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Recent work showed that compiling functional programs to use dense, serialized memory representations
for recursive algebraic datatypes can yield significant constant-factor speedups for sequential programs. But
serializing data in a maximally dense format consequently serializes the processing of that data, yielding a
tension between density and parallelism. This paper shows that a disciplined, practical compromise is possible.
We present Parallel Gibbon, a compiler that obtains the benefits of dense data formats and parallelism. We
formalize the semantics of the parallel location calculus underpinning this novel implementation strategy, and
show that it is type-safe. Parallel Gibbon exceeds the parallel performance of existing compilers for purely
functional programs that use recursive algebraic datatypes, including, notably, abstract-syntax-tree traversals
as in compilers.
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1 INTRODUCTION

Representing tree-like data as pointer-free, serialized byte arrays can be extremely efficient for tree
traversals, as it minimizes pointer-chasing and maximizes locality [Goldfarb et al. 2013; Makino
1990; Meyerovich et al. 2011]. Moreover, by using an in-memory representation also suitable for
external transfer and storage [Varda 2015; Yang et al. 2015], programs can rapidly process data
without the overhead of deserialization. Traditionally, any such tree-layout optimizations would be
implemented manually by the programmerÐfor example, in a scientific application with balanced
trees.
Recent work, however, has shown the benefits of automatically compiling tree traversals to

use denser representations, even for source programs written in a general-purpose language. The
Gibbon compiler for a subset of Haskell exemplifies this approach [Vollmer et al. 2019, 2017]. While

Authors’ addresses: Chaitanya Koparkar, Indiana University, United States, ckoparka@indiana.edu; Mike Rainey, Carnegie

Mellon University, United States, me@mike-rainey.site; Michael Vollmer, School of Computing, University of Kent, United

Kingdom, m.vollmer@kent.ac.uk; Milind Kulkarni, Purdue University, United States, milind@purdue.edu; Ryan R. Newton,

Purdue University, United States, rrnewton@purdue.edu.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART91

https://doi.org/10.1145/3473596

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 91. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3473596
https://doi.org/10.1145/3473596


91:2 Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. Newton

the dense data representation strategy works well for sequential programs, there is an intrinsic
tension if we want to parallelize these tree traversals. As the name implies, efficiently serialized

data must often be read serially. To change that, first, enough indexing data must be left in the
representation so parallel tasks can łskip aheadž and process multiple subtrees in parallel. Second,
the allocation areas must be bifurcated to allow allocation of outputs in parallel.

In this paper, we offer a solution to these challenges. We propose a strategy where form follows
function: where data representation is random-access only insofar as parallelism is needed, and
both data representation and control flow łbottom outž to sequential pieces of work. That is,
granularity-control in the datamirrors traditional granularity-control in parallel task scheduling.We
demonstrate our solution by extending the Gibbon compiler with support for parallel computation,
introducing Parallel Gibbon. We also extend LoCal, Gibbon’s typed intermediate language, adding
parallelism and give an updated formal semantics (Section 3).

In addition to tree traversals, we show that Parallel Gibbon can efficiently compile other parallel
programs, such as sort and search algorithms (Section 5) to match or exceed the performance of the
best existing parallel functional compilers. We choose a functional focus for three primary reasons:

● Many tree traversals have different input and output typesÐas in a compiler pass that
converts between intermediate languagesÐwhich necessitates out-of-place traversals even in
an imperative language.
● Even pure programs can use mutable data, via linear types. (Gibbon uses these and eschews
the IO monad.)
● The purely-functional parallel Gibbon programs considered in this work are intrinsically
data-race free.

The last point is worth emphasizing: every time a language adds both parallel constructs and
mutable data, it enables data-races and must define a memory model to give them meaning. In this
work, we extendGibbonwith linearly-typed primitives formutable data1 (Section 4.6), while keeping
the language race-free. We claim that linearly-typed mutable data, efficient data representation,
and compiler-supported parallelism are a synergistic combination. In Parallel Gibbon programs,
as in other purely functional parallel programs, parallelism annotations not only don’t introduce
races but also do not affect program semantics, meaning that these programs are deterministic as
well as data-race free.

Ultimately, we believe that this work shows one path forward for high-performance, purely-
functional programs. Parallelism in functional programming has long been regarded as theoretically
promising, but has a spottier track record in practice, due to problems in runtime systems, data
representation, and memory management. Parallel Gibbon directly addresses these sore spots,
showing how a purely-functional program operating on fine-grained, irregular data can also run
fast (sequentially) and parallelize efficiently. This complements more well-trodden areas of compiler
research on parallelism, such as dense and sparse collective operations on arrays [Abadi et al. 2015;
Anderson et al. 2017; Blelloch 1992; Paszke et al. 2019]. That is, the approach described in this
paperÐfor general-purpose, recursive functional programs, including tree traversalsÐcould be
combined with targeted EDSLs or libraries implementing additional parallel programming idioms,
such as Haskell’s Accelerate [Chakravarty et al. 2011]. Both determinism and data-race-freedom
would be compositional within the functional-parallelism setting. Indeed, we have taken the first
steps in this direction, adding a small set of parallel array primitives to Gibbon (Section 4.6).
In this paper, we make the following contributions:

● We introduce the first compiler that combines parallelism with automatic dense data represen-
tations for trees. While dense data [Vollmer et al. 2019] and efficient parallelism [Raghunathan

1Leveraging the Linear Haskell [Bernardy et al. 2017] extensions now available in GHC 9
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et al. 2016; Westrick et al. 2019] have been shown to independently yield large speedups
on tree-traversing programs, our system is the first to combine these sources of speedup,
yielding the fastest known performance generated by a compiler for this class of programs.
● We formalize the semantics of a parallel location calculus (Section 3) that underpins the
compiler, including a proof of its type-safety (Section 3.4). To do so, we extend prior work on
location calculi [Vollmer et al. 2019], which in turn builds on work in region calculi [Tofte
and Talpin 1997].
● We evaluate our implementation (Section 4) on several benchmarks from the literature
(Section 5). On a single thread, our implementation is 1.93×, 2.53×, and 2.14× faster than
MaPLe [Westrick et al. 2019] (an extension of MLton), OCaml, and GHC, respectively. When
utilizing 48 threads, our geomean speedup is 1.92×, 3.73× and 4.01×, meaning that the use of
dense representations to improve sequential processing performance coexists with scalable

parallelism. Most notably, the speedup on a five-pass compiler drawn from a university
compiler course was 1.02×, 2.2× and 10.7× over those alternative languages.

2 OVERVIEW

We give a high-level overview of the ideas presented in this paper using a program given in Figure 1a
(with a larger sample program given in the Appendix of the extended version [Koparkar et al.
2021]). Because the techniques we present for compiling tree-traversals are directly applicable
to compilers themselves, we use a miniature compiler pass as our example. The example defines a
datatype Exp which represents the abstract syntax of a language that supports integer arithmetic,
and a function constFold that implements constant folding for this language. Constant folding is
a common compiler optimization in which expressions with constant operands are evaluated at
compile time, thus improving the run-time performance. But here we are trying to optimize the
performance of the constant folding pass itself rather than the performance of the program produced
by constant folding. constFold walks over the abstract-syntax-tree, and substitutes all expressions of
the form (Plus (Lit i) (Lit j))with (Lit (i+j)). We only show a simplified constFoldÐ for example
it doesn’t recur on the children of Plus before checking if they’re literals Ð to keep it simple enough
to serve as a running example.
The program in Figure 1a is written using the front-end language for Gibbon, a polymorphic,

higher-order subset of Haskell, with strict rather than lazy evaluation. The (∥) operator used on
line 14 denotes a parallel tuple Ð it marks its operands to evaluate in parallel with each other. But
with a purely functional source language, it is semantically equivalent to a sequential tuple, i.e.,
replacing all ł∥ž occurences with ł,ž yields a valid program. We will return to this topic in Section 4.
Gibbon uses LoCal (short for location calculus) as an intermediate representation (IR) with

explicit byte-addressed, mostly-serialized data layout. To go from the vanilla Haskell front-end
language to LoCal, it performs location inference, a variant of region inference [Tofte et al. 2004;
Tofte and Talpin 1997], on the input programs. The LoCal IR code generated by Gibbon for the
constFold function is shown in Figure 1b. In the following, we use it to sketch out how LoCal works.

2.1 A Primer on Location-Calculus

LoCal is a type-safe IR that represents programs operating on densely encoded (serialized) data. All
serialized values live in regions, which are unbounded memory buffers that never overlap and that
store the raw data. All programs make explicit not only the region to which a value belongs to,
but also a location at which that value is written. In our notation, a location 𝑙𝑟 resides in region 𝑟 .
Locations are fine-grained indices into a region, but unlike pointers in languages like C, arbitrary
arithmetic on locations is not allowed. Locations are only introduced relative to other locations,
and they can be written to only once. Once allocated at a particular location, a value cannot be
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1 data Exp = Lit Int

2 ⋃︀ Plus Exp Exp

3 ⋃︀ Sub Exp Exp

4 ⋃︀ Let Sym Exp Exp

5 ⋯

6

7 constFold :: Exp → Exp

8 constFold exp = case exp of

9 Lit i → Lit i

10 Plus e1 e2 →

11 case (e1, e2) of

12 (Lit i,Lit j) → Lit (i+j)

13 _ → let (e3,e4) =

14 ( constFold e1 ∥

15 constFold e2 )

16 in Plus e3 e4

17 Sub e1 e2 →

18 ⋯

(a) Constant folding written using the front-end

language for Gibbon (Haskell).

1 constFold: ∀𝑙1
𝑟1 𝑙2

𝑟2 . Exp@𝑙1
𝑟1 → Exp@𝑙2

𝑟2

2 constFold [𝑙1
𝑟1 𝑙2

𝑟2 ] exp = case exp of

3 Lit (i:Int@𝑙𝑖
𝑟1 ) → (Lit 𝑙2

𝑟2 i)

4 Plus (e1: Exp@𝑙𝑎
𝑟1 ) (e2: Exp@𝑙𝑏

𝑟1 ) →

5 case (e1,e2) of

6 (Lit(i:Int@𝑙𝑐
𝑟1 ), Lit(j:Int@𝑙𝑑

𝑟1 ))

7 → (Lit 𝑙2
𝑟2 (i+j))

8 _

9 →

10 letloc 𝑙3
𝑟2 = 𝑙2

𝑟2 + 1 in

11 let e3 : Exp@𝑙3
𝑟2 =

12 constFold [𝑙𝑎
𝑟1 𝑙3

𝑟2 ] e1 in

13 letloc 𝑙4
𝑟2 = after(Exp@𝑙3

𝑟2 ) in

14 let e4 : Exp@𝑙4
𝑟2 =

15 constFold [𝑙𝑏
𝑟1 𝑙4

𝑟2 ] e2 in

16 (Plus 𝑙2
𝑟2 e3 e4)

17 Sub (e1: Exp@𝑙𝑎
𝑟1 ) (e2: Exp@𝑙𝑏

𝑟1 ) →

18 ⋯

(b) Figure 1a compiled into LoCal IR by Gibbon.

