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Abstract

Neural machine translation (NMT) strongly outperforms previous statistical techniques. With

the emergence of a transformer architecture, we consistently train and deploy deeper and

larger models, often with billions of parameters, as an ongoing effort to achieve even better

quality. On the other hand, there is also a constant pursuit for optimisation opportunities to

reduce inference runtime.

Parameter pruning is one of the staple optimisation techniques. Even though coefficient-wise

sparsity is the most popular for compression purposes, it is not easy to make a model run

faster. Sparse matrix multiplication routines require custom approaches, usually depending on

low-level hardware implementations for the most efficiency. In my thesis, I focus on structural

pruning in the field of NMT, which results in smaller but still dense architectures that do not

need any further modifications to work efficiently.

My research focuses on two main directions. The first one explores Lottery Ticket Hypothesis

(LTH), a well-known pruning algorithm, but this time in a structural setup with a custom pruning

criterion. It involves partial training and pruning steps performed in a loop. Experiments with

LTH produced substantial speed-up when applied to prune heads in the attention mechanism

of a transformer. While this method has proven successful, it carries the burden of prolonged

training cost that makes an already expensive training routine even more so.

From that point, I exclusively concentrate on research incorporating pruning into training via

regularisation. I experiment with a standard group lasso, which zeroes-out parameters together

in a structural pre-defined way. By targeting feedforward and attention layers in a transformer,

group lasso significantly improves inference speed with already optimised state-of-the-art fast

models. Improving upon that work, I designed a novel approach called aided regularisation,

where every layer penalty is scaled based on statistics gathered as training progresses. Both

gradient- and parameter-based approaches aim to decrease the depth of a model, further

optimising speed while maintaining the translation quality of an unpruned baseline.

The goal of this dissertation is to advance the state-of-the-art efficient NMT with simple but

tangible structural sparsity methods. The majority of all experiments in the thesis involve

highly-optimised models as baselines to show that this work pushes the Pareto frontier of

quality vs speed trade-off forward. For example, it is possible to prune a model to be 50% faster

with no change in translation quality.
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Lay Summary

Machine translation has become widely popular in recent years, it is now easily accessible on

mobile phones or through web browsers. A system like that consists of millions or billions of

parameters that perform numerous mathematical calculations to provide high-quality automatic

translations. The enormous scale of such models is highly expensive to run on hardware. In

my thesis, I focus on reducing this computational workload by a smaller number of performed

calculations. Pruning individual parameters in a network of those calculations is inefficient and

requires complicated memory solutions to make a model work faster. However, it is possible to

structurally remove many parameters to make the architecture smaller and faster without the

need for complex memory algorithms.

The crucial point of this research is to perform the pruning in a way that damages quality the

least at a given translation speed gain. I carefully examine structural pruning approaches to

achieve this goal. Most experiments in this thesis involve highly-optimised models as baselines

to show that my work advances the current state-of-the-art efficient machine translation through

simple techniques that result in actual speed-up. For example, it is possible to prune an already

optimised model to make it 50% faster with no change to translation quality.
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Chapter 1

Introduction

The never-ending expansion of deep neural networks demands efficiency and better optim-

isation methods. Neural models have become so large that it is often difficult to train them on

available hardware, let alone deploy them. On the other hand, larger models keep outperforming

previous cutting-edge architectures. The recent research on large language models focuses on

drastically increasing the number of parameters, with the popular GPT-3 (T. Brown et al., 2020)

having 175 billion parameters and the recent MT-NLG (Smith et al., 2022) amounting to a total

of 530 billion parameters. Even if we train such an enormous model, it is almost impossible to

run efficiently, especially in mobile deployment or web browsers.

It is no different for neural machine translation (NMT), one of the most challenging tasks in deep

learning since it requires an enormous amount of data and parameters to achieve good quality.

In turn, a single model takes weeks to train on it. Due to the generative nature of translation, the

inference speed quickly becomes an issue, given that we want the best quality possible. While

on a much smaller but still impressive scale (up to 8 billion), Huang et al. (2019) have shown

that translation quality improves logarithmically with the increased number of parameters as

presented in Fig. 1.1.

Even with a few billion parameters, the training of such a model poses a significant challenge.

Not only training of such models is not feasible without appropriate hardware, the increased

depth and complexity may lead to overfitting Any model should generalise well on rarely or

even never seen data. It is especially crucial in NMT, in which the input space is infinite and

highly varied.

Hoffmann et al. (2022) found that “for compute-optimal training, the model size and the number

of training tokens should be scaled equally.” This is not a case in most circumstances as we

struggle with obtaining more good quality data for many language pairs. In the long run, just

utilising more parameters and bloating models up is not the answer if we do not feed more data

into a system. It may suggest that we are over-utilising deep neural networks to achieve our

goals. At the end of a day, those neural models are deployed for users on either GPU or CPU.

1
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Figure 1.1: A strong correlation between translation quality and the number of parameters in a
transformer architecture (Huang et al., 2019).

As we will see in Tab. 3.11 and 3.12, switching from 1 GPU to 1 CPU core slows translations

down fourfold. There are many ongoing efforts to make neural networks faster, specifically

on the CPU due to this performance gap. As will be presented in Sect. 4.15, most of those

optimiation methods can be stacked together to boost efficiency even more.

The blatant overparametrisation of neural networks combined with expensive maintainance

costs leads to a natural question: if this large number of parameters is required to achieve good

quality, can most of them be removed from a model down the line? Through parameter pruning,

a model can be optimised towards speed or memory size to make it faster or smaller. There is

a variety of work on pruning individual parameters (Brix, Bahar, & Ney, 2020; See, Luong, &

Manning, 2016), larger sub-network structures (Behnke & Heafield, 2020; Molchanov, Tyree,

Karras, Aila, & Kautz, 2016; Voita et al., 2019), and even whole layers Sajjad, Dalvi, Durrani,

and Nakov (2020). Coefficient-wise pruning remains one of the most popular approaches

due to its straightforwardness and good results. Most scattered and coefficient-wise sparsity

patterns require specialised memory representations and matrix multiplication routines to avoid

unnecessarily processing zeroed-out parameters.

Unfortunately, much of the prior work on pruning does not report speed or makes inference

slower. For example, Brix et al. (2020) achieved no speed-up despite removing 70% of all

parameters in a model in exchange for −0.6 BLEU loss. The available sparse kernels are

often difficult to optimise. For example, Yao, Cao, Xiao, Zhang, and Nie (2019) reported that
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their model with 87.5% parameters pruned is 1.6× as slow when using cuSPARSE kernels in

comparison to the basic dense operator. Gale, Zaharia, Young, and Elsen (2020) further support

this by pointing out that coefficient-sparse kernels like cuSPARSE are highly non-optimal for

less than 95% sparse matrices.

Blockwise sparsity, while more memory friendly due to more even spread out of parameters,

still struggles with efficiency. Gray, Radford, and Kingma (2017) reported block-sparse kernels

being 1.8× slower at 70% sparsity. After developing a custom “balanced pruning” method, they

eventually achieved 1.4× faster inference.

Due to these optimisation issues, many papers represent their speed gains in FLOPs only.

While sparse operations have fewer FLOPs, they have overhead to encode sparsity and in

less regular memory access. Gale, Elsen, and Hooker (2019) point out that FLOP is often

inconsistently defined across papers making it impossible to compare and gauge actual

advancement. This calls into question the utility of FLOPs as a unit of work depsite widespread

use in pruning literature. In the end, the struggle to optimise sparse models for speed shifts the

focus of researchers towards compression only.

