 (subject

reduction) in Lange et al. (2017). However, since our approach adds support for

communication parameters, which increases the precision of the models and, as a

result, our technique is only sound with respect to the instantiated value of the

communication parameters.

To formaly prove the soundness of our approach, we would have to revisit

(Lange et al. 2017, Theorem 5.1), the MiGo language and the behavioural types

introduced in Lange et al. (2017) to support communication parameters, wait-

groups, mutexes (and their associated operations) and for range over channel.

As explained above, Gomela translates certain for-loop into deterministic for-

loops (as opposed to Lange et al. (2017)) when they are dynamic or the commu-

nication paremeter is specified. Deterministic for-loop are missing from MiGo.

4.3 Verifying models

We describe our approach to verify the models generated from Go programs in

Section 4.2. We break down this description in two steps: properties of valuated

models and automated generation of valuations.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 93

4.3.1 Properties of valuated models

Given a Go program P , we generate several models such that each model M has

a (possibly empty) list of concurrency parameters that are either mandatory or

optional. We say that a model M is valuated if all its mandatory parameters are

instantiated by values in N and all its optional parameters are instantiated by

values in {∗} ∪ N. Recall that setting a concurrency parameter to ∗ allows some

loops to iterate an arbitrary number of times, see Figure 33.

Given a model M with mandatory parameters x and optional parameters y,

and vectors u ∈ N|x| and v ∈ ({∗} ∪ N)|y|. We write M [x := u, y := v] for the

valuation of M where each xi (resp. yi) is replaced by value ui (resp. vi).

Properties. We consider four properties, corresponding to the types of errors

discussed in Section 2.1.4. All of these properties are either specified as Promela

processes not reaching their end states, or reaching an error state. Assume M is

a valuated model, we define the following properties:

1. M |= φmd (model deadlock) holds whenever no execution in M leads to a

situation where all goroutine processes are stuck. Since several models may

be extracted from a given program, φmd can identify some partial deadlocks

in the source program.

2. M |= φcs (channel safety) holds whenever no execution inM leads to a situ-

ation where a channel process reaches its error state (i.e., sending on/closing

a closed channel).

3. M |= φws (waitgroup safety) holds whenever no execution in M leads to a

situation where a waitgroup process reaches its error state (i.e., the wait-

group reaches a negative number).

4. M |= φms(mutex safety) holds whenever no execution in M leads to a sit-

uation where a mutex process reaches its error state (i.e., an unlocking

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 94

function verify(S, φ,M)
x ← mandatory(M)
y ← optional(M)
V ← {(u, v) | u ∈ S|x|, v ∈ ({∗} ∪ S)|y|}
while V 6= ∅ do

(u, v) ← pickMax(V)
b ← M [x := u, y := v] |= φ
if b ∨ ∗ /∈ v then

∆(u · v) ← b
V ← V \ {(u,w) ∈ V | v � w}

otherwise
V ← V \ {(u, v)}

return ∆
Algorithm 1: Verification of model M with property φ and values S. Aux-
iliary function mandatory(M) (resp. optional(M)) computes the mandatory
(resp. optional) concurrency parameters of M . Function pickMax(V) returns
a maximal element of set V wrt. �.

operation is invoked on an unlocked mutex).

We aim for a sound verification approach, i.e., any behaviour of the source

program can be simulated by the extracted model (assuming a precise valuation).

Since each Go entry-point function P is over-approximated by its model, for any

of the properties φ above, we should have that M |= φ implies that P |= φ,

whenever the parameters of P and M are instantiated to the same values. The

reverse implication does not hold, i.e., if M 6|= φ we cannot conclude that P 6|= φ.

4.3.2 Automated generations of model valuations

Next, we present a technique to perform a bounded verification of a parameterised

model (up-to a finite set of possible values). Hereafter we assume a set S ∈ N

given by the user, from which values of concurrency parameters are selected.

We define a partial ordering � on the set ({∗} ∪ S)k (with k ∈ N) to identify

a valuation that subsumes another.

(v1, . . . , vk) � (u1, . . . , uk) ⇐⇒ ∀1 ≤ i ≤ k : vi ∈ {ui, ∗}

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 95

Algorithm 1 describes our approach to verify a model M for a property φ (e.g.,

absence of deadlock), wrt. values in S. The algorithm returns a map ∆ that

records the result of the verification by mapping valuations to Booleans. For

instance if ∆(1, 2) = > for a model M with concurrency parameters x1 and x2,

then property φ holds for M [x1 := 1, x2 := 2].

Algorithm 1 starts by computing the list of mandatory and optional parameters

(x and y respectively). Then it computes the set V of all possible valuations for

these parameters (only optional parameters may be set to ∗). The algorithm

then repetitively checks the property φ on model M where the parameters are

instantiated with a maximal element from V (wrt. the �-ordering). After each

verification the set V is updated, removing all valuations that are subsumed by

the current valuation if it was successful, or the current valuation otherwise. We

only record in ∆ those verifications that are successful or that do not involve any

optional parameter set to ∗. Indeed when a verification with a parameter y set

to ∗ fails, it is likely to be a false alarm. This will be “compensated” by further

verifications where y is instantiated to values in S. In contrast, if a verification

with a parameter y set to ∗ succeeds, then fewer verifications will be performed

(i.e., that verification subsumes all instantiations of y).

Note that ifM does not contain any parameter (x = y = ε) then V is initialised

to {ε}, i.e., the singleton set containing the empty vector.

For each map ∆ obtained from Algorithm 1, we compute a score based on the

ratio of failed verifications over the total number of recorded verifications, i.e.,

score(∆) = |{v ∈ dom(∆) | ∆(v) = ⊥}|
|dom(∆)|

We use this scoring mechanism later on in Section 5.3 to give an aggregate result

to reflect how many valuations of a particular model contained a bug.

Example 8. Given the program in Figure 22, our translation will generate

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 96

one model with three mandatory parameters (corresponding to |trees|, m, and

runtime.NumCPU()). Assuming we are checking for φmd and we set S = {0, 1, 2, 3},

Algorithm 1 will perform 43 verifications, 45 of which are successful (>). Hence

we obtain a score of 45/64 ' 0.7.

Example 9. Consider the (correct) program in Figure 34, which consists of

two threads that exchange x messages over channel a (the value of x is unknown

at compile-time). Our approach generates a unique model M for it, with one

parameter x. Assuming we are checking for φmd and we set S = {0, 1, 2, 3},

Algorithm 1 performs five verifications, one for each element in {∗}∪S. The case

where x := ∗ fails since both for-loops are modelled as loops that can terminate

(independently) after an arbitrary number of iterations. Hence, that valuated

model contains executions that lead to a deadlock (where either loops are waiting

for a send or receive). However, when x is given a concrete value both loops iterate

the same number of times, and thus each send/receive action is matched.

Thus we obtain a map ∆ containing four elements, s.t. ∆(i) = > for 0 ≤ i ≤ 3.

Hence, we have score(∆) = 0/4 = 0, i.e., no recorded verification failed.

Example 10. Now consider the buggy program in Figure 27, which consists

of numWorkers + 1 (including main()) threads. The program contains two bugs

based on the values of numWorkers and numResponses. The program will dead-

lock when numWorkers < numResponses because the number of sends, at line

18, on channel a is smaller than the number of receives at line 11 which will

block the main thread. The program will also lead to a channel safety error when

numResponses < numWorkers. Due to the number of receives being smaller than

the number of sends, channel a will be closed at line 14 which will throw a run-

time error when the next worker tries to send over channel a after it has been

closed. Our approach generates a unique model M for it, with two parameters

numWorkers, numResponses. numWorkers is mandatory because it is used as the

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 97

1 func sender (a chan int , x int) {
2 for i := 0; i < x; i++ { // sends x times
3 a ← i
4 }
5 }
6 func receiver (a chan int , x int) {
7 for i := 0; i < x; i++ { // receives x times
8 ←a
9 }

10 }
11 func main () {
12 x, _ := strconv .Atoi(os.Args [1])
13 a := make(chan int)
14 go sender (a, x)
15 receiver (a, x)
16 }

Figure 34: Program with an optional concurrency parameter.

bound of a dynamic for-loop at line 7. While, numResponses is an optionnal pa-

rameter because it is used as the bound of the non-dynamic for loop at line 10. As-

suming we are checking for φmd∧φcs and we set S = {0, 1, 2, 3}, Algorithm 1 per-

forms 20 verifications, one for each element in the set S×({∗}∪S). All of the val-

uations where numResponses is set to ∗ will lead to model deadlocks because the

receiving for-loop at line 10 will be modelled as a non-deterministic loop. When

a valuation fails and contains at least one optional parameter set to ∗, Gomela

investigates it further by valuating the optionnal parameters of the model, in this

case numResponses, with each values in S. Hence arriving at a total of 4× 5 val-

uations. In this case only the 4 valuations where numWorkers = numResponses

will succeed. Hence, we have score(∆) = 16/20 = 0.8, i.e., 16 verifications out of

20 failed.

4.4 Implementation

We have implemented our approach in a tool called Gomela which extracts

models from Go code, and uses SPIN as a backend to automatically verify models

up-to user-provided bounds. As shown in Figure 35, the workflow of Gomela is

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 98

Go source
files

f1() {...}

f2() {...} Promela

Promela

Model extraction Bound generation

SPIN

SPIN

Model checking

Bounds

Bounds

Program partitioning

Figure 35: Workflow of Gomela.

divided into 3 core phases:

1. Program partitioning: Go programs are partitioned into independent

components using 2 steps:

(a) AST generation: Similarly to GoSurvey, the toolchain developed for

the empirical analysis described in Section 3.1, Gomela relies on Go’s

go/ast, go/parser and go/types libraries for the front-end parsing

and analyses a Go codebase package by package. Unlike Liu et al.

(2021); Gabet and Yoshida (2020), our analysis is done on the surface

language, rather than its lower-level representation (SSA).

(b) Program partitioning: The AST generated is partitioned into the func-

tion declarations in the program which do not take concurrency prim-

itives as parameters nor return any concurrency primitives, see Sec-

tion 4.2.

2. Model extraction: Promela models are extracted from each partition in

3 steps as described in Section 4.2:

(a) Communication parameter extraction: The AST extracted from each

partition is traversed to extract the list of communication parameters

inter-procedurally.

(b) Model extraction: a Promela model is extracted from the body of the

function declarations inter-procedurally.

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 99

(c) Generation of a complete model: Gomela places the body extracted

in the previous step inside an init proctype and the definition of the

primitive processes used in the model. i.e, if a channel process is de-

clared in the model, its definition needs to be provided. This is crucial

because SPIN will return an error if an unused definition is provided.

(d) Removing unnecessary constructs: We reduce the complexity of the

model generated by removing loops which do not contain any concur-

rency operations (such as receives, Lock(), etc), we assume that such

loops eventually terminate. In addition, models that do not create any

concurrency primitives are deleted for obvious reasons.

3. Bound generation: The tool analyses the complete model to find the

occurrences of communication parameters in the model and computes a set

of several models by valuating the mandatory parameters based on user-

provided values as explained in Section 4.3.1.

4. Model checking: The Promela models extracted are verified in 2 steps:

(a) Verification of each valuations: Each valuation is fed to SPIN, which

verifies that the model is free from all properties described in Sec-

tion 4.3.1.

(b) Calculating the score: A score is generated as described in Section 4.3.2.

Gomela implementation’s design. One of the aims when designing Gomela

was to ease the support of more Go constructs and additional concurrency prim-

itives. Hence, Gomela was designed to be modular. Gomela generates an ab-

stract syntax tree from a Go program using Go’s parsing library and inductively

goes through each node in the AST, as described in Figure 33 and Figure 32, and

invokes specific functions based on the type of the node, which all return Promela

code. This is better known as the visitor pattern. The concatenation of these

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 100

Promela code segments generates a complete Promela model. Adding supports

for new Go constructs requires either to add specific functions for said constructs

(such as linked lists) or to modify an existing function to accommodate the new

concurrency primitive (such as sync.Cond, another popular concurrency primi-

tive). As an example, adding support for waitgroups and mutexes in Gomela was

done particularly quickly (less than a week of work per feature by one developer).