Fig. 1. Constant folding.

shared with another location (within the same region or across regions), and it has to be copied to
allocate it at a different location. (In practice, the Gibbon compiler supports sharing using pointers,
which we discuss in Section 4.3.)

A new location is either: at the start of a region, one unit past an existing location, or after all
elements of a value rooted at an existing location. In the program given in Figure 1b, the location
l3
r2 is one past the location l2

r2 (line 10) and l4
r2 is after every element of the value rooted at location

l3
r2 (line 13). Any expression that allocates takes an extra argument: a location-region pair that

specifies where the allocation should happen. The types of such expressions are decorated with
these location-region pairs. For example, the (Lit l2

r2 i) data constructor (line 3) allocates a tag at
location l2 in region r2, and has type (Exp@l2

r2 ). Any scalar arguments passed to a data constructor,
such as the unpacked integer i in this case, are allocated immediately after the tag. Functions may
be polymorphic over any of their input or output locations, and these locations are provided at
call-sites. In the example, the function constFold is polymorphic over an input location l1

r1 and an
output location l2

r2 , and values for these are given at all call-sites. In spite of the forall quantifier
in its type signature, the input and output regions given at its call-site must be distinct (r1 ≠ r2) to
prevent overwrites. This property is checked by LoCal’s type-system (described in Section 3.3),
which makes multiple writes to any location illegalÐwith the use of a nursery environmentÐ
ensuring that function calls like (constFold [l𝑥

r𝑥 l𝑥
r𝑥 ] x) don’t type check.

2.1.1 Sequential Execution Model. LoCal has a dynamic semantics which can run programs se-
quentially [Vollmer et al. 2019]. In this model, regions are represented as serialized heaps, where
each heap is an array of cells that can store primitive values (data constructor tags, numbers, etc).
A write operation, such as the application of a data constructor, allocates to a fresh cell on the
heap, and a read operation reads the contents of a cell. Performing multiple reads on a single cell
is safe, and the type-system ensures that each cell (location) is written to only once. At run time,
locations in the source language translate to heap indices, which are the concrete addresses of
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the cells where reads/writes happen. Computing addresses of locations which are at the start of
a region, or one past another location is straightforward Ð the addresses get initialized to 0 and
(prev + 1) respectively. But evaluating an after expression, to get an address one past the end of
another, variable-sized value, requires more work.

A naive computational interpretation of this after is to simply scan over a value to compute its
end. In LoCal’s formal model, this is referred to as the end-witness judgment. Locations computed via
after are used during both read and write operations. For example, when a LoCal case expression
pattern matches on (Plus e1 e2), it has to scan past e1 in order to know the starting address of e2,
which adds 𝑂(𝑛) amount of extra work in a fully serialized representation! In practice, if values
are read in the same order in which they were serialized, a linear scan can be avoided by tracking

end-witnesses that are naturally computed in the evaluation of the program, for example, by having
every read return the address of the cell after it. Intuitively, we can imagine there being a single read
pointer that is used to perform all reads in the program. It always points to the next cell to be read
on heap, and each read advances it by one. When the program starts executing, the read pointer
starts at the beginning of the heap and it chugs along in a continuous fashion. Allocating a serialized
value can be thought of in a similar way Ð that there is a single allocation pointer that starts at the
beginning of the heap, and moves along its length performing writes, as illustrated in Figure 2b. To
avoid changing the asymptotic complexity of programs which read values out-of-order, the Gibbon
compiler by default inserts some offset information Ð such as pointers to some fields of a data
constructor Ð back into the representation. But it doesn’t allow out-of-order allocations, which will
be needed as we add parallelism to LoCal (Section 2.2).

2.1.2 Sequential Execution Model, Example. To make this execution model concrete, let us go over a
step-by-step trace of the semantics executing constFold on (Plus (Lit 20) (Plus (Lit 10) (Lit 12))).
The execution trace is given in Figure 2. The store S maps regions to their corresponding heaps, and
the location map M maps symbolic locations to their corresponding heap indices. The evaluation
starts at (constFold [𝑙1

𝑟1 𝑙2
𝑟2] e), and is given a store containing a fully allocated input region 𝑟1

and an empty region 𝑟2 to allocate the output, along with a location map containing the locations
𝑙1
𝑟1 and 𝑙2

𝑟2 initialized to the starting addresses of these regions. Since the input region has a Plus

at the top, execution continues at line 5. The pattern match binds the locations 𝑙0𝑎 and 𝑙0𝑏 to the
addresses of the sub-expressions (Lit 20) and (Plus (Lit 10) (Lit 12)) respectively . Since both the
sub-expressions are not constants, execution continues at line 10. Then, the output location of
the first sub-expression, 𝑙3

𝑟2 , is defined to be one past 𝑙2
𝑟2 , and constFold is invoked recursively

on this sub-expression. Step 4 copies2 the first sub-expression by writing a tag 𝐿 (short for Lit),
followed by the integer 20 on the heap. Then, the output location of the second sub-expression,
𝑙4
𝑟2 , is defined to be one past every element of the first sub-expression, which occupies two cells

after the 0𝑡ℎ cell. Thus, 𝑙4
𝑟2 gets initialized with the address of the 3𝑟𝑑 cell. constFold is now invoked

recursively for the second sub-expression. Following similar steps, the second sub-expression is
allocated at 𝑙4

𝑟2 . Since the second sub-expression is a Plus with constant operands, it is transformed
to (Lit 22). Finally, Step 16 writes the tag 𝑃 (short for Plus) which completes the construction of
the full expression, (Plus (Lit 20) (Lit 22)).

2This value is copied because line 3 in Figure 1b has a data constructor (Lit 𝑙2
𝑟2 i) on the right hand side of the case

alternative. If we update the program to return the input expression exp directly, Gibbon would allocate a pointer and the

value (Lit 20) would be shared between the input and the output regions. We discuss how sharing works in Section 4.3.
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(a)
(b)

Fig. 2. (a) Sequential, step-by-step execution of the program from Figure 1b, and (b) the heap operations

corresponding to the output region r2. Each step is named after its line number in the program and only

shows the changes relative to the previous step. AP is the allocation pointer. P is short for Plus, and L is short

for Lit.

2.2 Parallelism in Location-Calculus

In this section, we outline various latent opportunities for parallelism that exist in LoCal programs
(irrespective of annotation with ł∥ž). The first kind of parallelism is available when programs access
the store in a read-only fashion, such as in an interpreter, for example.

interp : ∀ 𝑙𝑟 . Exp @ 𝑙𝑟 → Int

interp [𝑙𝑟 ] t = case t of

Lit (i : Int @ 𝑙𝑖
𝑟 ) → i

Plus (e1 : Exp @ 𝑙𝑎
𝑟 ) (e2 : Exp @ 𝑙𝑏

𝑟 ) →

(interp [𝑙𝑎
𝑟 ] a) + (interp [𝑙𝑏

𝑟 ] b)

⋯

Even though the recursive calls in the Plus case can safely evaluate in parallel, there is a subtlety:
parallel evaluation is efficient only if the Plus constructor stores offset information for its right
child node. If it does, then the address of e2 can be calculated in constant time, thereby allowing
the calls to proceed immediately in parallel. If there is no offset information, then the overall tree
traversal is necessarily sequential, because the starting address of e2 can be obtained only after a
full traversal of e1. As such, there is a tradeoff between space and time, that is, the cost of the space
to store the offsets, versus the time of the sequential traversal forced by the absence of offsets.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 91. Publication date: August 2021.
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Programs that write to the store also provide opportunities for parallelism. The most immediate
such opportunity exists when the program performs writes that affect different regions. Such
writes can happen in parallel because different regions cannot overlap in memory. There is another
kind of parallelism that is more challenging to exploit, but is at least as important as the others:
intra-region parallelism that can be realized by allowing different fields of the same constructor
to be filled in parallel. This is crucial in LoCal programs, where large, serialized data (large trees
or DAGs) frequently occupy only a small number of regions, and yet there are opportunities to
exploit parallelism in their construction.
Consider the case in Figure 1b which recursively calls constFold on the sub-expressions of

Plus. If we want to access the parallelism between the recursive calls, we need to break the data
dependency that the right branch has on the left. The starting address of the right branch, namely
𝑙4
𝑟2 , is assigned to be end witness of the left branch by the after expression. But the end witness of

the left branch is, in general, known only after the left branch is completely filled, which would
effectively sequentialize the computation. One non-starter would be to ask the programmer to
specify the size of the left branch up front, which would make it possible to calculate the starting
address of the right branch. Unfortunately, this approach would introduce safety issues, such as
incorrect size information, of exactly the kind that LoCal is designed to prevent. Instead, we explore
an approach that is safe-by-construction and efficient, as we explain next.

3 REGION-PARALLEL LOCAL

To address the challenges of parallel evaluationÐin concert with dense, mostly-serialized data
representationsÐwe start by presenting an execution model, LoCalpar, which can utilize all po-
tential parallelism in LoCal programs. Parallelism in this formal model is generated implicitly, by
allowing every let-bound expression to potentially evaluate in parallel with the body. Accordingly,
the language omits explicit parallelism łhintsž (∥). That is, you’ll see in the next sections that
implicitly parallel let has both a sequential and parallel evaluation rule. By modeling every possible
parallelization, the formal model is general Ð it formalizes all possible valid parallel schedules, and
all valid heap layouts. We return to the pragmatic issue of selecting efficient parallelizations, i.e.
granularity control, in Section 4.1.

3.1 Region Memory and Parallel Tasks

In the formal model, while parallelism is implicit, there is still a restriction that at most one task
allocates in a given region at a time. To realize intra-region parallelism, the model introduces fresh,
intermediate regions as needed, that is, when the schedule takes a parallel evaluation step for a given
let-bound expression, and the body tries to allocate in the same region. To demonstrate this, let us
consider a trace of the region-parallel evaluation of the program from Figure 1b, corresponding
to the schedule shown in Figure 3, where the recursive calls to constFold on lines 12 and 14 run in
parallel with each other. The parallel fork point for the first recursive call occurs on the 11𝑡ℎ step
of the trace. At this point, the evaluation of the let-bound expression results in the creation of a
new child task, and the continuation of the body of the let expression in the parent task.