Another critical issue in the research field of pruning is the lack of transparency in the results

regarding the potential improvements of new methods. Too much work (Gu, Bradbury, Xiong,

Li, & Socher, 2018; J. Lee, Shu, & Cho, 2020; Y. Wang, Wang, Li, & Tu, 2020) on efficiency

compares completely unoptimised systems with their optimised solutions, which are smaller

or faster in exchange for quality performance. Despite the popularity of pruning, engineers

in practice prefer other more straightforward methods such as using fewer layers in a model,

reducing the depth of a decoder or training smaller architectures under a knowledge-distillation

regime Y. Kim and Rush (2016a) to apply quantisation at the end of it then. Most efficiency

papers fail to prove that their new method offers a better trade-off than those mentioned above

(and more) existing methods.

Still, it is possible to achieve faster and smaller models with no need for sparsity operators.

Image recognition is one of the most prevalent deep learning tasks, which utilise convolutional

networks (LeCun et al., 1989). Layers in such a model contain a set of convolutional filters

(kernels) which are applied onto 2D image to transform it. Removing kernels from a model

prunes parameters structurally in a cascading way, resulting in a still dense but smaller

architecture. The insight into the pruning subject shows the severe lack of efficient sparsity

solutions outside of convolutional networks. It served as an inspiration to explore and contribute

to the development of similar straightforward structural pruning approaches outside of image

recognition, in this case for machine translation. As my research will show, the state-of-the-art

transformer model (Vaswani et al., 2017a) can be sliced and pruned to produce a smaller but

still dense architecture — this way, the need for sparse kernels is sidestepped. At the same

time, the number of calculations gets reduced.
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1.1 Thesis statement

In my thesis, I make inference speed of NMT models faster by exploring structural pruning

methods and improving upon them. I provide pruning regimes that result in tangibly faster

translation through simple training steps that prune and collapse a model into a smaller but

still dense architecture that requires time to perform calculations. In this thesis, I perform most

experiments on highly-optimised fast and robust architectures that represent the state-of-the-

art in the optimisation field. Pruning results on such models show a practical and cut-edge

advancement in the optimisation of neural networks. The pruning methods developed in this

thesis result in Pareto optimal models that are the fastest at given translation quality and vice

versa.

1.2 Thesis contributions

This work consists of three main content chapters. Each one focuses on a different structural

pruning approach and includes extensive experimental sections and analysis of their results.

At the end of every chapter, Pareto analysis is performed, comparing various baselines and the

specific pruning method and debating which strategy provides the best quality-speed trade-off.

This sets up a new Pareto frontier to build upon in the following chapter.

1.2.1 Structural Lottery Ticket Hypothesis

Among the more successful and well-known pruning methods recently is the Lottery Ticket

Hypothesis (Frankle & Carbin, 2019). It assumes that a model can be stripped of individual

obsolete parameters as long as it gets retrained without them, while the other parameters get

initialised to the same values. The best way to find a winning combination of parameters (ticket)

has been under constant refinement (Brix et al., 2020; Frankle, Dziugaite, Roy, & Carbin, 2019;

Morcos, Yu, Paganini, & Tian, 2019; Yu, Edunov, Tian, & Morcos, 2020), but the core idea was

always to prune individual parameters.

I expand upon the Lottery Ticket Hypothesis to prove it holds in a structural setup,
not just on a coefficient level and that it makes neural architectures fast and
compact.

I apply this well-established pruning technique to remove attention heads from a transformer

architecture. My research shows that this algorithm, combined with a custom pruning threshold-

ing function, can be used to remove whole structures/blocks of parameters instead of doing so

on a coefficient level.

Inspired by the attention confidence defined by Voita et al. (2019), I prune the least confident

attention heads to translate faster. The experiments demonstrate that most attention heads can

be removed without significant damage to the quality. Pruning about half of the attention heads

does not affect the quality, while removing three-quarters of them damages a model by 0.1
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to 0.2 BLEU. The inference speed is also substantially faster. For example, pruning attention

heads in a base transformer architecture leads to 1.6–2.2× faster translation at 0.1–0.3 BLEU

loss in quality. Training the identical architectures from scratch underperforms in the quality

area, proving that the hypothesis holds in the structural approach.

The work is then further expanded beyond just attention onto block-sparse feedforward layers

as well.

1.2.2 Structural Regularisation

Regularisation techniques prevent a model from overfitting by reducing its complexity. One of

the possible side-effects is parameter pruning. Group lasso (Yuan & Lin, 2006) is a structural

regulariser that penalises a cost function, pruning groups of parameters in the process.

I create a customised pipeline that incorporates structural regularisation early into
training and apply it to prune a transformer architecture for faster inference.

Pruning and training progress together with a model converging in a similar time to a baseline.

This reduces the overall deployment time by eliminating complete or partial retrainings required

in most pruning techniques.

My approach produces Pareto optimal models in terms of quality and speed. Group lasso

applied over nodes in feedforward layers boosts inference speed significantly. Similarly, pruning

entire heads on top results in even faster translation. For example, removing half of the attention

heads and two-thirds of feedforward connections makes a ‘12–1” encoder-decoder model 1.5×
faster with no change to quality in COMET. Similarly to the previous research direction, there

is no need for elaborative sparsity representations or matrix multiplications. Combined with

quantisation, the speed-up is even more substantial.

1.2.3 Aided Regularisation

Standard regularisation penalises all layers equally across a model. It can have an adverse

impact on quality as some parts of the architecture may be a bottleneck, with particular layers

more crucial to the performance than others.

To improve upon the previous work, I develop and explore a new regularisation
technique that scales penalties for each layer, instead of having one global
constant scalar as is the case in a typical regulariser.

Aided regularisation, as the name suggests, independently scales penalties per layer, aided

by external information. I define two scaling variants that keep track of the magnitude of

either gradients or parameters and change penalties accordingly. A close analysis of this

regularisation method clearly shows that it greatly boosts inference speed and pushes highly-

optimised state-of-the-art forward. For instance, with just pruning, a model can get 1.8× faster

at the cost of half a BLEU point. The aided regulariser amplifies sparsity patterns exhibited
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by the pruning methods from my previous works on the Lottery Ticket Hypothesis and the

group lasso. When regularised with this technique, a model concentrates on reducing its

architectural depth by pruning and collapsing its middle layers. Experiments on regularising

and then rejuvenating parameters showed that reducing a 12-layered encoder to 7 layers is

possible with no loss in quality.

1.3 Thesis structure

The road-map of this thesis presents as follows:

Chapter 1: Introduction You are here.

Chapter 2: Background This chapter introduces all topics and essential knowledge required

to understand and follow the whole thesis.

Chapter 3: Structural Pruning of Transformer with Lottery Ticket Hypothesis The chapter

explores the Lottery Ticket Hypothesis, this time in a structural setup.

Chapter 4: Structural Pruning for Speed Using Group Lasso This chapter switches focus

towards structural regularisation using a group lasso incorporated early into training.

Chapter 5: Improving Structural Pruning through Aided Regularisation This chapter ex-

plores a novel regularisation approach that scales penalties for each layer as training

progresses.

Chapter 6: Conclusions This chapter summarises the entire thesis.



Chapter 2

Background

Machine translation is a sequence to sequence task that generates a translation based on its

likelihood given a source sentence. Nowadays, we employ neural networks to directly optimise

the problem defined as:

argmax
e

P(e | f ) =
|e|
∏
i=1

P(ei | e0, ...,ei−1, f1, ..., f| f |)

with a foreign sentence f and a hypothetic translation e. The goal is to find the best possible

translation e. The quality of machine translation is evaluated using human judgement or

automatic scoring such as BLEU (Papineni, Roukos, Ward, & Zhu, 2002).

Figure 2.1: A typical encoder–decoder architecture (illustrated by Alammar (2018)).