While adding support for break statement was implemented in a day’s worth of

work.

4.4.1 Supporting advanced language constructs

In addition to the language constructs listed in Figure 1, our tool handles struc-

tures, methods, anonymous functions, break and defer statements (when they

do not occur inside conditionals/loops).

Supporting structures. Go structures that contain concurrency primitives are

analysed inter-procedurally and flattened into a concatenation of their primitive

names. This means that a channel ch initialised as a field of a structure a (a.ch

= make(chan T,e)) will be translated to a Promela channel primitive named a_ch.

Similarly, fields of structs that are used as communication parameters are treated

in the same way.

Figure 36 shows a Go program (top) which declares an asynchronous channel of

size s.numWorkers and the Promela model (bottom) extracted from the program.

The declaration of channel s.ch is translated to a declaration of a Promela channel

primitive process named s_ch where its capacity s.numWorkers will be set to

s_numWorkers. The first two statements from the Go program are simply ignored

because they do not contain any concurrency constructs. The channel declaration,

at the last line, is translated to a channel primitive structure called a Chandef

where depending on its capacity, s_numWorker, will either be spawned as an

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 101

1 s := Cluster {}
2 s. numWorkers = getNumOfWorker ()
3 s.ch = make(chan int , s. numWorkers)

1 Chandef s_ch ;
2 int s_numWorker = getNumOfWorker
3 if
4 : : s_numWorker > 0 →
5 s_ch . s i z e = s_numWorker ;
6 run AsyncChan (s_ch) ;
7 : : else →
8 run SyncChan (s_ch) ;
9 if ;

Figure 36: Struct fields in Go (top) and its model in Promela (bottom).

AsyncChan or a SyncChan process (state A or S from Figure 28 respectively). Here

s_numWorker is used to set the size of the channel and, therefore, is a mandatory

parameter of the model. This means that at verification time getNumOfWorker

will have to be given an actual value.

Supporting methods. A method m on struct S, func (x S) m(y T) T {s}, is

processed in two steps. First, they are normalised into a function named S_m

whose parameters are the conjunction of the primitives contained in receiver x

and the parameters y of method m. Second, the declaration of S_m is dealt with

like a normal function declaration, and each call site is normalised in a consistent

way. Gomela aborts when it encounters virtual method calls (when the method

parameters include concurrency primitives).

Supporting anonymous functions. Anonymous functions are normalised to

(freshly) named functions, after computing their closures (limited to concurrency

primitives and concurrency parameters). Hence they are dealt with like other Go

functions.

Supporting return and defer statements. A defer f statement in Go spec-

ifies that function f has to be called right before returning from the function. To

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 102

support defer statements, our models uses a stack where function calls are popped

and pushed using a combination of Promela labels and goto statements. Our ap-

proach inserts a proc_end: label at the end of each function process (including

init) in the model which represent the bottom of the stack. The translation of

each f in each defer f statement in the program will be stacked over their re-

spective proc_end: label. Hence, all return statements in the program can be

translated as a goto statement which redirects to the top of the stack.

Supporting break and continue statements. To support break statements

and continue statements, each loop is given a starting and an ending label. As a

result, each continue and break statement is translated as a goto to the starting

and ending label of the most inner loop.

Unsupported constructs. We do not support dynamic data-structures (e.g.,

linked lists). If a partition contains a list, array or map typed as a concurrency

primitive, our approach aborts, reports that the partition cannot be verified and

proceeds with the rest of the program. Our approach aborts because having

concurrency primitives contained in a (potentially infinite) list can lead to an

infinite number of concurrency primitive which we cannot generate a finite state

model out of. In addition, our approach does not support struct embedding. In

Go, structs can be extended from existing structs (close to inheritance in object

oriented programming languages), however, the implementation of the existing

structs might be declared in a third-party library.

4.5 Limitations of our modelling approach

Key limitations need to be tackled to address the full Go language. We as-

sume that variables are immutable, as a consequence we cannot soundly anal-

yse programs that, e.g., mutate a list files in between using len(files) as a

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 103

communication-related parameter. This is due to the fact that two unknown com-

munication parameters len(files) in the same scope will be given the same user-

defined Promela variable. Go has object-oriented-like features, such as structs,

methods, and interfaces. Although our approach supports structures and meth-

ods, it does not support structs embedding and interfaces. As the previous works

shown in Table 8, we do not support channel passing (since we abstract away the

data sent over channels), nor concurrency primitive stored in dynamic structures

(such as linked lists or maps), nor channels created inside for-loops. We note

that our empirical analysis from Chapter 3 found that only 11% of projects used

channels that carry channels, 8% used slice to store channels and 22% had channel

creations inside for-loops.

4.6 Conclusion

We described a novel approach to verifying Go programs using bounded model

checking of parameterised behavioural types. Our work builds on the approach

in Lange et al. (2018) and improves it to support statically unknown communication-

related parameters via a bounded analysis. Our approach allows us to support

programs that spawn a parameterised number of goroutines or channel capacities.

In addition, our approach works on the surface language (instead of its SSA repre-

sentation) and extract the AST of Go programs using Go’s own parsing libraries,

which means that it is easily upgradable to support additional constructs and

should continue to work with newer versions of the language.

The aim of our approach is to be sound, as described in Section 4.2.5 and 4.3.1,

this is achieved by over-approximating the behaviours of the program. Note that

our approach is only sound with respect to what it supports and to the actual

values set as the communication parameters (if there are any). In the next chapter,

we devised a set of benchmarks which showcases the soundness, applicability and

CHAPTER 4. VERIFYING CONCURRENT GO PROGRAMS. 104

scalability of our approach.

Chapter 5

Empirical Evaluation of Gomela

In this chapter, we conduct an empirical evaluation of Gomela on three sets of

benchmarks which evaluate the functionalities supported, the applicability and

the scalability of Gomela. We structure the evaluation of our approach into

three research questions that aim at evaluating the real-world usability of our

approach.

RQ1: How do Gomela’s functionalities compare to the state-of-the-art? To an-

swer this question we have generated a set of 220 buggy Go programs which is

aimed at evaluating which concurrent operations and Go features the tool sup-

ports. We compare our tool with GCatch and Godel2.

RQ2: How applicable Gomela is to real- world programs? To answer this ques-

tion we have created and evaluated our tool on a set of real-world inspired buggy

programs to determine if our approach is applicable to real-world usage. We also

compare the results of our tool against GCatch and Godel2.

RQ3: How does Gomela scale to real-world programs? To answer this question

we fed Gomela with the list of 150 Go projects devised in our empirical analysis

discussed in Chapter 3. We measure the number/parameters of models generated

and the verification runtimes. We also report on the error scores obtained for four

105

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 106

properties.

Contributions. In this chapter, we devised a set of benchmarks which show-

cases all possible safety errors and blocking operations that could arise from the

use of channels, waitgroups and mutexes in Go. We performed an evaluation and

comparison of Gomela with two other state-of-the-art static checkers on this

set of benchmarks. We applied Gomela on 125 Github projects to assess its

scalability.

5.1 RQ1: How do Gomela’s functionalities com-

pare to the state-of-the-art?

In this section, we describe the set of benchmarks that we have devised to test

and compare the functionalities of our tool with state-of-the-art static checkers,

GCatch (Liu et al. (2021)) and Godel2 (Gabet and Yoshida (2020)). In addition,

this set of benchmarks can also be used by other researchers and practitioners to

test that their tool supports a large subset of the Go languages as well as different

concurrency primitives.

Overall, we have devised a set of 220 buggy benchmarks that determines which

safety and blocking errors can be verified by the tool as well as which Go con-

structs are supported by the tool. This set was generated in two steps. First, by

generating a list of simple buggy code snippets for each possible bug that can arise

through the use of each concurrency operations and secondly by introducing them

into code contexts that contained particular Go constructs (such as for-loops or

defer statements).

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 107

Ref. Declaration (CP) Name (ĈP) Parameter form (〈CP〉)
ch ch := make(chan int) ch ch chan int
wg var wg sync.WaitGroup wg wg sync.WaitGroup
mu var mu sync.Mutex mu mu sync.Mutex
rwmu var rwmu sync.RWMutex rwmu rwmu sync.RWMutex

Figure 37: Declaration and usage of concurrency primitives.

CP Snippet name Code snippet (CS) Description

◦ ch blocking-send ch←0 Blocking send.
• ch send-close close(ch);ch ← 0 Send on a closed channel.
◦ ch blocking-rcv ←ch Blocking receive.
• ch double-close close(ch);close(ch) Closing a closed channel.
◦ ch range for range ch {} Blocking range.
◦ ch select select {case ←ch: } Blocking select statement.

◦ wg blocking-wait wg.Add(1);wg.Wait() Inifinite Wait().
• wg negative-add wg.Add(-1) Negative counter error.
• wg negative-done wg.Done() Negative counter error.

◦ (rw)mu blocking-lock go func(){mu.Lock()};mu.Lock() Blocking lock.
◦ (rw)mu double-lock mu.Lock();mu.Lock() Locking own (rw)mutex.
• (rw)mu unlock-unlocked mu.Unlock() Unlocking an unlocked (rw)mutex.
◦ rwmu double-rlock mu.RLock();mu.Lock() Locking own rwmutex.
• rwmu runlock-unlocked mu.RUnlock() RUnlocking an unlocked rwmutex.

Figure 38: Code snippets that contain a bug for each bug that can arise through
the use of each concurrent operation. Some are blocking(◦) or may trigger a
runtime error (•), see Figure 1.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 108

5.1.1 A Comprehensive Set of Concurrency Bugs

To compare the functionalities of Go static-checkers, we selected a set of synthetic

programs which are comprised of three components: A concurrency primitive

declaration, a code snippet and a parameterised context which can take additional

parameters such as bounds.

The four different concurrency primitive declarations (CP) and their usages are

shown in Figure 37. These are the declaration of channels, waitgroups, mutexes

and rwmutex. The name and parameter forms are used in the contexts when

the concurrency primitive needs to be passed as an argument of a function call

or as a parameter of a function declaration respectively. The code snippets (CS)

are aimed at being the minimal possible code elements in terms of the number

of operations that generate one of all possible concurrent bugs from Figure 1

(shown as ◦ and •) excluding data-races. We assume that no other concurrency

operations are performed on the concurrency primitive used in the snippet outside

of the code snippet itself. All of the 14 code snippets are shown in Figure 38. The

column CP (Concurrency Primitive) shows the type of the concurrency primitive

that needs to be declared for the code snippet to be valid. The declaration of

the concurrency primitive is external to the code snippet, because as we will see

later, the context will place the concurrency primitive declaration in various Go

features to test whether such features are supported by the tool.

• blocking-send and send-close are the two different bugs that can arise from

using a send statement. The send statement will block if a channel is full

and there is no receiver or will generate a runtime error if it is performed on

a previously closed channel, i.e., “panic: send on closed channel”..

• blocking-rcv is the dual of blocking-send, i.e., a blocking bug where the exe-

cuting thread is stuck waiting for a matching send.

• double-close triggers a runtime error by closing a closed channel, i.e., “panic:

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 109

close of closed channel”.

• range contains a blocked for range loop that receives on a channel that is

never closed.

• select contains a blocked select statement where all branches are stuck.

• blocking-wait contains a waitgroup that is incremented and then waited upon

without being decremented which leads to a deadlock.

• negative-add and negative-done lead to runtime errors due to decrement-

ing the counter of a waitgroup to a negative value, i.e., “panic: sync:

negative WaitGroup counter”.

• blocking-lock leads to a blocking bug where one thread permanently waits

for the lock. The program may terminate only if the main thread acquires

the lock. This snippet targets both mutex and rwmutex.

• double-lock leads to a deadlock due to a mutex being locked twice by the

same goroutine. This snippet targets both mutex and rwmutex.