Each task has its own private view of memory, which is realized by giving the child and parent
task copies of the store S and location map M . These copies differ in one way, however: each sees
a different mapping for the starting location of e3, namely 𝑙3

𝑟2 . The child task sees the mapping
𝑙3
𝑟2 ↦ ∐︀𝑟2, 1̃︀, which is the ultimate starting address of e3 in the heap. The parent task sees a

different mapping for 𝑙3
𝑟2 , namely ∐︀𝑟2, ivar 𝑒3̃︀. This address is an ivar : it behaves exactly like an

I-Var [Arvind et al. 1989], and, in our example, stands in for the completion of the memory being
filled for e3, by the child task. Any expression in the body of the let expression that tries to read
from this location blocks on the completion of the child task.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 91. Publication date: August 2021.
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(a) (b)

Fig. 3. (a) Parallel, step-by-step execution of the program from Figure 1b such that parallel allocations happen

only in separate regions, and (b) the heap operations corresponding to the output region r2. Each step is

named after its line number in the program and only shows the changes relative to the previous step. P is

short for Plus, and L is short for Lit.

The only exception to this blocking-rule is a letloc after expression, which is handled differently.
Such an expression occurs at line 13, just after the parent continues after the fork point. At this step,
the parent task uses an after expression to assign an appropriate location for the starting address of
e4, one past every byte occupied by e3. If we synchronize with the child task here, the computation
will effectively be sequential. In order to avoid that, the starting address of e4 is assigned to be
𝑙4
𝑟2 ↦ ∐︀𝑟2,&(𝑟3, 0)̃︀. This address is an indirection pointing to the start of fresh region 𝑟3, and causes

the parent task to allocate e4 in the region 𝑟3 instead of 𝑟2, which is being allocated to by the child
task, thus maintaining the single-threaded-per-region allocation invariant. The parent and child
tasks have, in effect, two different allocation pointers for what will functionally be the same region
(after joining). The use of e3 on line 16 forces the parent task to join with its child task. In particular,
∐︀𝑟2, ivar 𝑒3̃︀ is substituted by ∐︀𝑟2, 1̃︀, the starting address of e3, in the expression and the location
map M . Also, all the new entries in the location map M and store S of the child are merged into the
corresponding environments in the parent. Finally, the regions 𝑟2 and 𝑟3 are linked with a pointer,
corresponding to the indirection pointer that was added for the starting address of e4.
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K ∈ Data Constructors, 𝜏c ∈ Type Constructors,

𝑥,𝑦, 𝑓 ∈ Variables, l, 𝑙
𝑟 ∈ Symbolic Locations,

r ∈ Regions, i, j ∈ Concrete Region Indices,

Top-Level Programs top ∶∶=
Ð⇀
dd ;
Ð⇀
fd ; e

Datatype Declarations dd ∶∶= data 𝜏c =
ÐÐ⇀
K Ð⇀𝜏

Function Declarations fd ∶∶= 𝑓 ∶ ts; 𝑓Ð⇀𝑥 = e

Located Types 𝜏 ∶∶= 𝜏@l
r

Types 𝜏 ∶∶= 𝜏c

Type Scheme ts ∶∶= ∀Ð⇀
𝑙𝑟
.
Ð⇀
𝜏 → 𝜏

Extended Region Indices i◇, j◇ ∶∶= i ⋃︀ ivar 𝑥 ⋃︀ &(r, i)

Concrete Locations cl ∶∶= ∐︀r, i◇̃︀l

Values v ∶∶= 𝑥 ⋃︀ cl

Expressions e ∶∶= v

⋃︀ 𝑓 ⋃︁
Ð⇀
𝑙
𝑟 ⨄︁Ð⇀v

⋃︀ K l
r Ð⇀v

⋃︀ let 𝑥 ∶ 𝜏 = e in e

⋃︀ letloc l
r
= le in e

⋃︀ letregion r in e

⋃︀ case v of
Ð⇀
pat

Pattern pat ∶∶= K (
ÐÐ⇀
𝑥 ∶ 𝜏) → e

Location Expressions le ∶∶= start r

⋃︀ l𝑟 + 1

⋃︀ after 𝜏

Store S ∶∶= { r1 ↦ h1, . . . , r𝑛 ↦ h𝑛 }

Heap Values hv ∶∶= K ⋃︀ &(r, i)

Heap h ∶∶= { i1 ↦ hv1, . . . , i𝑛 ↦ hv𝑛 }

Location Map M ∶∶= { lr11 ↦ cl1, . . . , l
r𝑛
𝑛 ↦ cl𝑛 }

Sequential States t ∶∶= S;M; e

Parallel Tasks T ∶∶= (𝜏, cl, t)

Task Set T ∶∶= {T1, . . . ,T𝑛 }

Fig. 4. Grammar of LoCalpar.

3.2 Syntax and Operational Semantics

In this section, we present the formal semantics of our parallel location calculus, LoCalpar. This
semantics has also been mechanically tested in PLT Redex [Felleisen et al. 2009]. The grammar
for the language is given in Figure 4. Again, all parallelism in this model language is introduced
implicitly, by evaluating let expressions. There is no explicit syntax for introducing parallelism in
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our language, and consequently the language is, from the perspective of a client, exactly same as
the sequential language [Vollmer et al. 2019].
The parallel operational semantics does, however, differ from the sequential semantics, most

notably from the introduction of a richer form of indexing in regions. Whereas in sequential LoCal
a region index consists simply of a non-negative integer, it is enriched to an extended region
index i◇ in LoCalpar. It consists of either a concrete index i, an ivar 𝑥 , or an indirection pointer
&(r, i). A concrete index is a non-negative integer that specifies the final position of a value in a
region. An ivar is a synchronization variable that is used to coordinate between parallel tasks. For
example, the ivar 𝑒3 in the sample trace in Figure 3, is used to synchronize with the child task that
is allocating e3. An indirection &(r, i) points to the address i in the region r , and is used to link
together different chunks of the same logical region, which may have been introduced to enable
intra-region parallel allocation. For example, in the sample trace in Figure 3, a pointer &(r3, 0)
written at the end of the value e3 links it with the value e4, which is allocated to a separate region r3.
And a concrete location cl is enriched to a pair ∐︀r, i◇̃︀, of a region r , and an extended region index i◇.
The state configurations of LoCalpar appear at the bottom of Figure 4. Just like in sequential LoCal, a
sequential state of LoCalpar, t, contains a store S, location mapM , and an expression e. But by using
enriched concrete locations, the location map also has the ability to contain indirection pointers. A
value that can be written to a heap, hv, is similarly enriched to allow indirection pointers.

3.2.1 Sequential Transitions. A subset of the sequential transition rules are given in Figure 5. The
rules are close to the original sequential rules, except for some minor differences. For the rule
D-DataConstructor, we need to handle the case where an indirection is assigned to the source

symbolic location lr . For this purpose, we use a metafunction M̂ (formally defined in the Appendix
of the extended version [Koparkar et al. 2021]) that can dereference indirection pointers when
looking up its address in the location map M . With respect to the rule D-LetLoc-After-NewReg, we
now allow the concrete location assigned to the source location l0

r to hold an ivar. The purpose of
this relaxation is to allow an expression downstream from a parallelized let binding to continue
evaluating in parallel with the task that is evaluating the let-bound expression. The task evaluating
the after expression continues by using an indirection pointing to the start of a fresh region r′. The
effect is to make ∐︀r′, 0̃︀ the setting for the allocation pointer for the task. If the source location l0

r

is assigned to hold a concrete index i, the rule D-LetLoc-After yields an address by using the the
end-witness judgment. The remaining rules are similar to sequential LoCal, and are available in
the Appendix of the extended version [Koparkar et al. 2021].

3.2.2 Parallel Transitions. We generalize a sequential state to a parallel task T by adding two more
fields: a located type and a concrete location, which together describe the type and location of the
final result allocated by the task. A parallel transition in LoCalpar takes the form of the following
rule, where any number of tasks in a task set T may step together.

TÔ⇒𝑟𝑝 T
′

In each step, a given task may make a sequential transition, it may fork a new parallel task, it may
join with another parallel task, or it may remain unchanged.
The parallel transition rules are given in Figure 6. In these rules, we model parallelism by an

interleaving semantics. Any of the tasks that are ready to take a sequential step may make a
transition in rule D-Par-Step. A parallel task can be spawned by the D-Par-Let rule, from which
an in-flight let expression breaks into two tasks. The child task handles the evaluation of the
let-bound expression e1, and the parent task handles the body e2. To represent the future location
of the let-bound expression, and to create a data dependency on it, the rule creates a fresh ivar,
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[D-DataConstructor]

S;M;K lr Ð⇀v ⇒ S′;M; ∐︀r′, i′̃︀

where S′ ≙ S ∪ { r′ ↦ (i′ ↦ K) }; ∐︀r′, i′̃︀ ≙ M̂(lr)

[D-LetLoc-After]

S;M;letloc lr ≙ after 𝜏@l0
r
in e⇒ S;M′; e

where ∐︀r, ĩ︀ ≙ M̂(l0
r); 𝜏 ; ∐︀r, ĩ︀; S ⊢ew ∐︀r, j̃︀

M′ ≙ M ∪ { lr ↦ ∐︀r, j̃︀ }

[D-LetLoc-After-NewReg]

S;M;letloc lr ≙ after 𝜏@l0
r
in e⇒ S′;M′; e

where ∐︀r, ivar 𝑥̃︀l0 ≙ M̂(l0
r); r′ fresh

S′ ≙ S ∪ { r′ ↦ ∅}
M′ ≙ M ∪ { lr ↦ ∐︀r,&(r′, 0)̃︀ }

[D-Case]

S;M;case ∐︀r, ĩ︀l
r

of ⋃︁... ,K (
ÐÐÐÐ⇀
𝑥 ∶ 𝜏@lr) → e, ...⨄︁⇒ S;M′; e′

where e′ ≙ e⋃︁∐︀r,Ð⇀𝑤 ̃︀
Ð⇀

lr ⇑Ð⇀𝑥 ⨄︁

M′ ≙ M ∪ {
Ð⇀

lr1 ↦ ∐︀r, i + 1̃︀, ... ,
Ð⇀

lr𝑗+1 ↦ ∐︀r,
ÐÐ⇀𝑤 𝑗+1̃︀ }

Ð⇀𝜏1 ; ∐︀r, i + 1̃︀; S ⊢ew ∐︀r,
Ð⇀𝑤1̃︀

Ð⇀𝜏 𝑗+1; ∐︀r,
Ð⇀𝑤 𝑗 ̃︀; S ⊢ew ∐︀r,

ÐÐ⇀𝑤 𝑗+1̃︀

K ≙ S(r)(i); j ∈ { 1, ... , n − 1}; n ≙ ⋃︀
ÐÐ⇀

𝑥 ∶ 𝜏 ⋃︀

[D-Let-Expr]

S;M; e1 ⇒ S′;M′; e′1 e′1 ≠ v

S;M;let 𝑥 ∶ 𝜏 ≙ e1 in e2 ⇒ S′;M′;let 𝑥 ∶ 𝜏 ≙ e′1 in e2

[D-Let-Val]

S;M;let 𝑥 ∶ 𝜏 ≙ v1 in e2 ⇒ S;M; e2⋃︁v1⇑𝑥⨄︁

Fig. 5. Selected dynamic semantics rules (sequential transitions).

which is passed to the body of the let expression. This same ivar is also the target concrete location
of the child task, thereby indicating that it produces this value.