7
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In neural networks, embeddings represent words in a vectorised form that map discrete word

entities into continuous space. In sequence to sequence tasks, the most popular architecture

approach is encoder–decoder. As seen in Fig. 2.1, both encoder and decoder consist of a

stack of identical layers. An encoder is responsible for digesting an input and creating its hidden

representation. An encoder can serve as a language model to determine the probability of a

given sequence of words. Then, given an encoded source, a decoder generates a hypothesis.

Figure 2.2: A single layer unit in a transformer (illustrated by Alammar (2018)).

The current state-of-the-art architecture used in neural machine translation (NMT) is a trans-

former (Vaswani et al., 2017a). It is an encoder-decoder architecture as illustrated in Fig. 2.2. It

consists of three key components:

Embeddings Numerical vector representations of words in vocabularies. They are the largest

matrices in a model with the size of (Dvocab,Dmodel) with Dvocab usually being 32000.

Press and Wolf (2017) has shown that using the same embeddings for both source and

target languages, especially if they use similar alphabets, reduces a model size without

compromising on quality. Thus, shared embeddings are a standard approach.

Feedforward (FFN) layers A layer of linear transformation followed by a non-linear function

applied on top of it.

Attention mechanism A layer that learns alignments. Attention layer has three trainable

parameters: keys (WK), queries (WQ) and values (WV ). Keys and queries process two

inputs and create the actual alignment distribution between them. This distribution, in

turn, scales the generated values. If there is only one input and alignment is done over

words in the same sentence, it is called self-attention. If done between source and target

sentences, it is called context or encoder–decoder attention. Both encoder and decoder

perform self-attention analysis of their respective sentences: input and translation. The

bridge between the encoder and decoder is context attention that directly creates an

alignment between a source and its target translation.

Given parameters WK , WQ and WV with an assigned input X, the keys, queries and values

are generated as follows:
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Q = XQWQ

K = XKWK

V = XV WV

(2.1)

The attention mechanism is then defined as:

Attention(Q,K,V) = σ
Ç

QK>√
n

å
V (2.2)

with σ being a softmax function that creates a probability distribution:

σ(X)i =
exi

∑
N
j=1 eX j

for i = 1, . . . ,N and X = (X1, . . . ,XN) ∈ RN (2.3)

One instance of calculations in Eq. 2.2 is refered as an attention head. Multi-head attention

runs multiple alignments at the same time to then concatenate and scale the results into a final

output:

MultiHead(Q,K,V) = [H1 . . .Hh]WO

where Hi = Attention
Ä

QWQ
i ,KWK

i ,VWV
i

ä
and h = is the number of attention heads.

(2.4)

The example of attention alignment is presented in Fig. 2.3. Many attention heads learn to

produce interpretable alignment distributions such as syntactic relations, pronoun recognition,

et cetera (Serrano & Smith, 2019; Voita et al., 2019).

Figure 2.3: A visualisation of attention alignment for a single head in a transformer (from
Tensor2Tensor tutorial by Vaswani et al. (2018)).
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In order to successfully train a deep model, a transformer architecture includes residual

networks, also known as skip connections. They are an additional shortcut with layer input

added to its output. In Fig. 2.4, skip connections are represented as dashed lines with the

example input X added to the output Z to be then normalised.

Residual connections may help avoid a vanishing gradient problem (Informatik, Bengio,

Frasconi, & Schmidhuber, 2003) where the first layers struggle to learn due to diminishing

returns of backpropagation. Skip connections are also crucial when pruning parameters from a

model. Without skip connections, if a layer gets pruned too much, it would zero out the output

completely and break a model from producing any meaningful predictions. Residual paths

ensure that unchanged input gets propagated forward, even if a layer is sparsified or removed.

Figure 2.4: A skip/residual connections passed forward transformer layers (illustrated by
Alammar (2018)).

A transformer architecture has many advantages. It outperforms the previous state-of-the-

art approaches such as LSTM (long-short term memory) recurrent neural networks (RNN)

(Vaswani et al., 2017a). Since each layer of the encoder depends only on the layer below it,

the input sequence can be processed in parallel. Thus, batched input sequence is fed into the

network in one go, allowing a model to see complete sentences. A parallel dataset (corpus)

provides a reference translation during training that allows a model to compare it with its output.

At inference, though, the model only has source information. For that reason, translation is

generated word by word from a probability distribution and keeping track of the top-k translation

hypotheses through the combined scores of the histories and their continuations when new
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words get predicted. Those selected words are then fed back into a loop to generate the next

words. This search process is called beam search. It is time-consuming and computationally as

a decoder is running sequentially, considering multiple hypotheses along the way; meanwhile,

this is not a concern in an encoder as it gets executed once.

On top of this, the attention mechanism is O(n2), with n being the length of an analysed

sequence length. The aforementioned reasons contribute to the overall large computational

costs of translating using the transformer architecture. There is an ongoing effort to reduce

the complexity of the attention mechanism. For example, Sparse Transformer (Child, Gray,

Radford, & Sutskever, 2019) reduced attention complexity from O(n2) to O(n
√

n), mostly for

image recognition purposes. In sequence-to-sequence tasks, Simpler Simple Recurrent Unit

(SSRU) (see Sec. 2.2.2) reduces self-attention in the decoder from O(n2) to O(n).

In the following sections, I will discuss the most popular approaches used to build state-of-the-

art efficient machine translation models.

2.1 Knowledge distillation

Quality and efficiency are (almost) always conflicting: good quality requires complexity, while

efficiency requires quality sacrifices. In the long run, we want much smaller, less complicated

architectures. However, those trained from scratch will never reach the learning potential

and quality of those large state-of-the-art models mentioned above. The best quality-wise

models presented in the Workshop on Machine Translation (WMT) usually include many deep

transformer models ensembles. Each translates at a large beam size, generating 6–12 (or

more) hypotheses per output word. Such models are costly to run and, in practice, are only

reasonable for a shared task or offline usage.

Knowledge distillation is a compression method that effectively allows training of smaller robust

architectures with much higher quality using knowledge acquired (distilled) from deeper and

better models.

The strategy of transferring knowledge from numerous ensembles into a single model was

introduced by Buciluǎ, Caruana, and Niculescu-Mizil (2006). The idea of knowledge distillation

has been further solidified and generalised by Hinton, Vinyals, and Dean (2015). Usually, an

objective function optimises toward given data with yet-not-seen input in mind. A well-versed

generalisation on new data characterises a good model. It is vital in natural language processing

(NLP) considering language flexibility, as smaller models struggle with generalisation due to

low architecture complexity.
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Teacher Student

Parallel
data

Forward
translated

data

Figure 2.5: A visualisation of a teacher–student training regime for machine translation. The
student is trained on text forward-translated by the teacher with the goal of overfitting towards
its distributions.

In knowledge distillation, instead of aiming for golden standard set by a reference, a smaller

model is taught to approximate the distribution of another model instead. The most popular

form of knowledge distillation in machine translation is a teacher-student regime introduced by

Y. Kim and Rush (2016a). In it, a smaller student model trains on data generated by a larger

teacher model with a wide beam search space and picking its best translations. A student’s

goal is to overfit the teacher’s distribution as much as possible. The student cannot reach

the quality akin to the teacher’s on its own, but learning to mimic another model’s distribution

through distillation allows it to learn better than when trained on parallel data directly.

Teacher Parallel data Distilled data
Size 2.3GB 85MB 85MB
BLEU 45.1 31.3 37.6
WPS 559 5828 5958

Table 2.1: A comparison of small models trained using normal and knowledge-distilled parallel
data alongside the large teacher model from the WMT2021 Efficiency Shared Task. Speed
and quality were calculated on a single GeForce 1080 GPU averaged for WMT16–19 testsets.