• unlock-unlocked leads to a runtime error due to unlocking an unlocked mu-

tex, i.e., “fatal error: sync: unlock of unlocked mutex“

• double-rlock leads to a deadlock because a rwmutex is read-locked and locked

sequentially by the same goroutine.

• runlock-unlocked leads to a runtime error due to read unlocking an unlocked

rwmutex, i.e., “fatal error: sync: RUnlock of unlocked RWMutex“.

Each code snippet listed in Figure 38 and their respective target primitive CP

(using the standard mutex when a choice was available) have been instantiated

into the minimal context (shown in Figure 39). The resulting set of benchmarks

has been fed to all three tools and their results are shown in Table 13. We use 7

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 110

Table 13: Listing of all buggy snippets (CS) integrated into the minimal con-
text with their respective communication primitive declared (CP). 7 means false
negative, 3 means the bug was found (true positive). GCatch falsely reports a
blocking bug even though the program leads to a runtime error (shown as 71).

CP Snippet Gomela GCatch Godel2
ch blocking-rcv 3 3 3

ch blocking-send 3 3 3

ch send-close 3 71 3

ch double-close 3 7 3

ch blocking-select 3 3 3

ch range 3 7 3

wg blocking-wait 3 7 7

wg negative-add 3 7 7

wg negative-done 3 7 7

(rw)mu blocking-lock 3 3 3

(rw)mu double-lock 3 3 3

(rw)mu unlock-unlocked 3 7 3

rwmu double-rlock 3 3 3

rwmu runlock-unlocked 3 7 3

to show that the tool missed the bug (false negative) while we use 3 to show that

the tool found the bug (true positive). We use † to show that the tool explicitly

reported that it aborted, i.e, it did not support the program. GCatch reports a

false positive for the send-close snippet by identifying a blocking bug when the

actual bug is a violation of a safety property (shown as 71).

From Table 13, we can see that Gomela finds the bug in each test cases

while GCatch and Godel2 do not support any waitgroup operation and miss bugs

on multiple benchmarks. We have found that GCatch reports a blocking bug

with send-close even though the benchmark contains a runtime error and simply

misses the runtime error in double-close. This is not surprising as Liu et al. (2021)

state that they focus on blocking bugs (blocking misuse-of-channels). However,

GCatch fails to catch the blocking bug that arises from having a blocked range

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 111

minimal(CP, CS)
func main () {

CP
CS

}

Figure 39: The minimal context is used as a sanity check to see which type of
concurrency bugs are supported by the verification tool.

over a channel. GCatch also misses the bug in unlock-unlocked and runlock-

unlocked. Godel2 finds all channel and mutex related bugs but does not support

waitgroups.

5.1.2 Instantiating parameterised contexts

The benchmark suite is made by instantiating programs with holes, that we call

parameterised contexts. A parameterised context contextname(CP,CS, b){S} is a

function named contextname that takes a concurrency primitive declaration CP,

a code snippet CS, and a bound b as parameters, and uses these parameters in a

non-buggy program S to return a buggy program.

A concurrency primitive creation CP declares and initiliases a concurrency

primitive. Bound b is an integer that is used as the bound of a communication

parameter in the program.

Composition of a list of parameterised contexts. There are two types of

contexts, non-restrictive contexts that can take code snippets of all types (channel,

waitgroup and (rw)mutex) as parameter and channel-specific contexts which work

only with channel code snippets. Here is the list of all non-restrictive contexts:

1. minimal: The minimal context, shown in Figure 39, acts as a sanity check

to test which concurrency bugs, that can arise through the use of all basic

concurrency operations, are supported. This context was used to produce

the results of Table 13 discussed above in Section 5.1.1.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 112

non-dynamic-for(CP, CS)

func main () {
CP

for i := 0; i < b; i++ {
CS

}
}

Figure 40: The non-dynamic-for context tests whether non-dynamic for-loops
are supported.

dynamic-for(CP, CS, b)

func main () {
CP

for i := 0; i < b; i++{
go func () {

CS
}()

}
}

Figure 41: The dynamic-for context tests whether dynamic for-loops are sup-
ported.

primitive-for(CP, CS, b)

func main () {

for i := 0; i < b; i++ {
CP
CS

}
}

Figure 42: The primitive-for context tests whether concurrency primitives de-
clared inside for-loops are supported.

defer(CP, CS)

func main () {
CP

defer func () {
CS

}()
}

Figure 43: The defer context tests whether communication operations within
defer statements are supported.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 113

closure(CP, CS)

func main (){
CP

apply (func () {
CS

})
}

func apply (f func) {
f()

}

Figure 44: The closure context tests whether closures are supported.

recursion(CP, CS)

func main () {
CP
rec(ĈP ,10)

}

func rec(〈CP〉,i int){
if i > 0 {

CS
rec(ĈP,i -1)

}
}

Figure 45: The recursion context tests whether recursion is supported.

timeout(CP, CS)

func main () {
CP

select {
case <-time. After (3 * time. Second):

CS
}

}

Figure 46: The timeout context tests whether timeouts are supported.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 114

2-branch-select(CP, CS)

func main () {
ch2 := make(chan int)
ch1 := make(chan int)

CP
go func () {

select {
case <-ch1:
case <-ch2:

CS
}

}()

ch2 <- 0
}

Figure 47: The 2-branch-select context tests whether select statements with two
branches are supported.

interface(CP, CS)

type I interface {
f()

}

type A struct {
}

func (a A) f(〈CP〉) {
CS

}

type B struct {
}

func (b B) f(〈CP〉) {

}

func main () {

var v I

if len(os.Args) > 0 {
v = A{}

} else {
v = B{}

}
CP
v.f(ĈP)

}

Figure 48: The interface context tests whether interfaces are supported.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 115

2. non-dynamic-for : A context, shown in Figure 40, that tests which of all

concurrency operations are supported inside for-loops.

3. dynamic-for : A context, shown in Figure 41, that tests if goroutines spawned

inside a for-loop are supported. Recall that in Table 10 from our empirical

analysis, we found that 78% of projects contained an unbounded dynamic

for-loop while 49% of projects had a bounded dynamic for-loop.

4. primitive-for : A context, shown in Figure 42, that tests if concurrency prim-

itives declared inside a for-loop are supported.

5. defer : A context, shown in Figure 43, that tests if concurrency operations

are supported inside defer statements.

6. closure: Figure 44 shows a context that tests whether closures (high order

functions) are supported.

7. recursion: Figure 45 shows a context that tests whether recursion is sup-

ported. The number of iterations has been set arbitrarily to 10.

8. timeout: We have seen in Section 3.2.1 that Go’s timer library was fre-

quently used to implement timeouts in Go projects. Such constructs are

generally used in a select statement to wait for a specific amount of time

before triggering the timeout branch. Figure 46 shows a context that tests

whether timeouts are supported.

9. 2-branch-select: This context, shown in Figure 47 is used to check if the tool

supports a select statement with multiple branches.

10. interface: Figure 48 shows a context that tests whether interfaces are sup-

ported.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 116

1 func main () {
2
3 ch := make(chan int , 1)
4
5 ch <- 0
6 <-ch
7
8 CS
9

10 }

1 func main () {
2
3 ch := make(chan int , 4)
4
5 ch <- 0
6 ch <- 0
7 ch <- 0
8 ch <- 0
9 <-ch

10 <-ch
11 <-ch
12 <-ch
13
14 CS
15
16 }

Figure 49: A context that tests whether asynchronous channels of size 1 (left) and
4 (right) are supported.

Channel-specific contexts. There are 2 channel-specific contexts : async-

channel-1 and async-channel-4. Both contexts can be seen in Figure 49. These

contexts are used to test whether asynchronous channels are supported. to de-

termine the size of the channels, we used results from Section 3.2.3. We used a

size of 1 and 4 because they are the bound given to the majority of the channels

that we analysed in our empirical analysis (the mean and Q3 respectively). The

max value has not been included because the max value is 100000. This would

generate an overly complicated context (a sequence of 100000 send and receives)

while the aim of this set of benchmarks is to test the functionalities supported by

the tool instead of its scalability.

5.1.3 Results for 220 Buggy Programs

In this section, we describe the results of evaluating Gomela, GCatch and Godel2

on the 220 benchmarks generated by instantiating each parameterised contexts

with all code snippets listed in Figure 38 with their respective communication

primitive.

Figure 50 shows the results of evaluating each individual tool on this set of

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 117

Table 14: Verification of all contexts instantiated with an empty primitive dec-
laration and code snippet with Gomela, GCatch and Godel2. 	 means true
negative, i.e, the tool correctly reported that there was no bug. † shows that the
tool reported that the benchmark was not supported.

Context Gomela GCatch Godel2
minimal(ε, ε) 	 	 	
non-dynamic-for(ε, ε, 10) 	 	 	
non-dynamic-for(ε, ε,len(os.Args)) 	 	 	
dynamic-for(ε, ε, 10) 	 	 	
dynamic-for(ε, ε, 100) 	 	 	
dynamic-for(ε, ε, 120000) 	 	 	
dynamic-for(ε, ε,len(os.Args)) 	 	 	
primitive-for(ε, ε, 10) 	 	 	
primitive-for(ε, ε,len(os.Args)) 	 	 	
defer(ε, ε) 	 	 	
closure(ε, ε) 	 	 †
recursion(ε, ε) † 	 	
timeout(ε, ε) 	 	 	
2-branch-select(ε, ε) 	 	 †
interface(ε, ε) † 	 †
async-chan-1(ε) 	 	 	
async-chan-4(ε) 	 	 	

32%6%

61%

Unsupported (71)
False Negative (14)
True Positive (135)
False Positive (0)

72%

23%

5%

Unsupported (0)
False Negative (158)
True Positive (51)
False Positive (11)

47%

29% 24%

Unsupported (104)
False Negative (64)
True Positive (52)
False Positive (0)

(a) Gomela. (b) GCatch. (c) Godel2.

Figure 50: Summary of the evaluation on 220 benchmarks of all three tools.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 118

Table 15: Results of verifying channel deadlock code snippets integrated into each
context with CP = ch (Part I).

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 3 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †

blocking-send primitive-for(CS,CP,10) † 7 †
primitive-for(CS,CP,len(os.Args)) † 7 †
defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †
minimal(CS,CP) 3 3 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †
primitive-for(CS,CP,10) † 7 †
primitive-for(CS,CP,len(os.Args)) † 7 †

blocking-rcv defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †
async-chan-1(CS) 3 7 3

async-chan-4(CS) 3 7 3

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 119

Table 16: Results of verifying channel deadlock code snippets integrated into each
context with CP = ch. GCatch erroneously reports a blocking error in the wrong
place when 2-branch-select is instantiated with the range code snippet (marked
as 72) (Part II).

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 3 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †
primitive-for(CS,CP,10) † 7 †

select primitive-for(CS,CP,len(os.Args)) † 7 †
defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †
async-chan-1(CS,CP) 3 7 3

async-chan-4(CS,CP) 3 7 3

minimal(CS,CP) 3 7 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †
primitive-for(CS,CP,10) † 7 3

range primitive-for(CS,CP,len(os.Args)) † 7 3

defer(CS,CP) 3 7 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 7 7

2-branch-select(CS,CP) 3 72 †
interface(CS,CP) † 7 †
async-chan-1(CS) 3 7 3

async-chan-4(CS) 3 7 3

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 120

Table 17: Results of verifying channel safety error code snippets in each contexts
with CP = ch.

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 7 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †
primitive-for(CS,CP,10) † 7 †

double-close primitive-for(CS,CP,len(os.Args)) † 7 †
defer(CS,CP) 3 7 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 7 7

2-branch-select(CS,CP) 3 71 †
interface(CS,CP) † 7 †
async-chan-1(CS) 3 7 3

async-chan-4(CS) 3 7 3

minimal(CS,CP) 3 71 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †
primitive-for(CS,CP,10) † 7 †

send-close primitive-for(CS,CP,len(os.Args)) † 7 †
defer(CS,CP) 3 71 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 3

timeout(CS,CP) 3 71 7

2-branch-select(CS,CP) 3 71 †
interface(CS,CP) † 7 †
async-chan-1(CS) 3 7 3

async-chan-4(CS) 3 7 3

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 121

Table 18: Results of verifying mutex code snippets with Gomela, GCatch and
Godel2 in each context with CP = mu (Part I).