A task can satisfy a data dependency in a rule such as D-Par-Case-Join, where a case expression
is blocked on the value located at ivar 𝑥𝑐 , by joining with the task producing the value. Because
each task has a private copy of the store and location map, the process of joining two tasks involves
merging environments. The merging of the task memories is performed by the metafunctions
MergeS and MergeM , defined formally in the Appendix of the extended version [Koparkar et al.
2021]. We merge two stores by merging the heaps of all the regions that are shared in common by
the two stores, and then by combining with all regions that are not shared. We merge two heaps by
taking the set of all the heap values at indices that are equal, and all the heap values at indices in
only the first and only the second heap. The merging of location maps follows a similar pattern,
but is slightly complicated by its handling of locations that map to ivars. In particular, for any
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[D-Par-Step]

S;M; e⇒ S′;M′; e′

T1, ... , (𝜏, cl, S;M; e), ... T𝑛 Ô⇒𝑟𝑝 T1, ... , (𝜏, cl, S
′;M′; e′), ... T𝑛

[D-Par-Let-Fork]

T1, ... , (𝜏, cl, S;M; e), ... T𝑛 Ô⇒𝑟𝑝 T1, ... , (𝜏1, cl
′

1, S;M; e1), ... T𝑛, (𝜏, cl, S;M2; e
′

2)

where e ≙ (let 𝑥 ∶ 𝜏1 ≙ e1 in e2); 𝜏1 ≙ 𝜏1@l1
r1

𝑥1 fresh; cl
′

1 ≙ ∐︀r1, ivar 𝑥1̃︀; e
′

2 ≙ e2⋃︁cl
′

1⇑𝑥⨄︁
M ≙ { l1

r1 ↦ cl1 } ∪M
′

M2 ≙ { l1
r1 ↦ cl′1 } ∪M

′

[D-Par-Case-Join]

T1, ... ,T𝑐 , ... ,T𝑛 Ô⇒𝑟𝑝 T1, ... ,T
′

𝑐 , ... T𝑛,
where
T𝑐 ≙ (𝜏𝑐 , cl𝑐 , S𝑐 ;M𝑐 ; e𝑐)

e𝑐 ≙ case ∐︀r, ivar 𝑥𝑐̃︀
l𝑐 of

Ð⇀
pat

T𝑝 ∈ {T1, ... ,T𝑛 } ≙ (𝜏𝑝@l𝑝
r , ∐︀r, ivar 𝑥𝑐̃︀, S𝑝 ;M𝑝 ; ∐︀r, i𝑝̃︀)

M3 ≙ MergeM(M𝑝 ,M𝑐); S3 ≙ MergeS(S𝑝 , S𝑐)

e′𝑐 ≙ case ∐︀r, i𝑝̃︀
l𝑝 of

Ð⇀
pat⋃︁i𝑝⇑ivar 𝑥𝑐⨄︁

T ′𝑐 ≙ (𝜏𝑐 , cl𝑐 , S3;M3; e
′

𝑐)

[D-Par-DataConstructor-Join]

T1, ... , (𝜏, cl, S;M; e), ... ,T𝑛 Ô⇒𝑟𝑝 T1, ... ,T
′, ... ,T𝑛

where e ≙ K lr Ð⇀v ; ∐︀r, ivar 𝑥j̃︀ ≙
Ð⇀vj ; T𝑐 ∈ {T1, ... ,T𝑛 }

T𝑐 ≙ (𝜏𝑐@l𝑐
r , ∐︀r, ivar 𝑥 𝑗 ̃︀, S𝑐 ;M𝑐 ; ∐︀r, i𝑐̃︀

l𝑐 )
M′ ≙ MergeM(M𝑐 ,M); S

′ ≙ MergeS(S𝑐 , S)

n ≙ ⋃︀Ð⇀v ⋃︀;
Ð⇀
v′ ≙ ⋃︁Ð⇀v1 , ... ,

Ð⇀vj−1, ∐︀r, i𝑐̃︀
l𝑐 ,Ð⇀vj+1, ... ,

Ð⇀v𝑛⨄︁
𝜏j ≙ TypeOfField(K, j);

S′′ ≙ LinkFields(S′,M, 𝜏j, ∐︀r, i𝑐̃︀
l𝑐 ) if 𝑗 ≠ 𝑛 else S′

e′ ≙ K lr
Ð⇀
v′ ; T ′ ≙ (𝜏, cl, S′′;M′; e′)

Fig. 6. Dynamic semantics rules (parallel transitions).

location where one of the two location maps holds an ivar and the other one holds a concrete
index, we assign to the resulting location map the concrete index, because the concrete index
contains the more recent information. After merging the environments, all occurrences of ivar 𝑥𝑐
are eliminated in the continuation, and are replaced by the index i𝑝 , that represents the starting
index of the value produced by the task T𝑝 . Join points in LoCalpar are, in general, deterministic,
because they only increase the information held by the parent task.

The rule D-Par-DataConstructor-Join handles the case where a data constructor is blocked on the
value of its 𝑗𝑡ℎ field, and it joins with the task producing that value. It is similar to D-Par-Case-Join,
and also requires merging environments. But depending on the schedule of execution, if the ( 𝑗+1)𝑡ℎ

field of this constructor was computed in parallel with the 𝑗𝑡ℎ field, they will both be allocated
to separate regions, due to the way the rule D-LetLoc-After-NewReg works. These fields have to
be reconciled to simulate a single region. For this purpose, we use a metafunction LinkFields Ð
defined formally in the Appendix of the extended version [Koparkar et al. 2021] Ð which stitches
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[T-Task]

Γ ;Σ;C;A;N ⊢ A′;N ′; e ∶ 𝜏

Γ ;Σ;C;A;N ⊢𝑡𝑎𝑠𝑘 A′;N ′; (𝜏, cl, S;M; e)
[T-Taskset-Empty]

Γ;Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A;N;∅

[T-Taskset]

(𝜏, cl, S;M; e) ≙ T𝑖 Γ ≙ Γ(cl) Σ ≙ Σ(cl) C ≙ C(cl) A ≙ A(cl) N ≙ N(cl)
Γ ;Σ;C;A;N ⊢𝑡𝑎𝑠𝑘 A′;N ′;T𝑖 ∶ 𝜏 A

′ ≙ A ∪ { cl ↦ A′ } N
′ ≙ N ∪ { cl ↦ N ′ }

Γ;Σ;C;A′;N′ ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A
′′;N′′;{T1, . . . ,T𝑛 }

Γ;Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A
′′;N′′;{T1, . . . ,T𝑖 , . . . ,T𝑛 }

Fig. 7. Typing rules for a parallel task T , and a set of parallel tasks T.

together these fields by writing an indirection pointing to the start of region containing the ( 𝑗 +1)𝑡ℎ

field at an address one past the end of the 𝑗𝑡ℎ field. Thus, when all fields of a data constructor
are synchronized with, all fields allocated to different regions are linked together by indirection
pointers, forming a linked-list.

3.3 Type System

Our type system for LoCalpar requires some substantial extensions to the original type system given
by Vollmer et al. [2019]. These extensions address the need to handle multi-task configurations,
which require a number of new typing environments and rules. Before we present these extensions,
we recall the typing rule for the configuration of a single task, which is mostly unchanged from the
original.

Γ ;Σ;C;A;N ⊢ A′;N ′; e ∶ 𝜏

The context for this judgment includes five different environments. First, Γ is a standard typing
environment. Second, Σ is a store-typing environment, mapping materialized symbolic locations to
their types. That is, every location in Σ has been written and contains a value of type Σ(𝑙𝑟 ). Third,
C is a constraint environment, keeping track of how symbolic locations relate to each other. Fourth,
A maps each region in scope to a location, and is used to symbolically track the allocation and
incremental construction of data structures; Finally, N is a nursery of all symbolic locations that
have been allocated, but not yet written to. Locations are removed from N upon being written to,
as the purpose is to prevent multiple writes to a location. Both A and N are threaded through the
typing rules, also occurring in the output of the judgment, to the right of the turnstile.
To generalize our typing rules to handle multi-task configurations, we introduce new environ-

ments for variables Γ, store typing Σ, allocation constraints C, allocation pointers A, and nurseries
N. These environments extend their counterparts in the sequential LoCal type system, and are
needed to track state on a per-task basis. Figure 7 gives the precise typing rules to type check a
parallel task T , and a set of parallel tasks T. A parallel task T is well-typed if its target expression
e is well-typed, using the original LoCal typing rules, and a task set T is well-typed if all tasks
in it are well-typed. LoCalpar’s complete typing rules are given in the Appendix of the extended
version [Koparkar et al. 2021].

3.4 Type Safety

Compared to the original type-safety result proved for single-task LoCal, ours generalizes to parallel
evaluation by requiring that, for any given multi-task configuration, either the program has fully
evaluated or at least one task can take a step. As usual, we prove this theorem by showing progress
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and preservation. The main complication relates to the property that parts of the overall store are
now spread across the individual stores of the tasks, whereas in the original proof there is only
one store. In particular, our proof must establish that the store of each task remains well formed,
even while that task waits on a data dependency, and moreover after the task joins with another
task and their stores are merged. The complete proof is available in the Appendix of the extended
version [Koparkar et al. 2021]. Here we summarize key invariants.

Many such invariants are specified by our well-formedness rule, which applies to a set of
tasks executing in the parallel machine. The full rule is given in the Appendix of the extended
version[Koparkar et al. 2021].

Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

This judgment specifies two new invariants that must hold for all tasks T ∈ T. The first enforces
that all ivars get filled with an appropriate value. In particular, if an expression being evaluated by
a task references an ivar, then there must be exactly one other task in the task set which supplies a
well-typed value for it. The second invariant consists of the well-formedness judgment that verifies
certain properties hold for each store of a given task. This judgment generalizes a similar rule
used in the original proof by its use of the overall task set T. We discuss in detail the necessary
extensions in the sequel.
With these new typing judgments in hand, we can now state the type-safety theorem, shown

below. This theorem states that, if a given task set T is well typed and its overall store is well
formed, and if T makes a transition to some task set T′ in 𝑛 steps, then either all tasks in T

′ are
fully evaluated or T′ can take a step to some task set T′′.