In Tab. 2.1, I present an English→German teacher and student, further explored in Sec. 4.16.

On a GPU, the best-quality teacher translates 10.7× fewer words per second (WPS) than its

optimised knowledge-distilled counterpart. Most importantly, I also compare a tiny transformer

trained on a parallel data directly and through forward-translated knowledge-distillation. Despite

both models being trained on the same amount of data (66.5M sentences), the knowledge-

distilled student is 6.3 BLEU points better than a model trained on pure parallel data. This shows

the clear advantage of knowledge-distillation for better quality and smaller architectures than

models trained in usual fashion. When trained on much more data, the gap between a teacher

and student closes even further. In Tab. 2.2, I present an example of an English→German

WMT19 teacher consisting of four ensembled models with an enormous total amount of 1.5

billion parameters. The distillation results in a model with 100× fewer parameters at the cost

of only 1 BLEU point in quality. This kind of trade-off is highly efficient and often pursued for

model deployment. Both of these models are further explored in Sec. 3.4.5 and 3.4.16.
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Model # parameters BLEU
Teacher 1,542,059,008 42.5
Student 15,722,752 41.5

Table 2.2: A comparison between a state-of-the-art WMT19 English→German teacher model
and its distilled more robust student counterpart evaluated on WMT19 testset.

One of the best side-effects of sequence-level distillation in NMT is that a student has a peaked

probability distribution and therefore beam search does not yield much improvement. Greedy

search of chosing the top-1 word is near sufficient, which means a distilled model does not

require beam search (Y. Kim & Rush, 2016a). Since a student overfits a teacher’s distribution,

it is possible to take the most probable word every time a student generates a translation. As

shown before in Tab. 2.1, it speeds up inference by an order of magnitude. It also reduces

the overall size of a neural architecture as it usually compresses an architecture consisting of

multiple ensembled models into a single network. For those reasons, knowledge distillation

became one of the first optimisation steps in machine translation.

2.2 Architecture optimisation

It is not an easy task to develop an entirely new and better architecture. The advancement is

usually made by slowly improving upon specific parts of the current networks, often with explicit

efficiency in mind. A current state-of-the-art approach to a task is a mix of such techniques

until more progress is made in the future. In this section, I describe a few methods widely used

in NMT and have been proven reliable and positively impact efficiency.

2.2.1 Tied embeddings

Embeddings are the largest matrices in the neural architecture. Typically, each language from

source and target has its vocabulary, which almost doubles a model’s size. However, many

language pairs either share an alphabet or jargon. Even if that is not the case, source and

target sentences may use the same entity names, numbers, date representation, et cetera.

Due to the nature of backpropagation, most word embeddings do not update as frequently as

we would like them to be, leading to suboptimal gradient learning. Inan, Khosravi, and Socher

(2016); Press and Wolf (2017) have shown that sharing embeddings between input and output

layers reduces the perplexity of language models and compresses them to less than half of

their original size. Thus, tied embeddings and a single shared vocabulary have become a

staple in NMT.
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2.2.2 Simplifying decoder attention

The attention mechanism is quite an expensive operation with a complexity of O(n2), where

n is the length of a sequence it attends to. Moreover, decoding in a transformer is not as

parallelisable due to the auto-regressive nature of translation. While context attention seems to

be a transformer’s crucial and indispensable component, there is an ongoing effort to simplify

decoder self-attention and make it more efficient.

Average Attention Network (AAN), introduced by Zhang, Xiong, and Su (2018), replaces

calculating dynamic weights with their simple fixed average. The AAN network consists of an

average layer (Eq. 2.5), a gating layer (Eq. 2.6) and a normalised output layer (Eq. 2.7).

Given an input y = {y1,y2, ...,yn}, the average layer is defined as:

g j = FFN

Ç
1
j

j

∑
k=1

yk

å
(2.5)

with FFN being a feedforward layer operations.

The average g j and input y j are then fed into a gating network:

i j, f j = σ (W [y j;g j])

h̃ j = i j�y j + f j�g j

(2.6)

where i j, f j are input and forget gates respectively. [·; ·] is a concatenation, � denotes an

element-wise multiplication and σ is a sigmoid activation function, often replaced with tanh.

Finally, the gating output is then added with the input again through the skip connection and

normalised:

h j = LayerNorm
(
y j + h̃ j

)
(2.7)

In contrast to the standard self-attention defined in Eq. 2.2 and 2.4, the average network can

be updated incrementally through dynamic programming, with the average in Eq. 2.5 simply

updated. This means the attention does not have to be completely recalculated from scratch.

Using a constant mask matrix, the calculations of cumulative averages over inputs can be

easily parallelised. This way, the complexity gets reduced from O(n2) to linear.
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According to Hsu, Garg, Liao, and Chatsviorkin (2020), removing the gating layer does not

affect quality. Junczys-Dowmunt, Heafield, Hoang, Grundkiewicz, and Aue (2018) have gone

even further and removed feedforward calculations as well to no quality loss. Further research

in that direction resulted in Simpler Simple Recurrent Unit (SSRU) (Y. J. Kim et al., 2019) which

does not suffer from performance degradation similarly to self-attention, AAN or original SRU

cell (Lei, Zhang, Wang, Dai, & Artzi, 2017). At the same time, SSRU drops one more matrix

multiplication in comparison to SRU and replaced tanh with a simpler ReLU.

Given input xt and trainable parameters Wt and W , SSRU cell is defined as follows:

ft = σ (Wtxt +b f )

ct = ft � ct−1 +(1− ft)�Wxt

ot = ReLU(ct)

(2.8)

where � denotes an element-wise multiplication. ft is a forget gate and ct is a cell state.

SSRU is the current state-of-the-art approach for replacing a decoder self-attention with linear

approximation (Bogoychev et al., 2020; Hsu et al., 2020; Y. J. Kim et al., 2019).

As mentioned at the beginning, all these methods only replace the self-attention in the decoder,

not the context attention. The same with the encoder self-attention, which is left unchanged.

While the encoder is only executed once per batch, there is still a room for improvement in its

efficiency.

2.2.3 Lexical shortlisting

The last matrix multiplication in NMT models is the most expensive since it requires producing

probabilities over the whole vocabulary. As a model generates translation word by word, it is

highly wasteful to do so over the entire vocabulary. To speed inference up and lower memory

consumption, we can create a vocabulary shortlist (Y. J. Kim et al., 2019) of the most probable

translation candidates within a batch and predict only using those. Given parallel data, we can

extract the topmost probable translations based on alignments between source and target

sentences. During the translation, this reduces output embedding sizes from, for example,

32,000 vocabulary words to a union of 50 most probable translations per batch word and 50

most frequent words in the vocabulary. It means that both batch size and sentence lengths

affect the final matrix dimension. For example, the shortlisted embeddings of the model from

Tab. 2.3 fluctuate between 13560 and 1272 when translating with top 50 most probable and

common words per batch of 32 sentences.

Shortlisting is especially effective on the CPU as it significantly reduces matrix multiplication

workload, fitting more into cache. As seen in Tab. 2.3, a model with shortlisting translates

1.66× faster at no change in quality in comparison to the baseline.
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Baseline + shortlist
BLEU 38.2 38.2
WPS 1275 2111
Speed-up 1.00 1.66

Table 2.3: A speed evaluation of a tiny transformer English→German model (from Tab. 5.11)
evaluated with and without shortlisting on WMT16–19 testsets.