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 3 3

non-dynamic-for(CS,CP,10 000) 3 3 †
non-dynamic-for(CS,CP,len(os.Args)) 3 3 †
dynamic-for(CS,CP,10) 3 3 †
dynamic-for(CS,CP,100) † 3 †
dynamic-for(CS,CP,120 000) † 3 †
dynamic-for(CS,CP,len(os.Args)) 3 3 †

blocking-lock primitive-for(CS,CP,10) † 3 †
primitive-for(CS,CP,len(os.Args)) † 3 †
defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 3 7

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †
minimal(CS,CP) 3 7 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †

{unlock primitive-for(CS,CP,10) † 7 3

-unlocked} primitive-for(CS,CP,len(os.Args)) † 7 3

defer(CS,CP) 3 7 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 7

timeout(CS,CP) 3 7 7

2-branch-select(CS,CP) 3 71 †
interface(CS,CP) † 7 †

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 122

Table 19: Results of verifying mutex code snippets with Gomela, GCatch and
Godel2 in each context with CP = mu (Part II).

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 3 3

non-dynamic-for(CS,CP,10 000) 3 3 3

non-dynamic-for(CS,CP,len(os.Args)) 3 3 3

dynamic-for(CS,CP,10) 3 3 †
dynamic-for(CS,CP,100) 3 3 †
dynamic-for(CS,CP,120 000) † 3 †
dynamic-for(CS,CP,len(os.Args)) 3 3 †

double-lock primitive-for(CS,CP,10) † 3 3

primitive-for(CS,CP,len(os.Args)) † 3 3

defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 3 7

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †

benchmarks. We can see that overall Gomela found the majority of bugs (True

positive) compared to Godel2 and GCatch which found 24% and 23% of bugs.

GCatch supports all benchmarks compared to Gomela and Godel which does

not support 32% and 47% of benchmarks respectively. However, we can see that

GCatch generates mostly false negatives.

Table 13 to Table 21 show the individual results of each tool on each of all

220 benchmarks. The first column shows which snippet the contexts have been

instantiated with. The second column shows the name of the instantiated context

and the bound used when required. Note that the CS and CP parameters have

been omitted for clarity. The third, fourth and fifth columns show the results

of Gomela, GCatch and Godel2 respectively. We represent a bug found by the

tool as 3 (true positive) and 7 when the tool missed the bug (false negative).

We use 	 to show that the tool did not report a bug when there was no bug to

discover (true positive) and finally, we use † to show that the tool reported that

it did not support the program respectively. When evaluating these benchmarks,

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 123

Table 20: Results of verifying rwmutex (read and write mutex) code snippets with
CP = rwmu.

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 7 3

non-dynamic-for(CS,CP,10 000) 3 7 3

non-dynamic-for(CS,CP,len(os.Args)) 3 7 3

dynamic-for(CS,CP,10) 3 7 †
dynamic-for(CS,CP,100) 3 7 †
dynamic-for(CS,CP,120 000) † 7 †
dynamic-for(CS,CP,len(os.Args)) 3 7 †

{runlock primitive-for(CS,CP,10) † 7 3

-unlocked} primitive-for(CS,CP,len(os.Args)) † 7 3

defer(CS,CP) 3 7 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 7

timeout(CS,CP) 3 7 7

2-branch-select(CS,CP) 3 71 †
interface(CS,CP) † 7 †
minimal(CS,CP) 3 3 7

non-dynamic-for(CS,CP,10 000) 3 3 †
non-dynamic-for(CS,CP,len(os.Args)) 3 3 †
dynamic-for(CS,CP,10) 3 3 †
dynamic-for(CS,CP,100) 3 3 †
dynamic-for(CS,CP,120 000) † 3 †
dynamic-for(CS,CP,len(os.Args)) 3 3 †

double-rlock primitive-for(CS,CP,10) † 3 †
primitive-for(CS,CP,len(os.Args)) † 3 †
defer(CS,CP) 3 3 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 3 7

timeout(CS,CP) 3 3 7

2-branch-select(CS,CP) 3 3 †
interface(CS,CP) † 7 †

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 124

Table 21: Results of verifying waitgroup code snippets with CP = wg in each
contexts .

Snippet (CS) Context Gom. GCatch Godel2
minimal(CS,CP) 3 7 7

non-dynamic-for(CS,CP,10 000) 3 7 7

non-dynamic-for(CS,CP,len(os.Args)) 3 7 7

dynamic-for(CS,CP,10) 3 7 7

dynamic-for(CS,CP,100) 3 7 7

dynamic-for(CS,CP,120 000) † 7 7

{blocking-wait, dynamic-for(CS,CP,len(os.Args)) 3 7 7

negative-add, primitive-for(CS,CP,10) † 7 7

negative-done} primitive-for(CS,CP,len(os.Args)) † 7 7

defer(CS,CP) 3 7 7

closure(CS,CP) 7 7 †
recursion(CS,CP) † 7 7

timeout(CS,CP) 3 7 7

2-branch-select(CS,CP) 3 71 †
interface(CS,CP) † 7 †

we have chosen len(os.Args) (returns the number of arguments given to the

program) as an unknown communication parameter because its value is unknown

at compile time but always greater than 0. This constraint is important because

every bounded instantiated context that take a bound greater than 0 contains a

bug.

Gomela reports a program as a true positive if at least one verification

fails (score returned >0), and false negative if all verifications succeed (no bug

found), all properties are checked with S = {1, 2, 3}. Note that 0 /∈ S because

len(os.Args) is always greater than 0. For GCatch and Godel2, a true positive

is a correctly identified buggy program, while a false negative corresponds to a

missed bug. GCatch reports false positives (marked as 71 and 72). This is due to

the tool reporting that certain benchmarks contain a deadlock instead of a safety

error or erroneously reporting a blocking bug on a concurrent operation that does

not block respectively. The dynamic-for context has been instantiated with dif-

ferent bounds based on the results from our empirical analysis in Section 3.2.4.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 125

The bs used are 10, 100 and 120000 which are the median, Q3 and max values

given to the bounded dynamic loops reported in our empirical analysis in Ta-

ble 11 respectively. In addition, the benchmark is instantiated with a bound of

len(os.Args). The primitive-for and recursion contexts have been instantiated

with an arbitrary bound of 10 and len(os.Args). The non-dynamic-for context

has been instantiated with a bound of 10000 and len(os.Args). We chose 10000

because the bound is large enough to test whether tools that rely on exhaustive

checking can verify it in a timely manner.

Table 14 shows the results of each tool when instantiating each context with

no primitive declaration and an empty snippet (represented as ε). As stated

earlier, the contexts are purposefully bug-free. Therefore, we except all results to

be 	. The purpose of this context is to determine if the tools reports any false

alarm. Gomela does not generate any model for all contexts, expect interface and

recursion, because they do not contain any concurrency primitive (see Section 4.4).

However, for interface and recursion, a channel has been declared and initialised to

make the resulting program valid. Gomela rejects both of these because Gomela

neither support interfaces nor recursion. GCatch reports a true negative for all

contexts while Godel2 does not support closure, interface and 2-branch-select and

reports no bugs on all others.

Table 15 and Table 16 show which channel blocking bugs the tools support

within all contexts. Overall, we can see that Gomela supports most of these

benchmarks compared to GCatch and Godel2 and only misses the blocking bugs

from the closure and interface contexts (which it does not support). In addi-

tion, Gomela does not support dynamic-for when the bound is set to 120000

because of the limitation of SPIN which does not support models with more than

255 processes. Godel2 also misses few benchmarks but does not support many of

them. GCatch misses most benchmarks and reports a few true positives and does

not support blocking range statements. GCatch finds a bug when integrating the

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 126

range snippet within 2-branch-select (72) although the bug reported is a false pos-

itive i.e, the bug reported by GCatch is not an actual bug. GCatch falsely reports

that a branch in the select statement is blocked. Note that, the blocking-send

snippet has not been integrated within async-chan-1 and async-chan-4 because

the send would not block in these contexts.

Table 17 shows which channel safety errors the tools support. Gomela and

Godel2 results are very similar to Table 15 and Table 16. GCatch does not support

safety errors, however, for five benchmarks (71) it falsely reports a blocking bug.

Table 18, Table 19 and Table 20 show the evaluation of all mutex (Part I and

Part II) and rwmutex snippets within all contexts respectively. Gomela results

are consistent with previous tables whereas GCatch finds many more bugs than

previous channel benchmarks. Godel2 supports most of the code snippets (except

double-rlock) but only a few of the contexts. Interestingly, Godel2 only supports

the primitive-for benchmarks when instantiated with (rw)mutexes code snippets.

Table 21 shows the evaluation of integrating waitgroup snippets into all con-

texts. Godel2 and GCatch do not support waitgroups while Gomela finds all

waitgroup bugs in the contexts that it supports.

We acknowledge that there might be a bias involved in selecting and assembling

the contexts and code snippets ourselves. To counter this, we plan in the future,

to extract contexts and code snippets from bugs found in real-world projects as

well as, involving third parties to help us generate a random sample of programs.

RQ1: Overall, we can see that Gomela finds all the bugs in the contexts
that it claims to support. It supports the most benchmarks with a total
of 135 true positive. On the other hand, GCatch results are unpredictable
because the majority of its results are false negatives (158 out of 220) and the
reason why certain contexts are not supported when using specific snippets
are unclear. Godel2 only supports a few benchmarks, 52 out of 220, while
generating 64 false negatives. The results from applying each tool on all 220
benchmarks are shown in Figure 50.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 127

25.64%15.39%

58.97%

Unsupported (20)
False Positive (12)
True Positive (46)

61.54%

38.46%

Unsupported (0)
False Positive (48)
True Positive (30)

74.36%

6.41%
19.23%

Unsupported (58)
False Positive (5)
True Positive (15)

(a) Gomela (b) GCatch (c) Godel2

Figure 51: Proportion of true/false positives in 78 buggy programs, unsupported
indicates that the tool has aborted or crashed.

1 func parseFiles (files [] os.File) {
2 ch := make(chan string)
3
4 for file := range files {
5 go parseFile (ch , file)
6 }
7
8 for v := range ch { // stuck bc

close () missing
9 fmt. Println (v)

10 }
11 }
12
13 func parseFile (ch chan string , file

os.File) {
14 ch ← parseToken (file)
15 }

1 func main () {
2 a := make(chan int)
3 b := make(chan int)
4 for i := 0; i < 3; i++ {
5 go func () {
6 ←b // blocked
7 a ← 1
8 }()
9 }

10 ←a // blocked
11 b ← 1
12 }

Figure 52: Examples of buggy programs caught by Gomela, missed by GCatch,
and unsupported by Godel2.

5.2 RQ2: How applicable Gomela is to real-

world programs?

To evaluate the applicability of our tool to real-world programs, we have col-

lected a set of 72 buggy programs that consists of blocking examples from Gabet

and Yoshida (2020); Yuan et al. (2021), and six additional programs with intri-

cate concurrency patterns (all benchmarks are available online Dilley and Lange

(2021b,c)). These programs range from 12 to 298 LoC (mean: 83, median: 70).

Similarly to Section 5.1, we evaluate Gomela on this set and also compare the

result against GCatch (Liu et al. (2021)) and Godel2 (Gabet and Yoshida (2020)).

We omit benchmarks from Gabet and Yoshida (2020) that contain data-races or

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 128

0 10 20 30 40 50 60 70 800

10

20

30

40

50

Se
co

nd
s

Gomela GCatch Godel2

Figure 53: Run-times for true positives in 78 buggy programs.

do not contain any bugs. We focus on the benchmarks from Yuan et al. (2021)

that contain blocking bugs as Gomela does not target other bugs. To ensure

that our experiments are precise, we only use the bug kernels from Yuan et al.