Theorem 3.1 (Type Safety).

If ∅;Σ;C;A;N ⊢𝑡𝑎𝑠𝑘𝑠𝑒𝑡 A
′;N′;T ∧ Σ;C;A;N ⊢𝑤𝑓𝑡𝑎𝑠𝑘𝑠 T

and TÔ⇒𝑛
𝑟𝑝 T

′

then, either ∀T ∈ T′. 𝑇𝑎𝑠𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒(T)

or ∃ T′′. T′ Ô⇒𝑟𝑝 T
′′.

Well-formedness of the Store. Our store well-formedness judgment extends the judgment of the
sequential LoCal typing system to establish a global criterion for well-formedness, checking in
particular that parts of regions that are distributed across each task-private store, given by M; S,
are well-formed:

Σ;C;A;N ;T ⊢𝑤𝑓 M; S

This judgment, defined formally in the Appendix of the extended version [Koparkar et al. 2021], is
one of the most challenging parts of our extension, because it must be strong enough to ensure
safe merging of stores when tasks meet at join points. Like in sequential LoCal, it specifies three
categories of invariants.

The first category enforces that allocations occurring across the task-private stores are accounted
for. In particular, for each symbolic location in the store-typing environment, (lr ↦ 𝜏) ∈ Σ, a value
must be allocated to the appropriate store. There are two possible ways in which this allocation may
occur: (1) sequentially, in the current task, or (2) in parallel, in a different task. In the sequential case,
lr ’s address in the location map M must be a concrete index, and it must have an end-witness. This
technical point ensures that the store never contains partially allocated values. In the parallel case,
lr ’s address inM must be an ivar, and there must be exactly one other task, T𝑜𝑡ℎ ∈ T, that supplies a
well-typed value for it. Moreover, lr ’s address in T𝑜𝑡ℎ’s location map must be a concrete index, and
if T𝑜𝑡ℎ has finished evaluating, this value must have an end-witness. This property ensures that
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Fig. 8. The heap layout for a data constructor if: (a) all fields are allocated sequentially, (b) only the second

and third fields are allocated in parallel with each other, and (c) all fields are allocated in parallel.

when these tasks merge, the resulting store has complete values allocated at the expected addresses
and the expected types.

The second category enforces that allocations occur in the sequence specified by the constraint
environment C. In particular, if there is some location l in the domain of C, then the location
map and store must have the expected allocations at the expected types. The most interesting rule
here is that for the after constraint, since it involves potential parallel allocations. For instance, if
(l ↦ (after 𝜏@l′)) ∈ C, then the values at locations l and l′ may be allocated sequentially, in the
same task, or in parallel, in different tasks. The sequential case is straightforward. For the parallel
case, there are two possibilities Ð (1) the task allocating the value at location l′ may be still in-flight,
or (2) it may have already synchronized with the current (parent) task. In the first case, we ensure
the presence of an appropriate indirection in the location map (l ↦ ∐︀r,&(rfresh, 0)̃︀) and of a fresh
region in the store (rfresh ∈ S). Otherwise, we ensure that a link between the values at locations l′

and l exists, which is accomplished by the metafunction LinkFields.
The final category enforces that each location is written to only once. This is done by checking

that the domain of the store-typing environment and the nursery are disjoint: 𝑑𝑜𝑚(Σ) ∩N ≙ ∅.

3.5 Controlling Fragmentation

A consequence of LoCalpar introducing fresh regions is that the schedule of evaluation dictates
the way a value is laid out on the heap, as shown in Figure 8. Every choice to parallelize an intra-
region allocation implies the creation of a new region and a new indirection, thereby introducing
fragmentation. Thus, in addition to the usual task-scheduling overheads, in our system, a schedule
that parallelizes too many allocations also leads to fragmentation. Conversely, effort at amortizing
the overhead of parallelism simultaneously amortizes the overhead of indirections and region
fragmentation. We return to this topic and address fragmentation along with parallelism granularity
management in Section 4.1.
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4 IMPLEMENTATION

Gibbon is a whole-program3 micropass compiler that compiles a polymorphic, higher-order subset
of (strict) Haskell4. The Gibbon front-end uses standard whole-program compilation and monomor-
phization techniques [Chlipala 2015] to lower input programs into a first-order, monomorphic
representation. On this representation, Gibbon performs location inference to convert it into a LoCal
program, which has region and location annotations. Then a big middle section of the compiler is a
series of LoCal->LoCal compiler passes that perform various transformations. Finally, it generates
C code.
Our parallelism extension operates in the middle end, with minor additions to the backend

code generator and the runtime system. We add a collection of LoCal->LoCal compiler passes that
transform the program so that reads and allocations can run in parallel. At run time, we make use
of the Intel Cilk Plus language extension [Blumofe et al. 1995] (and its work-stealing scheduler)
to realize parallel execution. Our implementation closely follows the formal model described in
Section 3.2, but with explicit parallelism annotations.

4.1 Granularity Control

Before going further into the details of what we implemented, we first explain our choices in
what we do and do not implement. As we saw in Figure 1a, we use manual annotations for the
programmer to mark parallelism opportunities. This is the norm in both current and past parallel
programming practice: from MultiLisp [Halstead 1985] to OpenMP [Menon and Dagum 1998],
Cilk [Blumofe et al. 1995], Java fork-join [Lea 2000], etc. Recall also that with a purely functional
source language, parallel-tuple annotations change performance only, not program semantics, so a
programmer need not worry about safety when inserting annotations5. Task granularity thresholds
can be fine-tuned by using the same reasoning as in other parallel systems Ð switch to sequential
for small problem sizes. But there’s also the issue of fragmentation (Section 3.5), i.e. amortizing the
overhead of pointers in the representation as well as parallel tasks in the control flow. One might
wonder how these interact.

4.1.1 How to Optimize Granularity in Gibbon? Relatively small chunks of sequential data can
effectively amortize the cost of creating regions and indirections. For instance, serializing just the
bottom two levels in our binary tree examples eliminates 75% of pointers and ensures pointers
use only 11% of memory. The task size to amortize parallel scheduling overheads, on the other
hand, is usually much larger. Therefore, it’s best the Parallel Gibbon programmer thinks about
parallelism granularity exclusively, and the data representation can comfortably follow from that. In
other words, a manual (or automatic) solution to task granularity, also gives łfor freež, an efficient,
mostly-serialized data representation with amortized indirections.

4.1.2 Why not Automatic Granularity? Automatic task-parallel granularity control is an active
research area [Acar et al. 2019, 2018]. Combining Parallel Gibbon’s automatic control over data
representation, together with automatic granularity control, is a promising avenue for future work.

3Gibbon’s automatic selection of data representation works best if it can see the whole program, much like the data-

representation optimizations in MLton. One way to get around this issue would be to make the programmer responsible

for choosing the representation, by using appropriate annotations in datatype definitions. Another option is to conserva-

tively insert random-access information in all datatypes that flow into code within other compilation units. Our current

implementation does not offer these options, and only supports whole program compilation.
4Note that we are not the first to propose a strict variant of Haskell, not only do many of its cousins like Idris take a strict

approach, but GHC itself supports a module-level strict mode.
5This same property holds for inserting parallel annotations in pure GHC Haskell code, which has been used to modest

benefit in past experimental work [Harris and Singh 2007], but is not commonplace practice.
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This goes doubly so if approaches like Heartbeat scheduling [Acar et al. 2018] mature to the point
of offering robust backends and runtime systems that compilers like Parallel Gibbon may target,
and very recent work offers a step in that direction [Rainey et al. 2021].

For this paper, however, it would be confounding to address automating granularity simultane-

ouslywith compacting data representation and assigning regions. In our experiments (Section 5), we
hold task granularity constant across different implementations of the same benchmarks, focusing
only on the impact of each compiler’s code generation and data representation choices. Parallel
Gibbon, as well as all of its competitors, use explicit parallelism annotations, and schedule the same
set of tasks at runtime for the same program inputs, unless mentioned otherwise.

4.2 Desugaring Parallel Tuples

As shown in Figure 1a, in the front-end language, we use the standard parallel tuples to express
parallelism, like other eager, parallel functional languages [Reppy et al. 2009; Westrick et al. 2019].
A parallel tuple (e1 ∥ e2) marks the expressions e1 and e2 to evaluate in parallel with each other. To
more closely match Cilk, we desugar these parallel tuples into a spawn/sync representation in the
compiler IR:

let x = spawn e1 in

let y = e2 in

let _ = sync in

(x,y)

Using this representation simplifies the subsequent conversion to LoCal, in which additional steps
like allocating regions or binding locations may be required before getting to e1 or e2. Generating
the corresponding letregion/letloc bindings, such that they have the correct scope, is easier with
a spawn/sync representation. Also, we preserve these parallelism annotations in the LoCal code
we generate. In contrast with the formal model (with implicit parallelism, Section 3), let y = e2

is always sequential, whereas let y = spawn e2 essentially corresponds to a potentially parallel let
binding, though the decision is ultimately dynamic.
We do not support first-class futures, or tasks that communicate through channels or other

mutable data structures, and thus the task-parallelism opportunities available in Parallel Gibbon
remain effectively series-parallel. But this is sufficiently expressive for writing a large number of
parallel algorithms. Note that the formal model can express some local, non-escaping futures that
are not strictly series-parallel by using parallel lets that are forced out of order. This pattern of
parallelism does not provide much additional expressive power over that provided by parallel
tuples, so we do not give up much by not exposing this capability in the front-end language.

4.3 Indirection Pointers

In the implementation, we need a runtime representation of optional pointers to include in the
data that corresponds to the indirections in the semantics (Section 3.1). Fortunately, in the Gibbon
compiler there is already a pointer mechanism that is sufficient for our purposes. This exists because
of how Gibbon’s regions growÐrather than copying data into a larger buffer, Gibbon accumulates a
linked list of contiguous chunks, doubling the size on each extension. The last filled cell in a chunk
is an indirection into the next chunk. Indirections also enable Gibbon to allocate a value that is
shared between multiple locations (within the same region or across regions) without requiring a
full copy, which is crucial for ensuring asymptotic complexity conservation of programs. Variable
aliases indicate this sharing to the compiler. For example, the aliased variable x in the expression
(let x = mkBigExpr in Plus x x) indicates that a single, shared value must be allocated for the left and
right subtrees of Plus. Gibbon rewrites this expression to (let x = mkBigExpr in Plus x (IndPtr x)),
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where the right subtree is an indirection pointing to the data allocated for the left. Similarly,
the identity function (id x = x) becomes (id x = IndPtr x). However, shared scalar values such as
numbers and booleans are always copied, because it is more efficient to do so. In Parallel Gibbon,
we reuse this indirection pointer mechanism to implement intra-region parallel allocations.