2.3 Quantisation

Matrix multiplications in deep learning are resource-demanding. Those calculations not only

are slow, but they also consume a lot of memory, bandwidth and disk space. Neural network

parameters are typically represented in a single-precision floating-point format using 32-bits

(fp32). Can we use fewer bits than that to represent and run a model while keeping its quality

intact? Even going from single- to half-precision (fp16) (Khudia et al., 2021) allows us to

compress a model by ×2. However, what if we want to use fewer bits than that? As seen in

Fig. 2.6, floating-point representation loses its flexibility if it uses fewer bits in either exponent

or mantissa.

Bit
31 24 23 16 15 8 7 0

S E E E E E E E E M M M M M M M M M M M M M M M M M M M M M M M
± Exponent Mantissa

Figure 2.6: Single floating point representation (based on IEEE754 standard).

Matrix multiplication, the staple operation in neural networks, is a memory-bound problem.

For this reason, there has been extensive research done into using low-precision fixed point

representations instead of floating point numbers. Integer arithmetics fit more values into

memory, in turn allowing more multiplications to be performed in parallel. Integers load faster

to cache, fitting more values into registers. This makes integers especially friendly on CPU,

embedded systems or mobiles.

Quantisation is a process of mapping continuous floating point numbers into discrete integer

values at the cost of precision. It is required that a zero is represented without any rounding

errors. Given a scale s and a zero point z, the quantisation of input x is:

xq = round
Å

1
s

x+ z
ã

(2.9)

and the dequantisation is:

x = s(xq− z) (2.10)
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We also clip quantised values to avoid any out of bound cases in practice. The scale and zero

variables are are defined for each tensor or layer-type individually.

The intuition behind quantisation is that it classifies continuous values into discrete integer

bins. Those bins do not have to spread out evenly; quite the opposite. Neural networks require

more accuracy for numbers close to zero than those for larger but less frequent values; thus

it would be more beneficial to have more bins cover area around zeroes. Depending on the

implementation and quality tolerance, quantisation may be applied to a varying degree.

Besides parameters, activations and gradients may be quantised on a fly to operate entirely

within integer arithmetic with no float–integer conversions in-between. For example, Bogoychev

et al. (2020) quantises activations to values between [−127,127] by extracting minimum and

maximum values from a tensor and multiplying every float with by 127
max . This can be done

statically once with a preset range values or calculated dynamically during inference.

Quantised training is difficult since rounding errors accumulate during backpropagation, but

not impossible (Courbariaux, Bengio, & David, 2015; Gupta, Agrawal, Gopalakrishnan, &

Narayanan, 2015; H. Li et al., 2017). Most efforts concentrate on quantised inference as

parameters are static, which has been quickly popularised in image recognition (Jacob

et al., 2018; Miyashita, Lee, & Murmann, 2016), but has been the focus of sequence-to-

sequence research as well, including machine translation (Bogoychev et al., 2020; Junczys-

Dowmunt, 2018). 8-bit quantisation has been accepted as a standard as it usually does

not compromise quality on the variety of tasks and is widely supported by hardware. More

aggressive quantisation includes 4-bits (Aji & Heafield, 2020; Miyashita et al., 2016) or even

binary networks (Courbariaux & Bengio, 2016; Rastegari, Ordonez, Redmon, & Farhadi, 2016).

Replacing 32-bit floats with 8-bit integers compresses a model ×4 and leads to even twice as

fast inference in NMT (Bogoychev et al., 2020).

2.4 Sparsity & pruning

One of the methods to prevent overfitting and reduce resource consumption is pruning.

Removing parameters from a neural network was partially inspired by how our brains develop.

The number of neural synapses grows in orders of magnitude during our childhood to help us

learn, memorise and adapt, and as we mature, the brain prunes synapses that it no longer

needs (Chechik, Meilijson, & Ruppin, 1998). Optimal Brain Damage (OBD) (LeCun, Denker, &

Solla, 1990) is one such pruning method that has been successfully applied to neural networks.

In it, parameters are pruned based on the information carried by their second derivatives and

the approximate effect their removal has on a model. Since then, pruning has become a staple

in neural network optimisation.
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(a) A coefficient-wise sparsity. (b) A block-wise sparsity.

(c) A neuron-wise sparsity. (d) A subtensor/layer-wise sparsity.

Figure 2.7: Examples of sparsity patterns.

A typical neural model consists of a collection of tensors and bias terms for each layer.

Parameters may be removed in a specific fashion to achieve different goals. Pruning usually

focuses only on matrices, not biases, unless in specific cases. Pruned tensors can be still

dense and only masked with zeroes, with no optimisation benefits. If possible, pruned matrices

should take advantage of fewer parameters in memory consumption and matrix multiplication

routines. Here I introduce the most popular sparsity approaches alongside their optimised

representations.

Coefficient pruning is the most popular pruning configuration due to its lack of structure: a

model removes individual parameters in a scattered pattern. It is usually much easier for

a model to remove individual parameters without damaging quality. Fig. 2.7a presents an

example of a coefficient-wise sparse matrix. A randomly scattered pattern is not particularly

memory friendly. A matrix multiplication routine loads and performs calculations on smaller

matrix chunks in parallel. It is possible to represent a sparse matrix in a way that reduces

memory accesses. However, there is still a significant overhead as hardware arranges values

to be multiplied efficiently. If we multiply block of 4 floats in one register with 4 floats in

another, sparse parameters need to be organised accordingly. Ideally, this block could skip this
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operation entirely, reducing the workload. Block-wise sparsity is one such case. An example

of a matrix with 2× 2 block sparsity pattern is presented in Fig. 2.7b. Both coefficient- and

block-sparse matrices require specialised memory representation and multiplication routines to

avoid unnecessarily processing zeroed-out parameters.

On the other hand, it is possible to remove more coarse structures such as layer connections

(Fig. 2.7c), which are usually rows and columns. A popular approach in convolutional networks

is to remove entire kernels, which allows a network to skip calculations down the line (Fig. 2.7d).

Similarly, attention heads in a transformer can be pruned. This type of sparsity is advantageous

as tensors can be sliced, redundant parameters wholly removed, with a final architecture being

smaller but still dense. There is no requirement for specialised algebra or algorithms, with

minor or no code modifications to toolkits. Smaller architectures are especially CPU-friendly as

more fits into their cache, which results in a significant speed-up.

Let us take a look at examples of storage formats for sparse matrices. The sparse examples

have been provided by Intel® oneAPI Math Kernel Library (Developer Reference for Intel®

oneAPI Math Kernel Library - C, n.d.).

Given a sparse matrix M:

M =


1 −1 ∗ −3 ∗
−2 5 ∗ ∗ ∗
∗ ∗ 4 6 4

−4 ∗ 2 7 ∗
∗ 8 ∗ ∗ −5


Coordinate Matrix Storage Format (COO) The simplest form of storing sparse matrices.

Each value with its row and column indices is stored side by side. Straightforward for

human interpretation.
values = 1 −1 −3 −2 5 4 6 4 −4 2 7 8 −5

rows = 0 0 0 1 1 2 2 2 3 3 3 4 4

columns = 0 1 2 0 1 2 3 4 0 2 3 1 4
Compressed Sparse Row Matrix Storage Format (CSR) One of the most popular sparse

matrix formats. It also has a column-based variant (CSC) with values transposed. A

typical 3-array variation can be extended into 4 arrays where the pointers for row

boundaries are kept separately: beginnings of rows in one array and end of rows in

another. The mechanism behind the pointers is visualised in Fig. 2.8.
values = 1 −1 −3 −2 5 4 6 4 −4 2 7 8 −5

columns = 0 1 3 0 1 2 3 4 0 2 3 1 4

4-array variation:

pointerB = 0 3 5 8 11

pointerE = 3 5 8 11 13

3-array variation:

pointer = 0 3 5 8 11 13
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0 3 5 8 11 13
[1 −1 −3] [−2 5] [4 6 4] [−4 2 7] [8 −5]
[0 1 3] [ 0 1] [2 3 4] [ 0 2 3] [1 4]

Figure 2.8: A sparse matrix represented in a CSR format. The red pointers indicate columns
in which the corresponding values are stored. The green pointers show boundaries for each
matrix row in the memory array.