(2021). It is not always straightforward to distinguish false alarms from real bugs

raised by these tools, hence we could not confidently evaluate their respective

performance on the real bugs listed Yuan et al. (2021). Figures 51 and 53 give the

results of our experiments. From left to right, the first group is comprised of all

four programs that contain a blocking bug from Gabet and Yoshida (2020). The

second group consists of a set of 6 benchmarks which contains intricate popular

concurrency patterns. The set is made of :

1. The program from Figure 5.

2. A program with a blocking range-over-channel, see Figure 52 (right).

3. A program (FindAll()) adapted from a bug report in Google’s gops

project Google (2020); Siebenmann (0 09) (see Example 3).

4. A program with a circular dependency and a bounded for-loop, see Fig-

ure 52 (left).

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 129

5. A program invoking function preload() from Figure 22 (see Example 2).

6. a buggy version of Figure 34 where receiver receives x+1 times.

FindAll(), preload() and the program from Figure 5 are all real-world

bugs found using Gomela when answering research question 3 (see Section 5.3).

FindAll() and preload() use multiple types of concurrency primitives and create

a set of goroutines in a for-loop that send messages on a channel which are then

received by the main goroutine. In addition, the bugs in FindAll(), preload()

and the program from Figure 5 only arise when specific values are used for the

communication parameters.

The last group consists of the 68 blocking programs from the GoKer bench-

mark suite devised in Yuan et al. (2021), which are all adapted from real-world

programs. This suite is mainly aimed at evaluating run-time bug detectors. We

modified 29 of them to meet the limitations of the front-end of Gomela and

Godel2. Note that GCatch did also benefited from most of the massaging per-

formed. Our modifications consist in inlining concurrency primitive declarations,

inlining higher-order functions, and replacing virtual method calls by static ones.

Overall Gomela has the highest rate of true positive (58.97%), followed by

GCatch (38.46%) and Godel2 (19.23%). While GCatch never crashes/aborts, it

misses 61.54% of the bugs. Our experiments show that Godel2 has very limited

support for real-world examples.

Figure 53 shows how the three tools perform wrt. execution time for true

positives. GCatch is the fastest tool (all processed within 5s) and most examples

are verified by Gomela within 10s. For readability, we have omitted Gomela’s

run-time for preload() (120s for 27 verifications). Observe that Gomela is the

only tool that can process correctly all programs in the second group of Figure 53.

Godel2 identifies the last program of this group as buggy, but also raises a false

alarm for the non-buggy version, i.e., the program in Figure 34.

In the 68 kernels benchmarks from Yuan et al. (2021), we found a particular

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 130

1 func main () {
2 var mu sync. RWMutex
3
4 mu. Rlock ()
5
6 go func () {
7 mu.Lock ()
8 mu. Unlock ()
9 }()

10
11 mu. Rlock ()
12 mu. RUnlock ()
13 mu. RUnlock ()
14 }

Figure 54: Simplified example adapted from Yuan (2022) which showcases a par-
ticular blocking bug that happens when a single goroutine calls RLock() twice on
the same RWMutex.

rwmutex-related bug, discussed in Section 4.2.2, that is missed by Gomela. This

benchmark is shown in a simplified form in Figure 54.

Even though we have tried to be as inclusive as possible in terms of the choice

of benchmarks, we will aim in future work to involve third parties in the selection

process of the benchmarks to reduce the potential selection bias.

RQ2: Overall, we have found that Gomela finds the most bugs overall while
GCatch, even though it is faster on average than Gomela, generates many
false alarms and false positives. We have found that Godel2 only supports 26%
of the benchmarks but finds 75% of bugs in the benchmarks that it supports.

5.3 RQ3: How does Gomela scale to real-world

programs?

To evaluate the scalability of our approach we ran Gomela on the same set of

125 Github projects used in Chapter 3. For each project, we cloned it locally and

generated models for each of its packages. Note that, the compilation unit in Go

is the package (i.e., a directory), hence this is an important level of granularity

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 131

Table 22: Project sizes and verification run-times.

Project sizes mean std 25% 50% 75% max

models per project 50.41 84.04 4.5 19 57.5 499
models per package 3.75 11.17 1 1 3 295
parameters per models 2.08 2.35 1 1 2 42
states per valuation 8118.73 166k 18 43 132 8.94 mil

Run-time

per project 4m20s 8m3s 19s 58s 4m 52m11s
per model 4.67s 32.54s 2.50s 2.72s 3.22s 22m25s
per valuation 3.42s 1.56s 2.57s 3.06s 3.87s 18s

Table 23: Verification scores for generated models.

All scores mean std 25% 50% 75% max

model deadlock φmd 0.031 0.17 0 0 0 1
channel safety φcs 0.0019 0.043 0 0 0 1
mutex safety φms 0.0015 0.037 0 0 0 1
waitgroup safety φws 0.0012 0.031 0 0 0 1

Strictly positive scores (occurrences)

model deadlock (179) 0.88 0.29 1 1 1 1
channel safety (11) 0.92 0.23 1 1 1 1
mutex safety (9) 0.96 0.1 0.66 1 1 1
waitgroup safety (8) 0.85 0.25 0.76 1 1 1

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 132

for Gomela too (as it is built atop the Go parser). Each model was then verified,

wrt. the properties described in Section 4.3.1, using our automated approach with

S = {0, 1, 3}.

Our measurements for scalability are in Table 22. The key factors that affect

the run-time of Gomela on a given project is the number of models it generates

and how many parameters these projects have. Recall that Gomela only gener-

ates a model when it detects at least one concurrency primitive. Table 22 (top)

shows that most projects and packages only give rise to a couple of models, but

some produce more than one hundred models. If a model has k parameters, it

may require up to |S|k, but the table also shows that 75% of these models have

at most 2 concurrency parameters (hence they require at most |S|2 verifications).

The last row shows the number of states as reported by SPIN when verifying

it. This metric is representative of the number of goroutines and the number of

concurrency operations contained in the source program. Overall Gomela gen-

erated 5327 models, out of which 27 were not valid Promela (due to limitations

of our aliasing analysis) and were rejected by SPIN, 32 contained >5 concurrency

parameters and 118 contained at least one valuation that took >30 seconds to

verify (we omitted these in the next phase).

Table 22 (bottom) shows the run-time for the remaining 5150 models we ver-

ified. More than 75% of projects can be verified in under 4 minutes, and a model

valuation is verified in under 3.42s on average (we set a timeout of 30s per valua-

tion). This suggests that our approach does scale to real-world Go.

Table 23 (top) shows the score computed for the 5150 models. As expected

from mature projects on GitHub, Gomela reports few concurrency bugs. This

suggests that it has a reasonable false alarm rate. Table 23 (bottom) focuses

on the models for which at least one valuation violated a property. We can see

that the average score of all properties is close to one (>0.85) which means that,

on average, all evaluations report an error no matter what the values given to

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 133

1 var x int = 0
2
3 func TestRacex () {
4 c := make(chan struct {})
5 go func () {
6 x = 1
7 close (c)
8 }()
9

10 if x == -1 {
11 close (c)
12 }
13 ←c
14 }

Figure 55: Simplified example from Golang (2021d) which Gomela falsely reports
as having a double close error due to data dependency. x is never equal to -1.

communication parameters.

To determine how accurate these reports are, and in particular what the rate

of false alarms is, we have manually analysed 10 random programs out of 179

reported deadlocks and all other 28 safety errors detected by Gomela. This

amounts to a total of 38 models with at least one strictly positive score. By

manual analysis, we mean that the authors looked at the source code of the

program to determine whether or not the error reported by Gomela can indeed

happen at run time (i.e., there is an execution that leads to a goroutine leak or

a safety error). In every case, we took a conservative approach, i.e., we report a

true positive only if were are convinced the bug is indeed reachable. Dilley and

Lange (2022e,d) contains a list of all bugs reported and the results of our manual

analysis.

Out of 10 reported model deadlocks we analysed, 6 were real bugs and 4 were

false alarms (due to higher-order functions and tricky aliasing). Out of all 11

channel safety errors, 10 were real bugs while one was a false alarm due to how we

over-approximate conditional statements. Figure 55 shows a simplified example

of the false alarm raised by Gomela in the Golang (2021a) project where, clearly,

the channel will never be closed twice due to x never being equal to -1. Out of

all 9 mutex errors, one was a true positive (a case similar to unlock-unlocked, see

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 134

1
2 go func () {
3 var wg sync. WaitGroup
4 wg.Add(SHARD_COUNT)
5
6 for range m {
7 var shard sync. RWMutex
8 go func () {
9 shard . RLock ()

10 for range items {
11 ch <- "..."
12 }
13 shard . RUnlock ()
14 wg.Done ()
15 }()
16 }
17 wg.Wait ()
18 close (ch)
19 }()
20
21 for range ch {
22 // (...)
23 }
24 }

Figure 56: Example of a tricky false alarm, adapted from Snail007 (2022).

Figure 38) but the others were false alarms (all due to higher-order functions).

Finally, the 8 reports of waitgroup errors were real bugs.

We conclude this section by commenting on Figure 56 which shows a simpli-

fied version of a function for which our tool detected two safety errors and one

possible deadlock, which all revealed to be false alarms. Figure 56 is adapted

from GoProxy an HTTP proxy project on GitHub, with 11.8k stars and 20 con-

tributors. Figure 56 is a simplification of a function that returns the keys of a

(custom) ConcurrentMap which consists of a slice of “sharded” slices Snail007

(2022). We made several modification to obtain a more self-contained program,

but did not modify its concurrent behaviour besides the creation of Mutex shard

at Line 7. In the original code, a mutex is attached each element in the slice m

— this modification has no consequence wrt. the program Figure 56. Gomela

produces a very accurate Promela model of Figure 56, with three concurrency

parameters: SHARD_COUNT, count and items. We observe the following:

1. If len(m) < SHARD_COUNT, the counter of wg will not be decremented enough

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 135

and the program will get stuck at line 17 (blocking bug).

2. If len(m) > SHARD_COUNT and len(items) = 0, the counter of wgmay reach

a negative number hence triggering an error: panic: sync: negative

WaitGroup counter.

3. If len(m) > SHARD_COUNT and len(items) > 0, the program may trigger

either a negative WaitGroup counter or a send on close error, i.e., panic:

send on closed channel. In the latter case, the Wait at Line 17 succeeds

while some goroutines spawned at Line 8 are still running.

While all these are real bugs in the program from Figure 56, they do not occur

in the original program Snail007 (2022) as the slice m is always initialised with

exactly SHARD_COUNT elements. Note that when SHARD_COUNT = len(m), the three

bugs described above are not reachable. We argue that Gomela’s report is still

relevant in this case at it highlights a brittle dependency between constants and

variables that can be easily solved, e.g., by replacing Line 4 with wg.Add(len(m)).

With this fix, the dependency is made explicit and Gomela will not report errors.

Figure 56 and its source in Snail007 (2022) also highlight the work required to

assess whether reports are indeed a false alarm.

RQ3: We have found that Gomela scales well to real-world programs and
can verify each program in under 4min20s on average. From the manual
analysis that we have performed on the bugs found by Gomela, we have
found that the majority of bugs reported were real bugs and that most of the
false alarms were due to unsupported features such as high-order functions.

5.4 Conclusion

We have devised a set of 298 benchmarks which aims at evaluating the supported

functionalities and the applicability of our approach to real-world Go programs.

CHAPTER 5. EMPIRICAL EVALUATION OF GOMELA 136

We have then compared our tool to recent static checkers namely, GCatch and

Godel2, on this set of benchmarks and reported on the results. We have found

that Gomela found 63% of bugs while GCatch and Godel2 found less than 27%

of bugs. In addition, Gomela supports more programs than Godel2 and does

not miss as many bugs as GCatch. After that, we ran Gomela on 125 Github

projects to see if it could scale to much larger Go program. Overall, we have found

that Gomela scales well to real-world Go code. Gomela verifies the majority of

projects in under 1 minute per project and a single model in less than 5 seconds

on average. Remarkably, most false alarms we discovered were due to limitations

of our front-end rather than over-approximation in our verification approach.