4.4 Parallel Reads

Using static analysis, Gibbon can infer if a dataype requires offsets, and it can transform the program
to add offsets to datatypes that need them. In sequential programs, these are used to preserve
asymptotic complexity of certain functions. In Parallel Gibbon, we use these offsets to enable
parallel reads. We update that static analysis, and add offsets if a program performs parallel reads,
i.e. via a clause in a case expression that accesses a data-constructor’s fields in parallel.

4.5 Parallel Allocations

The implementation of intra-region parallel allocations closely follows the design described in
Section 3. A program transformation pass generates code that allocates fresh regions and writes
indirection pointers at appropriate places. But the metafunctionsMergeS andMergeM which merge
task memories at join points have a different run time behavior compared to their formal definition.
The implementation does not have a direct notion of a store. At run time, a region variable r is only
a structure containing a pointer to the start of a memory buffer and some metadata necessary for
garbage collection. Two memory buffers are merged (linked) simply by writing a single indirection
pointer in one of them. This operation is relatively cheap compared to the set union used in the
formal definition. Similarly, the implementation does not have a direct notion of a location map, and
therefore there is no run time operation equivalent to MergeM . At run time, all location variables
become absolute pointers into the heap.
But there still exists an issue with fragmentation. With granularity control Ð in the form of

judicious use of parallel tuples Ð we can restrict excessive creation of fresh regions, but the number
of regions created will still always be equal to the number of parallel tasks spawned by the program.
This can still cause fragmentation because all spawned tasks might not actually run in parallel.

The key insight is to make the number of fresh region allocations equal to the number of steals,
not spawns. That is, because our implementation uses a work-stealing scheduler, but the general
idea applies to other schedulers as well: fragmentation should be proportional to parallelism in
the dynamic schedule, not the static potential for parallelism. Our implementation creates fresh
regions for intra-region parallel allocations only if they really run in parallel. We accomplish this
by using the Cilk Plus API to implement a hook to detect when steals occur. Before reaching a
parallel fork point (spawn), the runtime system stores the ID of the worker executing the current
code. Next, the corresponding ID is immediately fetched in the continuation of the fork point. If
the IDs match, it indicates that a steal did not occur. This optimization enables parallel allocations
with minimal fragmentation.

4.6 Parallel Arrays

Programs need arrays as well as trees. We extend Gibbon with array primitives such as alloc, length,
nth, slice, and inplaceUpdate, and use them to build a small library of parallel array operations with
good work and span bounds. The ability to safely mutate an array in-place allows us to implement
optimizations that go beyond what is commonly allowed in a purely functional language. This is
enforced using the new Linear Haskell extensions [Bernardy et al. 2017], for example, the signature
of an 𝑂(1) array mutation is:

inplaceUpdate :: Int → a → Array a ⊸ Array a
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Using these primitive operations, collective operations on arrays are implemented as recursive
divide-and-conquer functions in Parallel Gibbon that use parallelism annotations6. For example,
our parallel map first allocates an array to store the output, and then updates it in parallel with
inplaceUpdate. But all such potentially-racy operations are hidden behind a pure interface. Also,
an Array in Parallel Gibbon can only store primitive values such as numbers, booleans, and n-ary
tuples of such values. In the future, we plan to explore ways to support data-parallel operations on
serialized algebraic data.

4.7 Memory Management

In the formalism, regions are modeled as unbounded memory buffers that offer a byte-indexed
storage for primitive values (data constructor tags, numbers, etc.). Practically, we start by allocating
a single contiguous chunk of memory of bounded size. When this chunk is exhausted, a new one
which is double in size is allocated and linked with the previous one using a pointer. This policy
is used up to an upper bound (1GB) after which constant sized (1GB) new chunks are allocated.
Thus, a single region is really a linked-list of chunks: a small initial chunk, with subsequent ones
doubling in size. The small initial chunk is beneficial when a region contains a small value, and
the doubling policy reduces the overall malloc overhead when allocating large values.
Our garbage collection strategy is based on regions and lifetimes, and also reference counting.

In classic region calculi, regions can be immediately deallocated at the end of their lexical scope.
However, we allow indirection pointers to point across different regions (chunks), which is crucial
to support parallelism, (and also to maintain the asymptotic complexity of certain sequential
programs). Thus, a region can stay alive beyond its lexical scope, for example if a pointer to it is
captured by another region which is still in scope.
We use reference counting to deallocate such regions. When a region is initializedÐwith a

letregionÐits reference count is set to 1, and it is decremented when the region goes out of scope.
At this stage, if its reference count hits zero, it is deallocated by freeing all of its chunks. When a
chunk is freed, the reference counts of the regions it points to are also decremented, which may
cause some of these regions to be freed as well. But these reference counts are per-region, rather
than per-chunk. Hence, even if a single chunk in a region is truly alive, all of its other chunks are
also considered alive, and cannot be freed. Also, there isn’t a supplemental garbage-collector for
long-lived regions at this time, as in later versions of MLKit [Tofte et al. 2004]. In the future, we
plan to make improvements in this area. Note, however, that it is impossible to create heap cycles
in Gibbon, because it’s a pure strict language. (In-place modification through linear types doesn’t
change this, and besides, Parallel Gibbon’s arrays do not contain pointers or sum types.)

5 EVALUATION

In this section, we evaluate our implementation using a variety of benchmarks from the existing
literature, as well as a new compiler benchmark. To measure the latent overheads of adding
parallelism, we compare our single-thread performance against the original, sequential LoCal, as
implemented by the Gibbon compiler. Sequential Gibbon is also a good baseline for performing
speedup calculations since its programs operate on serialized heaps, and as shown in prior work,
are significantly faster than their pointer-based counterparts. Note that prior work [Vollmer et al.
2017] compared sequential constant factor performance against a range of compilers including
GCC and Java. Since Sequential Gibbon outperformed those compilers in sequential tree-traversal
workloads, we focus here on comparing against Sequential Gibbon for sequential performance.

6These combinators offer variants to explicitly control sequential chunk size, or to use the common heuristic of splitting

into a number of tasks that is a multiple of the number of cores (provided as a global constant).
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We also compare the performance of our implementation to other languages and systems that
support efficient parallelism for recursive, functional programs Ð MaPLe [Westrick et al. 2019],
Multicore OCaml [Leroy et al. 2020; Sivaramakrishnan et al. 2020a], and GHC. MaPLe (an extension
of MLton) is a whole-program, optimizing compiler for Standard ML [Milner et al. 1997]; it supports
nested fork/join parallelism, and generates extremely efficient code.

The experiments in this section are performed on a 48 core machine (96 hyper-threads) made up
of 2 × 2.9 GHz 24 core Intel Xeon Platinum 8268 processors, with 1.5TB of memory, and running
Ubuntu 18.04. The shared memory on this machine is divided into two NUMA nodes such that
CPUs 0-23 and 48-71 use node-0 as their local memory node, and 24-47 and 72-95 use node-1. In
our experiments we only use 48 threads (no SMT), evenly distributed across both NUMA nodes
(numactl −−physcpubind=48-95). All experiments are performed using the default memory allocation
policy which always allocates memory on the current NUMA node. We observed that using a
round-robin memory allocation policy (option −−interleave=0,1) did not affect performance, and
therefore we do not report those results.
Each benchmark sample is the median of 9 runs. To compile the C programs generated by our

implementation we use GCC 7.4.0 with all optimizations enabled (option -O3), and the Intel Cilk
Plus language extension [Blumofe et al. 1995] (option -fcilkplus) to realize parallelism. To compile
sequential LoCal programs we use the open-source Sequential Gibbon compiler, but we modify it
to include arrays with in-place mutation using linear types, just like Parallel Gibbon. For MaPLe,
we use version 20200220.150446-g16af66d05 compiled from its source code. For OCaml, we use the
Multicore OCaml compiler [Sivaramakrishnan et al. 2020a] (version 4.10 with options -O3), along
with the domainslib

7 library for parallelism. We use GHC 8.6.5, with options -threaded -O2, along
with the monad-par [Marlow et al. 2011] library for parallelism.

5.1 Benchmarks

We use the following set of 10 benchmarks. For GHC, we use strict datatypes in benchmarks, which
generally offers the same or better performance, and avoids problematic interactions between
laziness and parallelism. All programs use the same algorithms and datatypes (including mutable
arrays, which are provably race-free in Gibbon and GHC), have identical granularity control
thresholds, and are run with the same inputs. This way, each pairing of program and input creates
a deterministic task graph Ð which does not change when varying the number of threads Ð and
the evaluation focuses on data representation and code generation, rather than on decomposing
and scheduling parallel tasks.

● fib: Compute the 48th fibonacci number with a sequential cutoff after depth=18: a simple
baseline for scaling.
● buildtreeHvyLf: This is an artificial benchmark that is included here to measure parallel
allocation under ideal conditions. It constructs a balanced binary tree of height 18, and
computes the 20th fibonacci number at each leaf, with sequential cutoff after depth=12.
● buildKdTree and countCorrelation and allNearest: buildKDTree constructs a kd-tree [Fried-
man et al. 1977] containing 1M 3-d points in the Plummer distribution. The sequential cutoff
is at a node containing less than 32K points. countCorrelation takes as input a kd-tree and
a list of 100 3-d points, and counts the number of points which are correlated to each one.
The chunk-size for the parallel-map is 4, and the sequential cutoff for countCorrelation is at a
node containing less than 8K points. allNearest computes the nearest neighbor of all 1M 3-d
points. The chunk-size for the parallel-map is 1024.

7https://github.com/ocaml-multicore/domainslib
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● barnesHut: Use a quad tree to run an nbody simulation over 1M 2-d point-masses distributed
uniformly within a square. The chunk-size for the parallel-map is 4096.
● coins This benchmark is taken from GHC’s NoFib 8 benchmark suite. It is a combinatorial
search problem that computes the number of ways in which a certain amount of money
can be paid by using the given set of coins. The input set of coins and their quantities are
[(250,55),(100,88),(25,88),(10,99),(5,122),(1,177)], and the amount to be paid is 999. The
sequential cutoff is after depth=3.
● countNodes: This operates on ASTs gathered from the Racket compiler when processing
large, real programs. The benchmark simply counts the number of nodes in a tree. For our
implementation, we store the ASTs on disk in a serialized format which is read using a single
mmap call. All others parse the text files before operating on them. To ensure an apples-to-
apples comparison, we do not measure the time required to parse the text files. The size of
the text file is 1.2G, and that same file when serialized for our implementation is 356M. The
AST has around 100M nodes in it. The sequential cutoff is after depth=9.
● constFold: Run the constFold function shown in Figure 1 on an artificially generated syntax-
tree, which is a balanced binary tree of Plus expressions, with a Lit as a leaf. The height of
the syntax-tree is 26, the sequential cutoff is after depth=8.
● mergeSort: An in-place parallel merge sort, which bottoms out to a sequential quick sort
when the array contains less than 8192 elements. For our implementation, we use the qsort

function from the C standard library to sort small arrays. The Haskell implementation is taken
from Kuper et al’s artifact accompanying their paper [Kuper et al. 2014], and it makes an FFI
call to a sequential quick sort written in C. MaPLe and OCaml bottom out to a sequential
quick sort implemented in their source language. The input array contains 8M randomly
generated floating point numbers.