A similar approach can be adapted for more coarse structures such as blocks. Given the

2×2 block-sparse matrix E that can be represented as Ê:

E =



1 0 6 7 ∗ ∗
2 1 8 2 ∗ ∗
∗ ∗ 1 4 ∗ ∗
∗ ∗ 5 1 ∗ ∗
∗ ∗ 4 3 7 2

∗ ∗ 0 0 0 0


=⇒ Ê =

Ö
L M ∗
∗ N ∗
∗ P Q

è
where

L =

(
1 0

2 1

)
, M =

(
6 7

8 2

)
, N =

(
1 4

5 1

)
, P =

(
4 3

0 0

)
, Q =

(
7 2

0 0

)

Block Sparse Row Matrix Storage Format (BSR) A variant of CSR adapted for blocks. Ele-

ments of each block are stored consecutively in an array.
values = 1 0 2 1 6 7 8 2 1 4 5 1 4 3 0 0 7 2 0 0

columns = 0 1 1 1 2

4-array variation:

pointerB = 0 2 3

pointerE = 2 3 5

3-array variation:

pointer = 0 2 3 5

2.4.1 Approaches

The ideal parameter candidate to be removed from a network should do no (or little to no)

damage to a model’s performance. The pruning procedure can be split into the following

categories:

1. Scheduling: how and when do we prune, and what does the overall training looks like?

2. Location: which exactly parameters do we remove and do we make a decision layer-wise

or globally across a whole model?

3. Threshold: how do we judge which parameters are more important to keep than others?
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After pruning, a model may need to re-adjust some of its weights afterwards with additional

training. However, if a parameter gets removed prematurely, it may inadvertently curb the

architecture’s potential. For this reason, we usually prune on fully (pre)trained models. One of

the most popular approaches is to evaluate all parameters, prune a given percentage of the

least “useful” parameters based on a heuristic and restart training to recover from damage.

For example, Optimal Brain Damage (LeCun et al., 1990) trains in such a loop. While highly

effective, such pruning is extremely expensive as it requires many training runs to sparsify

a single model. Long training is especially an issue in NMT as a typical model trains from a

couple of days to a few weeks. Prolonging that is not feasible. There is an ongoing effort to

rectify this with pruning during training (Golub, Lemieux, & Lis, 2018), making retraining/tuning

shorter (Frankle et al., 2019) or even pruning before training starts at all (N. Lee, Ajanthan, &

Torr, 2019).

The critical aspect of pruning is deciding which parameters are worth keeping and vice versa.

The most straightforward method is to look at magnitude of parameters. Those close to zero do

not affect the output activations as much as others. Magnitude pruning has been successfully

applied NMT (See et al., 2016) to sparsify recurrent neural networks (RNN), but with no

speed-up or direct compression. Magnitude alone may not be enough — just the fact that a

parameter is small does not mean it is not performing crucial work since even small outputs

can be multiplied by larger coefficients in later layers. Gradients are also a viable option for

thresholding. If a gradient is consistently close to zero, this parameter is not learning much as

it is either obsolete or already well-optimised. The OBD algorithm (LeCun et al., 1990) uses

second derivatives to prune, which requires additional calculations outside of backpropagation,

less feasible for models with a large number of parameters due to quadratic growth. Molchanov,

Mallya, Tyree, Frosio, and Kautz (2019) makes an argument that Taylor expansions, which

can simplify into the multiplication of parameters and their gradients, can approximate the

contribution those parameters make. They performed pruning on a kernel level in image

recognition, but it could also be on a coefficient level. Some methods prune immediately after

initialisation, in either unstructured (N. Lee et al., 2019) or structured (C. Wang, Zhang, &

Grosse, 2020) way. Yao et al. (2019) combine unstructured sparsity with a light structure

that aims to balance parallel workloads. They introduce a specialised matrix multiplication

kernel for their structured sparsity. My goal in this thesis is to retain density to avoid extensive

implementation optimisations.

Most of the methods above need either tuning or retraining, often multiple times. They are

usually treated as techniques to compress already existing models. Still, there are ongoing

research efforts on training a reduced model from start to finish in one go. For example, Golub

et al. (2018) pruned weights with the lowest total accumulated gradients and reduced the

memory footprint to allow training much larger models than possible on available hardware.
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Another method that can induce sparsity in neural networks is regularisation. By additionally

penalising a cost function with the magnitude of parameters (for example, L1 regularisation),

the network itself diminishes parameters towards zero. The regularisation as a sparsification

mechanism will be discussed later in Sec. 2.5.

There is no limit to how pruning can be done. Researchers create various heuristics to calculate

thresholds either individually across layers or globally. Each new method is supposedly better

than the previous ones. Unfortunately, this research field has many issues that are yet to

be addressed. Gale et al. (2019) highlight some of them, such as the lack of comparison

between other similar methods, no variety or too much ambiguity in settings or architectures,

experimental inconsistencies, et cetera. Z. Liu, Sun, Zhou, Huang, and Darrell (2018) also

points out that training a large architecture is not necessary to obtain a smaller well-performing

model and that pruning may instead serve a role as architecture searching. All the problems

above become even worse when looked at through lenses of speed optimisation.

Unfortunately, much of the prior work on pruning and sparsity does not report speed or makes

inference slower: Brix et al. (2020) achieved no speed-up. Meanwhile, Yao et al. (2019) reported

an 87.5% sparse model took 1.6× as long using cuSPARSE. However, Gale et al. (2020) point

out that coefficient-sparse kernels like cuSPARSE are highly unoptimised. Even block-sparse

kernels are 1.8× slower at 70% sparsity (Gray et al., 2017) though they did eventually achieve

a 1.4× speed-up with “balanced pruning”. Among many, (Han, Pool, Tran, & Dally, 2015;

Lemaire, Achkar, & Jodoin, 2018) report theoretical speed-up in FLOPs only, which Gale et

al. (2019) points out that many papers inconsistently define. Dong, Huang, Yang, and Yan

(2017) showed that the actual speed-up is much smaller than the theoretical. Pruning research,

in most cases, omits any performance analysis, reporting on just memory compression and

omitting speed analysis on purpose as there is none. In my thesis, I want to fill this optimisation

gap in pruning while focusing on NMT in highly speed-competitive settings.

Here are some key issues that stem from pruning and sparsity:

1. Pruning is tedious. Using a smaller architecture may be easier to do and result in better

quality.

2. Only really sparse matrices get the speed advantage from sparse algorithms and

representation.

3. Most popular deep learning toolkits do not fully support sparse algebra. If they do, they

are often poorly optimised, obstructed by additional “code layers” like Python et cetera.

4. Knowing that toolkits are suboptimal, researchers focus on compression and quality only.

5. As there is no actual speed-up gained, researchers perform theoretical analysis in

FLOPs only, that are often inconsistent between papers.

6. More complicated sparsity patterns require low-level implementations that available

libraries may not support. They may be too complex and not worth the re-implementation

efforts by others.
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7. Pruning research centres around image recognition tasks, which are easy and fast to

train with satisfying quality after aggressive sparsification. We do not know the scope of

damage offered in exchange for potential speed-up in tasks such as speech recognition

or machine translation.

8. Most inference optimisation papers (Gu et al., 2018; J. Lee et al., 2020), including those

on pruning (Y. Wang et al., 2020) choose weak baselines as the starting point. It is easier

to remove parameters from a bigger architecture than to optimise a smaller, more robust

model that is considered a current “state-of-the-art” in terms of speed. Combined with

outdated training datasets, we do not know whether existing methods perform well under

real-life, “in-production” conditions.