Chapter 6

Conclusions and Future

Directions

6.1 Overview of the main contributions.

Empirical analysis of concurrent Go programs. To gain knowledge of how

Go developers use concurrency in Go projects, we have performed an empirical

analysis on 125 Github projects. This helped us evaluate how much of these

projects were supported by previous work on the static verification of Go pro-

grams. We have found that most projects spawned goroutine in for-loops (85%),

used waitgroups (76%) and mutexes (58%) which were not fully supported by

previous work. In addition, we found that the number of concurrency operations

per concurrency primitive was low (<2) which allowed us to build an effective

partitioning approach.

Static verification of concurrency in Go programs. Following the in-

sights gained in the empirical analysis, we developed a novel verification approach

using bounded model checking of parameterised behavioural types which over-

approximate their programs. Our approach builds on the technique introduced

137

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 138

in Lange et al. (2017) to support programs that spawn a parameterised number of

goroutines or channel capacities, as well as waitgroups and mutexes. These exten-

sions increase the applicability of the approach to real-world programs which often

contain these features as reported in our empirical analysis in Chapter 3. One of

the main challenges with software verification is the difficulty to scale to large

programs. To increase the scalability of our approach, we partition the programs

into function declarations that do not take concurrency primitives as parameters

and use the well-known model-checker SPIN to verify the resulting models. This

allows us to verify whole Github projects in under 4 minutes on average.

A platform to synthesise programs. To evaluate the subset of Go as well

as which bugs are supported by static checkers of concurrent Go programs, we

devised a technique to synthesise buggy programs from parameterised contexts.

These contexts are instantiated with various concurrency primitives, code snippets

and bounds to produce buggy benchmarks. This platform was used to produce a

total of 220.

Evaluation and comparison of Gomela against state-of-the-art. We have

implemented our approach into a tool, called Gomela, and evaluated it on 298

benchmarks aimed at assessing the functionalities supported by Gomela and the

applicability of the approach to real-world projects. In addition, we have also

run this set of benchmarks on Godel2 and GCatch to compare our results with

state-of-the-art tools in the verification of concurrent Go programs and found

that our approach supports a larger set of benchmarks than the competition. We

have also fed Gomela with the same 125 Github projects than in the empirical

analysis and found that our approach scales well to real-world Go code. Another

challenge with software verification is proper feedback. When manually analysing

the results of Gomela, we discovered that all false alarms were due to limitations

of our front-end rather than over-approximation in our verification approach.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 139

6.2 Future work

In this section, we discuss the opportunities for future work that could stem from

the approaches introduced in earlier chapters.

Empirical analysis. In the shorter term, we plan to extend our empirical anal-

ysis from Chapter 3 to pursue an inter-procedural analysis on the usage of gor-

outines and channels in Go projects to better reflect the number of goroutines

and channels created in for-loops. In the longer term, we plan to extend the

analysis to compare the usage of message passing in languages such as Go, Rust,

and Erlang which all provide natively message-passing facilities. In addition, we

would like to study the usage of additional concurrency primitives that are offered

by the Go sync package such as sync.Cond and sync.Once.

Benchmark suite. We plan to adapt the set of benchmarks devised in Chap-

ter 5 to other programming languages such as Erlang and Rust which would test

the applicability and scalability of static and dynamic checkers in those languages.

In addition, we plan to also include non-buggy programs. These non-buggy pro-

grams will be aimed at evaluating the false alarm rate of these checkers.

Static verification of Go programs. We also plan to improve our static verifi-

cation approach introduced in Chapter 4 by developing: (i) scalable techniques to

deal with virtual method calls, (ii) heuristics to deal with models with a high num-

ber of parameters, and (iii) techniques to help automate the identification of false

alarms. Recall that we have found, via our manual analysis, that false alarms were

generally due to the presence of high-order functions and usage of structures. Fur-

thermore, if a technique to distinguish false alarms existed, techniques to mitigate

false alarms such as counterexample-guided abstraction by Clarke et al. (2000)

could be applied to reduce the number of false alarms. In the shorter term, we

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 140

also would like to improve our front-end analysis so that more Go programs can

be analysed without manual modifications. We also plan to add support for the

blocking bug that can arise when sequentially calling Rlock() twice on the same

RWMutex as described at the end of Section 5.2. In the longer term, we plan to

use our tool to detect concurrency errors and suggest repairs for large code-bases.

In addition, we plan to apply our verification approach on other programming

languages that supports channel-based concurrency such as Rust.

Bibliography

Beego (2021a). Beego github project. https://github.com/beego/beego.

Beego (2021b). Example of multiple unlock() and lock() per mutex

declaration. https://github.com/beego/beego/blob/develop/server/web/

session/sess_file_test.go.

Bocchi, L., Yang, W. and Yoshida, N. (2014). Timed multiparty session types.

In P. Baldan and D. Gorla, eds., CONCUR 2014 - Concurrency Theory - 25th

International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014.

Proceedings, Lecture Notes in Computer Science, vol. 8704, Springer, pp. 419–

434.

Borges, H. and Valente, M. T. (2018). What’s in a GitHub star? understanding

repository starring practices in a social coding platform. Journal of Systems

and Software, 146, pp. 112–129.

Brzozowski, J. A. (1964). Derivatives of regular expressions. J ACM, 11(4), pp.

481–494.

Cassar, I., Francalanza, A., Aceto, L. and Ingólfsdóttir, A. (2017). A survey of run-

time monitoring instrumentation techniques. In A. Francalanza and G. J. Pace,

eds., Proceedings Second International Workshop on Pre- and Post-Deployment

Verification Techniques, PrePost@iFM 2017, Torino, Italy, 19 September 2017,

EPTCS, vol. 254, pp. 15–28.

141

https://github.com/beego/beego
https://github.com/beego/beego/blob/develop/server/web/session/sess_file_test.go
https://github.com/beego/beego/blob/develop/server/web/session/sess_file_test.go

BIBLIOGRAPHY 142

Castro-Perez, D., Hu, R., Jongmans, S., Ng, N. and Yoshida, N. (2019). Dis-

tributed programming using role-parametric session types in go: statically-

typed endpoint apis for dynamically-instantiated communication structures.

Proc ACM Program Lang, 3(POPL), pp. 29:1–29:30.

Chabbi, M. and Ramanathan, M. K. (2022). A study of real-world data races in

golang. CoRR, abs/2204.00764, 2204.00764.

Chi, G. (2021a). Chi github project. https://github.com/go-chi/chi.

Chi, G. (2021b). throttle-test code. https://github.com/go-chi/chi/blob/

25eb15cdd4f644896eac2ac05d4e3e932f34a188/middleware/throttle_

test.go.

Clarke, D. G., Potter, J. M. and Noble, J. (1998). Ownership types for flexible alias

protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-

Oriented Programming, Systems, Languages, and Applications, New York, NY,

USA: Association for Computing Machinery, OOPSLA ’98, p. 48–64.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2000).

Counterexample-guided abstraction refinement. In E. A. Emerson and A. P.

Sistla, eds., Computer Aided Verification, 12th International Conference, CAV

2000, Chicago, IL, USA, July 15-19, 2000, Proceedings, Lecture Notes in Com-

puter Science, vol. 1855, Springer, pp. 154–169.

Clearfield, C. and Lofchie, S. (2013). Nasdaq and the Facebook

IPO. http://www.system-logic.com/commentary/2013/06/04/

NASDAQ-and-the-Facebook-IPO-part-1-The-Race-Condition.html, ac-

cessed: 2022-03-02.

Coppo, M., Dezani-Ciancaglini, M., Yoshida, N. and Padovani, L. (2016). Global

progress for dynamically interleaved multiparty sessions. Math Struct Comput

Sci, 26(2), pp. 238–302.

2204.00764
https://github.com/go-chi/chi
https://github.com/go-chi/chi/blob/25eb15cdd4f644896eac2ac05d4e3e932f34a188/middleware/throttle_test.go
https://github.com/go-chi/chi/blob/25eb15cdd4f644896eac2ac05d4e3e932f34a188/middleware/throttle_test.go
https://github.com/go-chi/chi/blob/25eb15cdd4f644896eac2ac05d4e3e932f34a188/middleware/throttle_test.go
http://www.system-logic.com/commentary/2013/06/04/NASDAQ-and-the-Facebook-IPO-part-1-The-Race-Condition.html
http://www.system-logic.com/commentary/2013/06/04/NASDAQ-and-the-Facebook-IPO-part-1-The-Race-Condition.html

BIBLIOGRAPHY 143

Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-

memory programming. IEEE Computational Science and Engineering, 5(1), pp.

46–55.

Danial, A. (2021). Count lines of code. https://github.com/AlDanial/cloc.

Deniélou, P.-M. and Yoshida, N. (2011). Dynamic multirole session types. In Pro-

ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, New York, NY, USA: Association for Computing

Machinery, POPL ’11, p. 435–446.

Dilley, N. and Lange, J. (2019). An empirical study of messaging passing con-

currency in go projects. In X. Wang, D. Lo and E. Shihab, eds., 26th IEEE

International Conference on Software Analysis, Evolution and Reengineering,

SANER 2019, Hangzhou, China, February 24-27, 2019, IEEE, pp. 377–387.

Dilley, N. and Lange, J. (2020). Bounded verification of message-passing concur-

rency in go using promela and spin. In S. Balzer and L. Padovani, eds., Proceed-

ings of the 12th International Workshop on Programming Language Approaches

to Concurrency- and Communication-cEntric Software, PLACES@ETAPS

2020, Dublin, Ireland, 26th April 2020, EPTCS, vol. 314, pp. 34–45.

Dilley, N. and Lange, J. (2021a). Automated verification of go programs via

bounded model checking. In 36th IEEE/ACM International Conference on Au-

tomated Software Engineering, ASE 2021, Melbourne, Australia, November 15-

19, 2021, IEEE, pp. 1016–1027.

Dilley, N. and Lange, J. (2021b). Automated verification of go programs

via bounded model checking (artifact). https://doi.org/10.5281/zenodo.

5222045, accessed: 2021-10-17.

Dilley, N. and Lange, J. (2021c). Gomela. https://github.com/nicolasdilley/

gomela-ase21/.

https://github.com/AlDanial/cloc
https://doi.org/10.5281/zenodo.5222045
https://doi.org/10.5281/zenodo.5222045
https://github.com/nicolasdilley/gomela-ase21/
https://github.com/nicolasdilley/gomela-ase21/

BIBLIOGRAPHY 144

Dilley, N. and Lange, J. (2021d). Survey data. https:

//github.com/nicolasdilley/gocurrency_tool/tree/

b11c6be9dbeb12565657ed839dbbccdef19df2eb/analyser/results/html.

Dilley, N. and Lange, J. (2022a). Benchmark-maker. https://github.com/

nicolasdilley/benchmark-maker.

Dilley, N. and Lange, J. (2022b). Go project analyser. http://github.com/

nicolasdilley/gocurrency_tool.

Dilley, N. and Lange, J. (2022c). Gomela. http://github.com/nicolasdilley/

gomela.

Dilley, N. and Lange, J. (2022d). Manual analysis of chapter 5 rq3.

https://github.com/nicolasdilley/Gomela/blob/master/results/

manual-analysis.csv.

Dilley, N. and Lange, J. (2022e). Verification results of chapter 5 rq3. https:

//github.com/nicolasdilley/Gomela/blob/master/results/scores.csv.

Docker-slim (2021). Docker-slim github project. https://github.com/

docker-slim/docker-slim.

Drone (2021). Drone github project. https://github.com/drone/drone.

Elastic (2021). Run. https://github.com/elastic/beats/blob/

49e3857fd412ff95d4374118e6e447aff9ebb619/x-pack/elastic-agent/

pkg/composable/controller.go#L98.