5.2 Results: Parallel Versus Sequential Gibbon

Figures 9a and 9b show the results of comparing performance of benchmarks compiled using our
parallel implementation, labeled łOursž, relative to Sequential Gibbon. The quantities in the table
can be interpreted as follows. Column𝑇𝑠 shows the run time of a sequential program. which serves
the purpose of a sequential baseline. 𝑇1 is the run time of a parallel program on a single thread,
and 𝑂 the percentage overhead relative to 𝑇𝑠 , calculated as ((𝑇1 −𝑇𝑠)⇑𝑇𝑠) ∗ 100. 𝑇48 is the run time
of a parallel program on 48 threads and 𝑆 is the speedup relative to 𝑇𝑠 , calculated as 𝑇𝑠⇑𝑇48. 𝑅 is
the number of additional regions created to enable parallel allocations, calculated as 𝑅48 − 𝑅𝑠 . For
a majority of benchmarks, the overhead is under 3%, and the speedups range between 31.7× and
43.5×. These speedups match, or in cases such as barnesHut and allNearest, exceed those of optimized
implementations that have been analyzed on similar machines [Acar et al. 2018; Shun et al. 2012;
Westrick et al. 2019].

With respect to the difference in speedups between different benchmarks, we see the expected
relationship among themwhich reflects their memory access patterns. Compute-bound benchmarks
such as fib scale very well, whereas benchmarks such as constFold and buildKdTree can become
memory bound, and do not scale over a certain number of cores9. With respect to buildKdTree,
a significant portion of its total running time is spent in sorting the points at each node. We
observed that our mergeSort doesn’t scale well on small inputs, and since buildKdTree performs a
series of smaller and smaller sorts, it eventually runs into this, leading to lower scalability. But

8https://gitlab.haskell.org/ghc/nofib
9For example, a simple parallel dot-product computation (in Cilk) has a similar linear access pattern and low arithmetic

intensity to constFold, and it achieves only a 6X speedup on this same machine.
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Gibbon Ours

Benchmark 𝑇𝑠 𝑇1 O 𝑇48 S

fib 12.8 12.8 0 0.31 41.3

buildtreeHvyLf 4.69 4.69 0 0.11 42.6

buildKdTree 2.33 2.67 14.6 0.22 10.6

countCorr 1.46 1.47 0.68 0.044 33.2

allNearest 1.0 1.01 1 0.023 43.5

barnesHut 3.21 3.21 0 0.074 43.4

coins 3.04 3.13 3 0.096 31.7

countnodes 0.21 0.21 0 0.006 35.0

constFold 1.78 1.78 0 0.16 11.1

x86-compiler 1.08 1.08 0 0.041 26.3

mergeSort 1.58 1.60 1.27 0.039 40.5

(a) 𝑇𝑠 is the run time of Sequential Gibbon. 𝑇1 and

𝑇48 are the run times of Parallel Gibbon on 1 thread

and on 48 threads respectively. 𝑂 is the single-thread

percentage overhead: 𝑂 = (𝑇1 −𝑇𝑠)⇑𝑇𝑠 ∗ 100. 𝑆 is the

48-thread speedup: 𝑆 = 𝑇𝑠⇑𝑇48.
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(b) Speedups relative to Sequential Gibbon.

Fig. 9. Parallel Versus Sequential Gibbon.

its high overhead (14.6%) and low speedup (10.6×) are in the same ballpark as an optimized C
implementation which Choi et al. [2010] analysed on a 32-core machine. Table 2 and Figure 15
(given in the Appendix of the extended version [Koparkar et al. 2021]) show that MaPLe, GHC
and OCaml also scale similarly. Overall, these results show that our technique is able to handle
parallelism in a mostly-serialized data representation effectively.

Fragmentation. Traversals on a serialized heap are efficient because serialization minimizes
pointer-chasing and maximizes data locality. But the heap produced by running intra-region
allocations in parallel is fragmented, which can affect the performance of subsequent traversals
that consume this heap, due to additional pointer dereferences and worse locality. To measure
this downstream effect, we compare the run time of a single-threaded traversal operating on a
sequentially allocated value to that traversal operating on a value allocated in parallel, which will
be fragmented. Thus, the thing whose run time is being comparedÐthe traversalÐstays the same
but it is given inputs that have different levels of fragmentation. We also measure the amount
of fragmentation introduced for parallelism by counting the number of regions created solely to
enable parallel allocations. Table 1 shows the results.

We use a subset of the benchmarks from Section 5.1 whose output is a serialized value (the other
benchmarks do not measure the construction of new values), and measure the time required to
traverse the output. For example, the benchmark trav(constFold) constructs an input expression,
runs constant folding over it, and then sequentially traverses the resulting expression (counts the
number of leaves in it), but the number reported is only the run time of the traversal and it does
not include the time taken to run constFold itself. Each benchmark sample is the median of 9 runs,
such that each run allocates a value and then traverses it 𝑁 times, where 𝑁 is set high enough to
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Table 1. 𝑇𝑠 is the time required to sequentially traverse a sequentially allocated value. 𝑅opt is the number

of additional regions created to allocate a value in parallel using 48 threads, 𝑇opt is the time required to

sequentially traverse it, and𝑂opt is the percentage overhead of the traversal:𝑂opt = (𝑇opt −𝑇𝑠)⇑𝑇𝑠 ∗100. 𝑅max ,

𝑇max and𝑂max are the corresponding numbers for a value allocated in parallel using 48 threads with maximum

fragmentation. 𝑂max is the percentage overhead relative to 𝑇𝑠 calculated as 𝑂max = (𝑇max −𝑇𝑠)⇑𝑇𝑠 ∗ 100.

Seq Alloc. Optimum Fragmentation Maximum Fragmentation

Benchmark 𝑇𝑠 𝑅opt 𝑇opt 𝑂opt 𝑅max 𝑇max 𝑂max

trav(buildtreeHvyLf) 0.99ms 341 1.02ms 3.03 262K 11.45ms 1056.6
trav(buildKdTree) 6.22ms 31 6.64ms 6.75 262K 55ms 784.2
trav(coins) 0.35s 9K 0.37s 5.71 75M 5.21s 1388.6
trav(constFold) 0.30s 132 0.32s 6.67 67M 2.70s 800
trav(x86-compiler) 366.2𝜇𝑠 1K 377.5𝜇𝑠 3.09 14K 464.3𝜇𝑠 26.8

geomean - - - 4.74 - - 476.9

get the total run time over one second, and the run time of a single traversal is reported. 𝑇𝑠 is the
time required to sequentially traverse a sequentially allocated value, which is the baseline.

We compare against this baseline the performance of traversing a value allocated in parallel with
two levels of fragmentation: optimum and maximum. In the optimum setting, the allocators are
identical to those used for measurements reported in Figure 9a. That is, they control fragmentation
by controlling the granularity of parallelism (using the thresholds given in Section 5.1) and are
compiled using the region-upon-steal allocation policy (Section 4.5). 𝑅opt is the number of additional
regions created to allocate a value in parallel using 48 threads. For example, the sequential constFold
uses a single region and its parallel version requires 132 additional regions (133 regions total).
𝑇opt is the time required to sequentially traverse the allocated value, and 𝑂opt is the percentage
overhead relative to 𝑇𝑠 , calculated as 𝑂opt ≙ (𝑇opt − 𝑇𝑠)⇑𝑇𝑠 ∗ 100. In the maximum setting, the
allocators do not control fragmentation at all (no granularity control), and they are compiled
using the region-upon-spawn allocation policy, which creates a fresh region for every intra-region
allocation task that is spawned. This setting thus represents the upper bound on the amount of
fragmentation that can be introduced due to parallelism, where the heap essentially degenerates
to a full pointer-based representation. 𝑅max , 𝑇max and 𝑂max are the corresponding numbers for
this fragmentation setting when using 48 threads. 𝑂max is the percentage overhead relative to 𝑇𝑠 ,
calculated as 𝑂max ≙ (𝑇max −𝑇𝑠)⇑𝑇𝑠 ∗ 100.

Comparing 𝑅opt and 𝑅max , we see that in the optimum setting most of the allocated heap is still
serialized and uses only a small number of additional regionsÐless than 0.13% of the maximumÐ in
most cases. For x86-compiler, this percentage is higher (7.14%) compared to the other benchmarks
because even in the optimum setting this benchmark does not control the granularity of parallelism,
which is controlled only by the structure of the input as we discuss in Section 5.4. In this case, the
region-upon-steal allocation policy is responsible for trimming the number of regions from 14K to
1K. With respect to the run time of the traversal, the overhead with optimum fragmentation is
between 3.03% to 6.75%, with a geomean of 4.74%. In addition to fragmentation, the NUMAmemory
policy 10 has a significant impact on the overall overhead because in the parallel version potentially
50% of memory accesses are at a non-local NUMA memory node. If we run the experiment using a
single NUMA node (numactl −−membind=0 −−physcpubind=1-24,49-71), the geomean overhead drops to

10As described in the experimental setup, the shared memory on this machine is divided into two NUMA nodes and we use

48 threads evenly distributed across both nodes with the default local memory allocation policy.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 91. Publication date: August 2021.



91:24 Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and Ryan R. Newton

1.44%, with a significant reduction in the overheads for buildKdTree (0.96%) and constFold (2.95%). In
the presence of maximum fragmentation, we see the expected result: since heap degenerates to a
full pointer-based representation, the traversals are several times slower and the benefits of using
a serialized representation are lost. This slowdown in traversing a pointer-based representation
compared to a serialized one is consistent with the results given in previous work [Vollmer et al.
2019, 2017]. Overall, these results show that using the granularity of parallelism to guide the data
representation works well in practice, and gives us an efficient, mostly-serialized representation.