This thesis aims to address these problems by providing simple and reliable methods for

structural pruning that result in actual faster inference. My experiments revolve around machine

translation as the field of my choice but are universal for other sequence-to-sequence tasks

such as language modelling or speech recognition. I avoid issues of optimising sparse

operators by pruning structurally to create smaller but still dense architectures that can be used

straightforwardly.

2.5 Regularisation

Regularisation is a process of reducing the complexity of a model to improve generalisation

and prevent overfitting. For example, dropout masks input or parameters randomly during

training at each update to make a network more flexible when still learning. However, this

term primarily encompasses techniques that impose additional restrictions on a cost function,

forcing a model to optimise towards a compromise between its quality and complexity.

Given an input x, a label y and a predictive function f , the regularised cost function is defined

as follows:

min
f

E ( f (x) ,y)+R( f ) (2.11)

with E being a typical cost function predicting f (x) (cross-entropy, mean squared error etc.)

and R being a regularisation term.

In my research, I investigate regularisation methods and their pruning effects. Usually, a

regulariser sparsifies a model by penalising the cost function with the magnitude of its

parameters. Then, an optimiser diminishes selected parameters during backpropagation to

reduce the overall cost while simultaneously minimising a typical loss.
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(a) L1 penalty (Eq. 2.14)
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(b) L2 penalty (Eq. 2.15)
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(c) Elastic Net (Eq. 2.16)
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(d) L0.5 penalty (Eq. 2.17)
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Figure 2.9: Regularisation penalties visualised for a model with two parameters.
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(a) Error (Eq. 2.13)
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(b) Error + L1 penalty (Eq. 2.14)
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(c) Error + L2 penalty (Eq. 2.15)
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(d) Error + Elastic Net (Eq. 2.16)
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(e) Error + L0.5 penalty (Eq. 2.17)
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(f) Error + Group Lasso (Eq. 2.20)

Figure 2.10: Regularised cost functions visualised for a model with two parameters.
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The generalised notion behind such regularisation is to use Lp norm. To quickly explain and

visualise the behaviour of the most popular regularisation functions, let us start with a toy

model.

Let f be a simple logistic function with two inputs x1 and x2 defined as:

f (x1,x2,w1,w2) =
1

1+ e−(w1x1+w2x2)
(2.12)

parametrised with two weights w1 and w2.

In the following analysis, we will approximate y = f (x1,x2,w1 = 0.5,w2 = 0.25) for x1,x2 ∈
[−1,1] and predicted ŵ1, ŵ2 ∈ [−1,1].

Let us define E as a mean squared error function:

E = (y− f (x1,x2, ŵ1, ŵ2))
2 (2.13)

Since we only have two variables, the error function can be visualised as presented in

Fig. 2.10a.

Now, let us look into the effect of a few popular regularisation methods on this model. In all of

them, a hyperparameter λ controls the strength of the regulariser and its contribution towards

a total cost.

2.5.1 L1 regularisation (LASSO)

L1 regularisation, also known as LASSO (Least Absolute Shrinkage And Selection) (Tibshirani,

1996), penalises the cost function by adding a sum of absolute parameters to it:

R( f ) = λ
n

∑
i=1
|wi| (2.14)

When minimising a loss, an L1 penalty strives to zero-out selected parameters. In Fig. 2.9a,

the sharp edges correspond to solutions with specific parameters being zero. When added

to a cost function (Fig. 2.10b, it steers the gradient descent to fall into those narrow paths,

encouraging zero coefficients. In addition, L1 is robust to outliers and has multiple possible

solutions since it applies Manhattan distance. Due to this behaviour, L1 regularisation is a

popular choice for coefficient pruning as it does not require additional expensive analysis. It is

easy to utilise and produces solid baseline results in many tasks.
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2.5.2 L2 regularisation (Ridge regression)

Rather than aiming to prune individual coefficients, L2 regularisation (also called Ridge

regression) (Hilt & Seegrist, 1977) tends to reduce the magnitude of parameters evenly

by adding L2 norm to the cost function:

R( f ) = λ
n

∑
i=1

(wi)
2 (2.15)

The root function in L2 norm is omitted for gradient simplicity. The derivative of a root is 1
2
√

x

which makes gradient form a little less elegant. Minimising the cost function subject to ||w||2 < c

is equivalent to minimising ||w||22 < c2. Root function scaling the sum of parameters down can

be considered a part of the λ scalar and thus omitted.

This type of regularisation is effective in codependent features as L2 reduces their variance.

As illustrated in Fig. 2.9b and 2.10c, the penalty has an oval shape, which encourages the

parameters to get smaller but not necessarily extremely small, as in almost zero. It can constrain

coefficient norm while keeping all parameters. For this reason, it is not the best choice to inflict

explicit sparsity on a model.

2.5.3 L1 + L2 regularisation (Elastic Net)

Individually, L1 and L2 have their advantages and disadvantages. For example, LASSO may

select only one variable from a group of highly correlated parameters, which may not be

ideal. The addition of the quadratic penalty eases the limitation mentioned above. Elastic net

combines both LASSO and ridge regression:

R( f ) = λ1

n

∑
i=1
|wi|+λ2

n

∑
i=1

(wi)
2 (2.16)

λ1 and λ2 are usually scaled as λ1 = λ and λ2 = 1−λ , so that the penalty can be balanced

and, if needed, easily turned to only L1 or L2 respectively.

2.5.4 Non-convex and non-differentiable Lp regularisations

Lp norm can be generalised as:

R( f ) = λ
n

∑
i=1
||wi||p = λ p

√
n

∑
i=1

(wi)p (2.17)
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LASSO can zero-out coefficients but may also over-shrink those it decided to retain. This

behaviour inspired an interest in using lower norms. Lp with p ∈ [0,1) results in a spiky non-

convex space which, in theory, should favour edges and axes during optimisation. However,

the non-convexity of the problem leads to computational complexity, making its optimisation

NP-hard. Fig. 2.9d and 2.10e show L0.5 penalty and it being applied to the cost function.

The edge case of L0 is not a proper norm as it corresponds to the total number of non-

zero parameters from the best-subset selection. It is non-differentiable, making it a discrete

optimisation problem. Reparametrisation of a cost function can achieve optimise it through

gradient descent by adding binary gates with L0 “norm” indicating the number of gates being

active.

With zi being a gate for a parameter wi = ŵizi, let us define q(zi|πi) = Bernoulli(πi) as a

Bernoulli distribution over each gate zi. The L0 penalty can be then reparametrised as:

R( f ) = λ
n

∑
i=1

πi (2.18)

Concrete hard distribution (Louizos, Welling, & Kingma, 2018) can be used to smooth out the

zi gates by using hard sigmoid:

ẑi =


1 if zi > 1

0 if zi < 0

zi otherwise

(2.19)

The gradient descent optimiser updates the parameters πi of the distribution over those gates,

resulting in them being open (“1”) or closed (“0”).

2.5.5 Group Lasso

So far, I have discussed techniques that regularise and sparsify a model on a coefficient level.

However, there are many cases where we may want to impose a structural sparsity instead.

Group lasso (Yuan & Lin, 2006) is an umbrella term for methods that simultaneously diminish

parameters in clusters. In neural networks, we are primarily interested in the most naive case

of removing non-overlapping groups.

Given parameters w split into groups G, a non-overlapping group lasso is defined as:

R( f ) = λ
|G|
∑
g=1

Ã
|Gg|
∑
i=1

(
wg

i
)2 (2.20)
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This penalty can be interpreted as applying ridge regression over parameters within each

group and LASSO over all groups. Simon and Tibshirani (2012) recommends additionally

orthonormalising the L2 penalty by the number of elements if groups are of different sizes.