Etcd-io (2021). Etcd github project. https://github.com/etcd-io/etcd.

Forum, M. P. I. (1993). CORPORATE the MPI forum - MPI: a message passing

interface. In B. Borchers and D. Crawford, eds., Proceedings Supercomputing

’93, Portland, Oregon, USA, November 15-19, 1993, ACM, pp. 878–883.

https://github.com/nicolasdilley/gocurrency_tool/tree/b11c6be9dbeb12565657ed839dbbccdef19df2eb/analyser/results/html
https://github.com/nicolasdilley/gocurrency_tool/tree/b11c6be9dbeb12565657ed839dbbccdef19df2eb/analyser/results/html
https://github.com/nicolasdilley/gocurrency_tool/tree/b11c6be9dbeb12565657ed839dbbccdef19df2eb/analyser/results/html
https://github.com/nicolasdilley/benchmark-maker
https://github.com/nicolasdilley/benchmark-maker
http://github.com/nicolasdilley/gocurrency_tool
http://github.com/nicolasdilley/gocurrency_tool
http://github.com/nicolasdilley/gomela
http://github.com/nicolasdilley/gomela
https://github.com/nicolasdilley/Gomela/blob/master/results/manual-analysis.csv
https://github.com/nicolasdilley/Gomela/blob/master/results/manual-analysis.csv
https://github.com/nicolasdilley/Gomela/blob/master/results/scores.csv
https://github.com/nicolasdilley/Gomela/blob/master/results/scores.csv
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
https://github.com/drone/drone
https://github.com/elastic/beats/blob/49e3857fd412ff95d4374118e6e447aff9ebb619/x-pack/elastic-agent/pkg/composable/controller.go#L98
https://github.com/elastic/beats/blob/49e3857fd412ff95d4374118e6e447aff9ebb619/x-pack/elastic-agent/pkg/composable/controller.go#L98
https://github.com/elastic/beats/blob/49e3857fd412ff95d4374118e6e447aff9ebb619/x-pack/elastic-agent/pkg/composable/controller.go#L98
https://github.com/etcd-io/etcd

BIBLIOGRAPHY 145

Francalanza, A. and Seychell, A. (2015). Synthesising correct concurrent runtime

monitors. Formal Methods Syst Des, 46(3), pp. 226–261.

Gabet, J. and Yoshida, N. (2020). Static race detection and mutex safety and

liveness for go programs. In R. Hirschfeld and T. Pape, eds., 34th European

Conference on Object-Oriented Programming, ECOOP 2020, November 15-17,

2020, Berlin, Germany (Virtual Conference), LIPIcs, vol. 166, Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, pp. 4:1–4:30.

Geist, A. et al. (1996). MPI-2: extending the message-passing interface. In

L. Bougé, P. Fraigniaud, A. Mignotte and Y. Robert, eds., Euro-Par ’96 Parallel

Processing, Second International Euro-Par Conference, Lyon, France, August

26-29, 1996, Proceedings, Volume I, Lecture Notes in Computer Science, vol.

1123, Springer, pp. 128–135.

Go-chi (2021). Chi code. https://github.com/go-chi/chi/blob/

fb48a47641af106c7eae2f09864e7fecd54237bf/middleware/throttle.

go#L43.

Golang (2018). The Go programming language. https://golang.org/.

Golang (2021a). Go github project. https://github.com/golang/go.

Golang (2021b). The Go playground — a concurrent prime sieve. https://play.

golang.org/p/9U22NfrXeq, accessed: 2021-01-20.

Golang (2021c). testconcurrentreadwritereqbody code. https://github.com/

golang/go/blob/1b09d430678d4a6f73b2443463d11f75851aba8a/src/net/

http/clientserver_test.go#L735.

Golang (2021d). Testraceissue12664_2 code. https://github.com/golang/go/

blob/2580d0e08d5e9f979b943758d3c49877fb2324cb/src/runtime/race/

testdata/issue12664_test.go#L35.

https://github.com/go-chi/chi/blob/fb48a47641af106c7eae2f09864e7fecd54237bf/middleware/throttle.go#L43
https://github.com/go-chi/chi/blob/fb48a47641af106c7eae2f09864e7fecd54237bf/middleware/throttle.go#L43
https://github.com/go-chi/chi/blob/fb48a47641af106c7eae2f09864e7fecd54237bf/middleware/throttle.go#L43
https://golang.org/
https://github.com/golang/go
https://play.golang.org/p/9U22NfrXeq
https://play.golang.org/p/9U22NfrXeq
https://github.com/golang/go/blob/1b09d430678d4a6f73b2443463d11f75851aba8a/src/net/http/clientserver_test.go#L735
https://github.com/golang/go/blob/1b09d430678d4a6f73b2443463d11f75851aba8a/src/net/http/clientserver_test.go#L735
https://github.com/golang/go/blob/1b09d430678d4a6f73b2443463d11f75851aba8a/src/net/http/clientserver_test.go#L735
https://github.com/golang/go/blob/2580d0e08d5e9f979b943758d3c49877fb2324cb/src/runtime/race/testdata/issue12664_test.go#L35
https://github.com/golang/go/blob/2580d0e08d5e9f979b943758d3c49877fb2324cb/src/runtime/race/testdata/issue12664_test.go#L35
https://github.com/golang/go/blob/2580d0e08d5e9f979b943758d3c49877fb2324cb/src/runtime/race/testdata/issue12664_test.go#L35

BIBLIOGRAPHY 146

Google (2020). Findall code. https://github.com/google/gops/blob/

6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29.

Google (2021). preload code. https://github.com/google/trillian/blob/

c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_

cache.go#L108.

Google (2022a). Go sync package documentation. https://pkg.go.dev/sync#

WaitGroup.

Google (2022b). Go sync package documentation. https://pkg.go.dev/sync.

Graham, R. L., Woodall, T. S. and Squyres, J. M. (2005). Open MPI: A flexi-

ble high performance MPI. In R. Wyrzykowski, J. J. Dongarra, N. Meyer and

J. Wasniewski, eds., Parallel Processing and Applied Mathematics, 6th Interna-

tional Conference, PPAM 2005, Poznan, Poland, September 11-14, 2005, Re-

vised Selected Papers, Lecture Notes in Computer Science, vol. 3911, Springer,

pp. 228–239.

Groote, J. F. and Mousavi, M. R. (2014). Modeling and Analysis of Communicat-

ing Systems. MIT Press.

Gropp, W. (2002). MPICH2: A new start for MPI implementations. In D. Kran-

zlmüller, P. Kacsuk, J. J. Dongarra and J. Volkert, eds., Recent Advances in Par-

allel Virtual Machine and Message Passing Interface, 9th European PVM/MPI

Users’ Group Meeting, Linz, Austria, September 29 - October 2, 2002, Proceed-

ings, Lecture Notes in Computer Science, vol. 2474, Springer, p. 7.

Havelund, K. and Pressburger, T. (2000). Model checking JAVA programs using

JAVA pathfinder. Int J Softw Tools Technol Transf, 2(4), pp. 366–381.

Hewitt, C., Bishop, P. and Steiger, R. (1973). A universal modular actor formalism

https://github.com/google/gops/blob/6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29
https://github.com/google/gops/blob/6fb0d860e5fa50629405d9e77e255cd32795967e/goprocess/gp.go#L29
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://github.com/google/trillian/blob/c92fa63aaa6c133eb8383f2727524421bea420c4/storage/cache/subtree_cache.go#L108
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync#WaitGroup
https://pkg.go.dev/sync

BIBLIOGRAPHY 147

for artificial intelligence. In Proceedings of the 3rd International Joint Confer-

ence on Artificial Intelligence, San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., IJCAI’73, p. 235–245.

Hoare, C. A. R. (1978). Communicating sequential processes. Commun ACM,

21(8), pp. 666–677.

Holzmann, G. J. (1997). The model checker SPIN. IEEE Trans Software Eng,

23(5), pp. 279–295.

Honda, K. (1993). Types for dyadic interaction. In E. Best, ed., CONCUR ’93,

4th International Conference on Concurrency Theory, Hildesheim, Germany,

August 23-26, 1993, Proceedings, Lecture Notes in Computer Science, vol. 715,

Springer, pp. 509–523.

Honda, K., Vasconcelos, V. T. and Kubo, M. (1998). Language primitives and type

discipline for structured communication-based programming. In C. Hankin, ed.,

Programming Languages and Systems - ESOP’98, 7th European Symposium on

Programming, Held as Part of the European Joint Conferences on the Theory

and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4,

1998, Proceedings, Lecture Notes in Computer Science, vol. 1381, Springer, pp.

122–138.

Honda, K., Yoshida, N. and Carbone, M. (2008). Multiparty asynchronous ses-

sion types. In G. C. Necula and P. Wadler, eds., Proceedings of the 35th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,

ACM, pp. 273–284.

Hüttel, H. et al. (2016). Foundations of session types and behavioural contracts.

ACM Comput Surv, 49(1), pp. 3:1–3:36.

BIBLIOGRAPHY 148

Jhala, R. and Majumdar, R. (2009). Software model checking. ACM Comput Surv,

41(4), pp. 21:1–21:54.

Johnson, B., Song, Y., Murphy-Hill, E. R. and Bowdidge, R. W. (2013). Why

don’t software developers use static analysis tools to find bugs? In D. Notkin,

B. H. C. Cheng and K. Pohl, eds., 35th International Conference on Software

Engineering, ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, IEEE Com-

puter Society, pp. 672–681.

K3s-io (2021a). Generatenodemap code. https://github.com/k3s-io/k3s/

blob/cfe7e0c73483038d9e9242ae95da1a7c466f2891/pkg/agent/tunnel/

tunnel.go#L165.

K3s-io (2021b). K3s github project. https://github.com/k3s-io/k3s.

Kalliamvakou, E. et al. (2014). The promises and perils of mining github. In

P. T. Devanbu, S. Kim and M. Pinzger, eds., 11th Working Conference on

Mining Software Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014,

Hyderabad, India, ACM, pp. 92–101.

Kozen, D. (1983). Results on the propositional mu-calculus. Theor Comput Sci,

27, pp. 333–354.

Kubernetes (2021a). Generatenodemap code. https://github.com/kubernetes/

kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/

e2e/storage/vsphere/nodemapper.go#L62.

Kubernetes (2021b). Kubernetes (k8s). https://github.com/kubernetes/

kubernetes.

Labstack (2021a). Echo github project. https://github.com/labstack/echo.

Labstack (2021b). Testechostart code. https://github.com/labstack/echo/

blob/4b88e25e49537dacca73903ccd243f734fdbbe9c/echo_test.go#L765.

https://github.com/k3s-io/k3s/blob/cfe7e0c73483038d9e9242ae95da1a7c466f2891/pkg/agent/tunnel/tunnel.go#L165
https://github.com/k3s-io/k3s/blob/cfe7e0c73483038d9e9242ae95da1a7c466f2891/pkg/agent/tunnel/tunnel.go#L165
https://github.com/k3s-io/k3s/blob/cfe7e0c73483038d9e9242ae95da1a7c466f2891/pkg/agent/tunnel/tunnel.go#L165
https://github.com/k3s-io/k3s
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes/blob/d70ee902fddc682863a3cc4f0d8eac0223ebf70b/test/e2e/storage/vsphere/nodemapper.go#L62
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/labstack/echo
https://github.com/labstack/echo/blob/4b88e25e49537dacca73903ccd243f734fdbbe9c/echo_test.go#L765
https://github.com/labstack/echo/blob/4b88e25e49537dacca73903ccd243f734fdbbe9c/echo_test.go#L765

BIBLIOGRAPHY 149

Landman, D., Serebrenik, A. and Vinju, J. J. (2017). Challenges for static analysis

of Java reflection: literature review and empirical study. In ICSE 2017, pp. 507–

518.

Lange, J., Tuosto, E. and Yoshida, N. (2015). From communicating machines to

graphical choreographies. In S. K. Rajamani and D. Walker, eds., Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, ACM,

pp. 221–232.