5.3 Results: Gibbon Versus Other Compilers

Table 2 shows the results of comparing performance of our implementation to MaPLe, OCaml, and
GHC. For each compiler, Column 𝑇𝑠 is the run time of a sequential program, Column 𝑇48 is the run
time of a parallel program on 48 threads, and an adjacent column to each shows the corresponding
speedup (or slowdown) of our implementation relative to this compiler. For example, on 48 threads,
allNearest is 3.95× faster with our implementation compared to OCaml. Figure 10 shows how
a subset of benchmarks scale on 48 threads. The scaling results for the remaining benchmarks
are available in the Appendix of the extended version [Koparkar et al. 2021]. With respect to
self-relative comparisons, on average, we scale similarly to MaPLe, and better than OCaml or GHC.
Across all benchmarks, on a single thread our Parallel Gibbon offers a 1.93×, 2.53×, and 2.14×

geomean speedup compared to MaPLe, OCaml, and GHC, respectively. When utilizing 48 cores,
our geomean speedup is 1.92×, 3.73× and 4.01×. Overall, these results show that we start with a
faster baseline in the sequential world, and we’re able to preserve the speedups in the parallel as
well, meaning that the use of dense representations to improve sequential processing performance
coexists with scalable parallelism. The only benchmark for which our implementation is slower
compared to others is coins. This benchmark makes heavy use of linked-list operations such as
cons, head, and tail, and our implementation uses malloc to allocate memory for every cons, which
is inefficient. Also, our dense representation currently offers no benefit when building linked-
lists by cons’ing onto existing lists. All others, MaPLe, OCaml and GHC, use a copying garbage
collector [Marlow et al. 2008; Sivaramakrishnan et al. 2020b; Westrick et al. 2019] allowing them
to use a bump-allocator, making them more efficient than our implementation. Figure 15 in the
Appendix of the extended version [Koparkar et al. 2021] gives the self-relative performance results
for MaPLe, OCaml and GHC.

5.4 Results: x86-Compiler Case Study

As an example of a complex benchmark which performs multiple traversals over different datatypes,
we implement a subset of a compiler drawn from a university course [Siek et al. 2020]. Our version
compiles to x86, from a source language that supports integers and arithmetic and comparison
operations on them, booleans and operations such as and and or, and a conditional expression, if.
To compile this high level language, we first translate it to an intermediate language similar to C,
in which the order of evaluation is explicit in its syntax. The compiler is written in a nanopass
style [Sarkar et al. 2004], and is made up of five passes: (1) typecheck type checks the source program,
(2) uniqify freshens all bound variables to handle shadowing, (3) explicateControl translates to an
intermediate language similar to C, (4) selectInstructions generates x86 code which has variables in
it, (5) and assignHomes maps each variable to a location on the stack. The input to this benchmark is
a synthetically generated, balanced syntax-tree with conditional expressions at the top, followed by
a sequence of let bindings. The structure of the input program is used to control the granularity of
parallelism. The first three passes process the branches of conditionals in parallel, and subsequent
ones process every block of instructions in parallel.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 91. Publication date: August 2021.



Efficient Tree-Traversals: Reconciling Parallelism and Dense Data Representations 91:25

Table 2. Comparison of Ours with MaPLe, OCaml, and GHC Ð execution time in seconds, and ratios to Ours.

𝑇𝑠 is the run time of a sequential program, and 𝑇48 is the run time of a parallel program on 48 threads.

MaPLe OCaml GHC

Benchmark 𝑇𝑠
MaPLe

Ours
𝑠 𝑇48

MaPLe

Ours
48 𝑇𝑠

OCaml

Ours
𝑠 𝑇48

OCaml

Ours
48 𝑇𝑠

GHC

Ours
𝑠 𝑇48

GHC

Ours
48

fib 37.4 2.92 1.06 2.93 21.1 1.65 0.50 1.61 31.9 2.5 0.76 2.45

buildtreeHvyLf 14.5 3.09 0.35 3.18 8.60 1.83 0.25 2.27 12.4 2.64 0.34 3.09

buildKdTree 7.26 3.11 0.41 1.86 10.9 4.68 1.84 8.36 13.4 5.75 2.21 10.0

countCorr 10.5 7.19 0.27 6.14 13.9 9.52 0.37 8.41 3.54 2.42 0.15 3.41

allNearest 2.38 2.38 0.06 2.60 3.01 3.01 0.091 3.95 2.07 2.07 0.068 2.96

barnesHut 5.05 1.57 0.12 1.62 10.9 3.40 0.44 5.94 4.97 1.55 0.33 4.46

coins 1.71 0.56 0.05 0.52 1.05 0.34 0.036 0.37 0.82 0.27 0.085 0.88

countnodes 0.37 1.76 0.019 3.16 0.46 2.19 0.034 5.67 1.45 6.90 0.049 8.16

constFold 2.36 1.32 0.23 1.44 17.7 9.94 2.23 13.9 3.71 2.08 0.64 4.00

x86-compiler 1.34 1.24 0.042 1.02 1.20 1.11 0.09 2.20 2.34 2.16 0.44 10.7

mergeSort 1.74 1.10 0.047 1.20 3.83 2.42 0.19 4.87 2.74 1.73 0.16 4.10

geomean - 1.93× - 1.92× - 2.53× - 3.73× - 2.14× - 4.01×

Ours Maple OCaml GHC
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Fig. 10. Speedups on 1-48 threads relative to the fastest sequential baseline, which is Sequential Gibbon for

these three benchmarks.

On this compiler benchmark, Parallel Gibbon offers a 1.24×, 1.11×, and 2.16× speedup on a
single thread, and 1.02×, 2.20× and 10.7× speedup when utilizing 48 threads, compared to MaPLe,
OCaml, and GHC, respectively. Note that most of the run time and also the self-relative parallel
speedup of this benchmark is due to assignHomes. The first four passes of the compiler have a linear
memory access pattern and low arithmetic intensity, much like constFold. The passes inspect the
input expression, perform inserts or lookups on shallow environments (which only contain entries
for variables that are in scope at a point), and then allocate the output. But assignHomes works in a
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different way. Since it needs to assign a unique stack location to every variable occurring in an
expression, it constructs an environment containing all variables in the expression (as opposed
to just those in scope at a point), and then performs repeated lookups on it to rewrite variable
occurrences with stack location references. This environment is significantly larger than those used
by other passes, making assignHomes much more work-intensive and suitable for parallel execution.
Here we have only taken the first step towards developing an efficient parallel compiler, and

there is ample opportunity for further investigation in this area. In the future, we plan to expand
the compiler’s source language to include constructs such as top-level function definitions and
modules which are a source of parallelism in many real compilers.

6 RELATED WORK

The most closely related work to this paper is, of course, Vollmer et al.’s LoCal [Vollmer et al. 2019],
which was summarized in Section 2.1. As discussed there, Vollmer et al.’s treatment only provided
sequential semantics, while this paper extends those semantics to incorporate parallelism.

This work, and LoCal, are related to several HPC approaches to serializing recursive trees into flat
buffers for efficient traversal [Goldfarb et al. 2013; Makino 1990; Meyerovich et al. 2011]. Notably,
these approaches must maintain the ability to access the serialized trees in parallel, despite the
elimination of pointers internal to the data structure, or risk sacrificing their performance goals.
The key distinction that makes enabling parallelism in the HPC setting łeasierž than in our setting
is that these approaches are application-specific. The serialized layouts are tuned for trees whose
structure and size are known prior to serialization, and the applications that consume these trees
are specially-written to deal with the application-specific serialization strategies. Hence, offsets
are either manually included in the necessary locations, or are not necessary as tree sizes can be
inferred from application-specific information.

Work on more general approaches for packing recursive structures into buffers includes Cap’N
Proto [Varda 2015], which attempts to unify on-disk and in-memory representations of data
structures, and Compact Normal Form (CNF) [Yang et al. 2015]. Neither of these approaches have
the same design goals as LoCal and LoCalpar: both Cap’N Proto and CNF preserve internal pointers
in their representations, eliding the problem of parallel access by invariably paying the cost (in
memory consumption and lost spatial locality) of maintaining those pointers. We note that Vollmer
et al. showed that LoCal’s representations enable faster sequential traversal than either of those
two approaches [Vollmer et al. 2019], and Section 5 shows that our approach is comparable in
sequential performance to LoCal despite also supporting parallelism.

There is a long line of work on flattening and nested data parallelism, where parallel computations
over irregular structures are flattened to operate over dense structures [Bergstrom et al. 2013;
Blelloch 1992; Keller and Chakravarty 1998]. However, these works do not have the same goals
as ours. They focus on array data, generating parallel code, and data layouts that promote data
parallel access to the elements of the structure, rather than selectively trading off between parallel
access to structures and efficient sequential access.
Efficient automatic memory management is a longstanding challenge for parallel functional

languages. Recent work has addressed scalable garbage collection by structuring the heap in a
hierarchy of heaps, enabling task-private collections [Guatto et al. 2018]. There is work proposing
a split-heap collector that can handle a parallel lazy language [Marlow et al. 2009] and a strict
one [Sivaramakrishnan et al. 2020a], and there is work on a scalable, concurrent collector [Ueno
and Ohori 2016]. A promising new line of work explores hierarchical heaps for parallel functional
programs [Raghunathan et al. 2016]. All of these designs focus on a conventional object model for
algebraic datatypes that, unlike LoCalpar, assume a uniform, boxed representation. In the future,
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we plan to investigate how results in these collectors relate to our model, where objects may be
laid out in a variety of ways.

7 CONCLUSIONS AND FUTURE WORK

We have shown how a practical form of task parallelism can be reconciled with dense data represen-
tations. We demonstrated this result inside a compiler designed to implicitly transform programs
to operate on such dense representations. For a set of tree-manipulating programs we consid-
ered in Section 5, this experimental system yielded better performance than existing best-in-class
compilers.
To build on what we have presented in this paper, we plan to explore automatic granularity

control [Acar et al. 2019, 2018]; this would remove the last major source of manual tuning in Gibbon
programs, which already automate data layout optimizations. Parallel Gibbon with automatic
granularity control would represent the dream of implicitly parallel functional programming with
good absolute wall-clock performance. While our current approach supports limited examples of
data parallelismśfriendly data structures beyond trees, such as dense arrays (Section 4.6), we plan to
further generalize our system by adding additional data structures that capture mutable sparse and
dense multi-dimensional data. We plan to support limited in-place mutation of densely-encoded
algebraic data, by adding primitives based on linear types, which we expect to mesh well with the
implicitly parallel functional paradigm. While Parallel Gibbon already out-performs competing
parallel, functional approaches, we expect these additional features will both improve programma-
bility (by relieving the programmer of the burden of granularity control) and performance (by
supporting more efficient parallel structures and strategies).
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