Lange, J., Ng, N., Toninho, B. and Yoshida, N. (2017). Fencing off go: liveness

and safety for channel-based programming. In G. Castagna and A. D. Gordon,

eds., Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Pro-

gramming Languages, POPL 2017, Paris, France, January 18-20, 2017, ACM,

pp. 748–761.

Lange, J., Ng, N., Toninho, B. and Yoshida, N. (2018). A static verification

framework for message passing in go using behavioural types. In M. Chaudron,

I. Crnkovic, M. Chechik and M. Harman, eds., Proceedings of the 40th Interna-

tional Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,

May 27 - June 03, 2018, ACM, pp. 1137–1148.

Larsen, K. G., Pettersson, P. and Yi, W. (1997). Uppaal in a nutshell. Int J Softw

Tools Technol Transf, 1(1–2), p. 134–152.

Liu, Z., Zhu, S., Qin, B., Chen, H. and Song, L. (2021). Automatically detect-

ing and fixing concurrency bugs in go software systems. In T. Sherwood, E. D.

Berger and C. Kozyrakis, eds., ASPLOS ’21: 26th ACM International Con-

ference on Architectural Support for Programming Languages and Operating

Systems, Virtual Event, USA, April 19-23, 2021, ACM, pp. 616–629.

BIBLIOGRAPHY 150

Liu, Z., Xia, S., Liang, Y., Song, L. and Hu, H. (2022). Who goes first? detecting

go concurrency bugs via message reordering. In B. Falsafi, M. Ferdman, S. Lu

and T. F. Wenisch, eds., ASPLOS ’22: 27th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems,

Lausanne, Switzerland, 28 February 2022 - 4 March 2022, ACM, pp. 888–902.

Lu, S., Park, S., Seo, E. and Zhou, Y. (2008). Learning from mistakes: a compre-

hensive study on real world concurrency bug characteristics. In ASPLOS 2008,

pp. 329–339.

Magee, J. and Kramer, J. (1999). Concurrency - state models and Java programs.

Wiley.

Marinescu, C. (2014). An empirical investigation on MPI open source applications.

In EASE 2014, pp. 20:1–20:4.

Midtgaard, J., Nielson, F. and Nielson, H. R. (2018). Process-local static analysis

of synchronous processes. In A. Podelski, ed., Static Analysis - 25th Interna-

tional Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceed-

ings, Lecture Notes in Computer Science, vol. 11002, Springer, pp. 284–305.

Milner, R. (1989). Communication and concurrency. PHI Series in computer sci-

ence, Prentice Hall.

Milner, R., Parrow, J. and Walker, D. (1992). A calculus of mobile processes, I.

Inf Comput, 100(1), pp. 1–40.

Ng, N. and Yoshida, N. (2016). Static deadlock detection for concurrent Go by

global session graph synthesis. In CC 2016, pp. 174–184.

Okur, S. and Dig, D. (2012). How do developers use parallel libraries? In FSE

2012, p. 54.

BIBLIOGRAPHY 151

Pepitone, J. (2012). Facebook ipo: What the https://money.cnn.com/2012/

05/23/technology/facebook-ipo-what-went-wrong/index.htm, accessed:

2022-03-02.

Photoprism (2021a). Example of multiple unlock() per

lock(). https://github.com/photoprism/photoprism/blob/

c520cb4ee49c19075f3d782afb8506ed88115c91/internal/api/websocket.

go#L94.

Photoprism (2021b). Photoprism github project. https://github.com/

photoprism/photoprism.

Pike, R. (2012). Go concurrency patterns. https://talks.golang.org/2012/

concurrency.slide#9.

Pike, R. (2015). Go proverbs. https://www.youtube.com/watch?v=

PAAkCSZUG1c.

Pingcap (2021). Tidb github project. https://github.com/golang/tidb.

Pinto, G., Torres, W. and Castor, F. (2015). A study on the most popular ques-

tions about concurrent programming. In PLATEAU 2015, pp. 39–46.

Pinto, G., Torres, W., Fernandes, B., Filho, F. C. and de Barros, R. S. M. (2015).

A large-scale study on the usage of Java’s concurrent programming constructs.

Journal of Systems and Software, 106, pp. 59–81.

Saboury, A., Musavi, P., Khomh, F. and Antoniol, G. (2017). An empirical study

of code smells in JavaScript projects. In SANER 2017, pp. 294–305.

Siebenmann, C. (2020-09). Even in Go, concurrency is still not easy (with

an example). https://utcc.utoronto.ca/~cks/space/blog/programming/

GoConcurrencyStillNotEasy.

https://money.cnn.com/2012/05/23/technology/facebook-ipo-what-went-wrong/index.htm
https://money.cnn.com/2012/05/23/technology/facebook-ipo-what-went-wrong/index.htm
https://github.com/photoprism/photoprism/blob/c520cb4ee49c19075f3d782afb8506ed88115c91/internal/api/websocket.go#L94
https://github.com/photoprism/photoprism/blob/c520cb4ee49c19075f3d782afb8506ed88115c91/internal/api/websocket.go#L94
https://github.com/photoprism/photoprism/blob/c520cb4ee49c19075f3d782afb8506ed88115c91/internal/api/websocket.go#L94
https://github.com/photoprism/photoprism
https://github.com/photoprism/photoprism
https://talks.golang.org/2012/concurrency.slide#9
https://talks.golang.org/2012/concurrency.slide#9
https://www.youtube.com/watch?v=PAAkCSZUG1c
https://www.youtube.com/watch?v=PAAkCSZUG1c
https://github.com/golang/tidb
https://utcc.utoronto.ca/~cks/space/blog/programming/GoConcurrencyStillNotEasy
https://utcc.utoronto.ca/~cks/space/blog/programming/GoConcurrencyStillNotEasy

BIBLIOGRAPHY 152

Sirupsen (2021a). Logrus code. https://github.com/sirupsen/logrus/blob/

ac6e35b4c213b54a2086b831179b9c324f519695/logrus_test.go#L585.

Sirupsen (2021b). Logrus github project. https://github.com/sirupsen/

logrus.

Snail007 (2022). Keys code. https://github.com/snail007/goproxy/blob/

7e0406bdb90960fa0c0d9c89a770ef206c4c02d8/utils/map.go#L243.

Stadtmüller, K., Sulzmann, M. and Thiemann, P. (2016). Static trace-based dead-

lock analysis for synchronous mini-go. In A. Igarashi, ed., Programming Lan-

guages and Systems - 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam,

November 21-23, 2016, Proceedings, Lecture Notes in Computer Science, vol.

10017, pp. 116–136.

Sulzmann, M. and Stadtmüller, K. (2017). Trace-based run-time analysis of

message-passing go programs. In O. Strichman and R. Tzoref-Brill, eds., Hard-

ware and Software: Verification and Testing - 13th International Haifa Verifica-

tion Conference, HVC 2017, Haifa, Israel, November 13-15, 2017, Proceedings,

Lecture Notes in Computer Science, vol. 10629, Springer, pp. 83–98.

Sulzmann, M. and Stadtmüller, K. (2018). Two-phase dynamic analysis of

message-passing go programs based on vector clocks. In D. Sabel and P. Thie-

mann, eds., Proceedings of the 20th International Symposium on Principles and

Practice of Declarative Programming, PPDP 2018, Frankfurt am Main, Ger-

many, September 03-05, 2018, ACM, pp. 22:1–22:13.

Taheri, S. and Gopalakrishnan, G. (2021). Automated dynamic concurrency anal-

ysis for go. CoRR, abs/2105.11064, 2105.11064.

Tasharofi, S., Dinges, P. and Johnson, R. E. (2013). Why do Scala developers mix

the actor model with other concurrency models? In ECOOP 2013, pp. 302–326.

https://github.com/sirupsen/logrus/blob/ac6e35b4c213b54a2086b831179b9c324f519695/logrus_test.go#L585
https://github.com/sirupsen/logrus/blob/ac6e35b4c213b54a2086b831179b9c324f519695/logrus_test.go#L585
https://github.com/sirupsen/logrus
https://github.com/sirupsen/logrus
https://github.com/snail007/goproxy/blob/7e0406bdb90960fa0c0d9c89a770ef206c4c02d8/utils/map.go#L243
https://github.com/snail007/goproxy/blob/7e0406bdb90960fa0c0d9c89a770ef206c4c02d8/utils/map.go#L243
2105.11064

BIBLIOGRAPHY 153

team, T. G. (2017). Go survey results. blog.golang.org/survey[year]

-results.

Torres, W. et al. (2011). Are Java programmers transitioning to multicore?: a

large scale study of Java FLOSS. In SPLASH 2011, pp. 123–128.

Tu, T., Liu, X., Song, L. and Zhang, Y. (2019). Understanding real-world con-

currency bugs in go. In I. Bahar, M. Herlihy, E. Witchel and A. R. Lebeck,

eds., Proceedings of the Twenty-Fourth International Conference on Architec-

tural Support for Programming Languages and Operating Systems, ASPLOS

2019, Providence, RI, USA, April 13-17, 2019, ACM, pp. 865–878.

Turing, A. M. (1937). On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-

42(1), pp. 230–265, https://academic.oup.com/plms/article-pdf/s2-42/

1/230/4317544/s2-42-1-230.pdf.

Vetter, J. S. and de Supinski, B. R. (2000). Dynamic software testing of MPI ap-

plications with umpire. In J. Donnelley, ed., Proceedings Supercomputing 2000,

November 4-10, 2000, Dallas, Texas, USA. IEEE Computer Society, CD-ROM,

IEEE Computer Society, p. 51.

Vitessio (2021). Vitess github project. https://github.com/vitessio/vitess.

Wu, D., Chen, L., Zhou, Y. and Xu, B. (2015). An empirical study on C++

concurrency constructs. In ESEM 2015, pp. 257–266.

Wu, D., Chen, L., Zhou, Y. and Xu, B. (2016). An extensive empirical study on

C++ concurrency constructs. Information & Software Technology, 76, pp. 1–18.

Yuan, T. (2022). kubernetes62464. https://github.com/timmyyuan/gobench/

blob/b9eac4dc18cc5328e8ff57a3fa677975027fd73f/gobench/goker/

blocking/kubernetes/62464/kubernetes62464_test.go.

blog.golang.org/survey[year]-results
blog.golang.org/survey[year]-results
https://academic.oup.com/plms/article-pdf/s2-42/1/230/4317544/s2-42-1-230.pdf
https://academic.oup.com/plms/article-pdf/s2-42/1/230/4317544/s2-42-1-230.pdf
https://github.com/vitessio/vitess
https://github.com/timmyyuan/gobench/blob/b9eac4dc18cc5328e8ff57a3fa677975027fd73f/gobench/goker/blocking/kubernetes/62464/kubernetes62464_test.go
https://github.com/timmyyuan/gobench/blob/b9eac4dc18cc5328e8ff57a3fa677975027fd73f/gobench/goker/blocking/kubernetes/62464/kubernetes62464_test.go
https://github.com/timmyyuan/gobench/blob/b9eac4dc18cc5328e8ff57a3fa677975027fd73f/gobench/goker/blocking/kubernetes/62464/kubernetes62464_test.go

BIBLIOGRAPHY 154

Yuan, T. et al. (2021). Gobench: A benchmark suite of real-world go concurrency

bugs. In J. W. Lee, M. L. Soffa and A. Zaks, eds., IEEE/ACM International

Symposium on Code Generation and Optimization, CGO 2021, Seoul, South

Korea, February 27 - March 3, 2021, IEEE, pp. 187–199.

Yuan, X. and Yang, J. (2020). Effective Concurrency Testing for Distributed

Systems, New York, NY, USA: Association for Computing Machinery. p.

1141–1156.

Zaks, A. and Joshi, R. (2008). Verifying multi-threaded C programs with SPIN.

In K. Havelund, R. Majumdar and J. Palsberg, eds., Model Checking Software,

15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12, 2008,

Proceedings, Lecture Notes in Computer Science, vol. 5156, Springer, pp. 325–

342.