As can be seen in Fig. 2.9e and 2.10f, a group lasso has a funnel shape which encourages the

optimiser to zero out both parameters at the same time, in contrast to a simple lasso which

may end up pruning only one of them. Fig. 4.3 shows the outcome of applying group lasso

over 8x8 blocks of parameters in a feedforward layer of a transformer.

In Chapter 4, I further explore structural pruning using group lasso regularisation in the context

of improving inference speed in NMT.

2.5.6 Multi-loss aggregation

A regularisation term is an additional loss added to a typical cost function that optimises towards

translation quality. As typical for sequence-to-sequence tasks, batches are not necessarily

constant due to sentences having different lengths and how they are packed in memory. Thus,

averaging a cross entropy cost over the batch size is a standard practice. In the multiloss

scenario, we need to consider scaling the penalty by batch size as well. There are various

ways to reduce multiple losses into a single cost function:

Sum Both cross-entropy and regularisation terms are summed together first and then averaged

over the batch size.

E(batch) =
1

|batch|

(
∑

x∈batch
CE(x)+λ ∗ ∑

l∈layers
R(l)

)
(2.21)

Mean Each loss is averaged individually: perplexity by the batch size, regularisation penalties

by, for example, the number of layers regularised et cetera, and then summed up.

E(batch) =
1

|batch| ∑
x∈batch

CE(x)+λ ∑
l∈layers

R(l) (2.22)

Scaled The perplexity is averaged as usual, but all other losses are scaled up by the batch

size instead. Usually, a smaller λ is used here.

E(batch) =
1

|batch| ∑
x∈batch

CE(x)+λ |batch| ∑
l∈layers

R(l) (2.23)
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2.6 Architecture search

It is not easy to develop a brand new architecture design and a set of hyperparameters working

well with it. Doing so by hand takes endless seeking and so-called intuition.

Neural architecture search (NAS) automates it by exploring an ample search space of layers in

models while estimating their performance. NAS requires training a considerable number of

models to test their performance which is extremely costly. For example, Zoph and Le (2016)

used reinforcement learning to concurrently train 800 models at any time using 800 GPUs for

3–4 weeks. Evolutionary algorithms are also a prevalent approach (Real, Aggarwal, Huang, &

Le, 2019). In each “mutation” step, parent models and their hyperparameters get altered (by

adding/removing/changing a type of some layers), trained, evaluated and added back to the

population. The process repeats in a loop until it finds a satisfying model.

Most architecture search research concentrates on image classification problems as they are

fast to train, unlike NMT. For sequence-to-sequence tasks, So, Liang, and Le (2019) have

found a new transformer architecture named an “evolved” transformer. The model is static — it

does not adapt itself to datasets but can be considered another architecture flavour to try. So

et al. (2019) report that their big model tested on NMT has only 7M parameters and is smaller

by 37.6 than a standard big transformer. However, they do not mention actual inference speed.

There is no direct indication that this brand new architecture is any better at inference speed

despite its compression.

Pruning itself can be interpreted as a “downward” form of architecture search, in which we only

remove paths, structures and individual parameters. This search space is usually much smaller

and manageable to deal with.

Under review as a conference paper at ICLR 2017

Figure 1: A Mixture of Experts (MoE) layer embedded within a recurrent language model. In this
case, the sparse gating function selects two experts to perform computations. Their outputs are
modulated by the outputs of the gating network.

While these ideas are promising in theory, no work to date has yet demonstrated massive improve-
ments in model capacity, training time, or model quality. We blame this on a combination of the
following challenges:

• Modern computing devices, especially GPUs, are much faster at arithmetic than at branch-
ing. Most of the works above recognize this and propose turning on/off large chunks of the
network with each gating decision.

• Large batch sizes are critical for performance, as they amortize the costs of parameter trans-
fers and updates. Conditional computation reduces the batch sizes for the conditionally
active chunks of the network.

• Network bandwidth can be a bottleneck. A cluster of GPUs may have computational power
thousands of times greater than the aggregate inter-device network bandwidth. To be com-
putationally efficient, the relative computational versus network demands of an algorithm
must exceed this ratio. Embedding layers, which can be seen as a form of conditional com-
putation, are handicapped by this very problem. Since the embeddings generally need to
be sent across the network, the number of (example, parameter) interactions is limited by
network bandwidth instead of computational capacity.

• Depending on the scheme, loss terms may be necessary to achieve the desired level of
sparsity per-chunk and/or per example. Bengio et al. (2015) use three such terms. These
issues can affect both model quality and load-balancing.

• Model capacity is most critical for very large data sets. The existing literature on condi-
tional computation deals with relatively small image recognition data sets consisting of up
to 600,000 images. It is hard to imagine that the labels of these images provide a sufficient
signal to adequately train a model with millions, let alone billions of parameters.

In this work, we for the first time address all of the above challenges and finally realize the promise
of conditional computation. We obtain greater than 1000x improvements in model capacity with
only minor losses in computational efficiency and significantly advance the state-of-the-art results
on public language modeling and translation data sets.

1.2 OUR APPROACH: THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Our approach to conditional computation is to introduce a new type of general purpose neural net-
work component: a Sparsely-Gated Mixture-of-Experts Layer (MoE). The MoE consists of a num-
ber of experts, each a simple feed-forward neural network, and a trainable gating network which
selects a sparse combination of the experts to process each input (see Figure 1). All parts of the
network are trained jointly by back-propagation.

2

Figure 2.11: A Mixture of Experts layer (illustrated by Shazeer et al. (2017)). A gating network
controls which subnetworks get activated in a forward pass.
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2.7 Mixture of Experts

Mixture of Experts (MoE) is another machine learning technique akin to an architecture

search In it, only parts of a neural network are active for a specific input, which reduces the

computational workload for huge models. Shazeer et al. (2017) introduced an architecture

consisting of up to thousands of feed-forward experts with trainable gates that determine which

of these sub-networks to use for each example. The main problem with this method is that

experts can become undertrained as they do not update with all the training data; this is

especially problematic in machine translation due to the complexity of the task.



Chapter 3

Structural Pruning of Transformer

with the Lottery Ticket Hypothesis

As introduced in Chapter 2 (see Eq. 2.4 and Fig. 2.3), the attention mechanism is quadratically

complex with regards to the length of a sentence it attends over. This cost becomes even

more evident as we stack many layers in a model to get the best possible quality. For example,

a popular neural network used for language modelling called BERT (Bidirectional Encoder

Representations from Transformers) is a transformer architecture that typically consists of 12

to 24 layers, with each having 12 to 16 attention heads per layer. That means between 144

and 384 attention heads in a single model make it substantially resource-hungry to train and

translate. The rapid growth in the size of neural architectures creates a necessity for improved

generalisation and pruning, which directed research into investigating the inner workings of the

attention mechanism in particular.

3.1 Motivation

The question is: do we need all of those attention heads, or can they be pruned? If so,

how much inference time will that save? Michel, Levy, and Neubig (2019) observed that

many heads “can be removed at test time without significantly impacting performance”, with

some layers in a model even being reduced from sixteen to a single head. Moreover, those

heads that are particularly important seem to emerge at the beginning of training. Serrano

and Smith (2019) further explored the notion of head importance and attention interpretability.

Using a text classification task, they analysed if “high attention weights correlate with greater

impact on model predictions” as they are often treated as human-interpretable and of higher

significance. Their experiments concluded that “anything may flip a model’s decision for tasks

with a much larger output space such as language modelling or machine translation”. This

means that attention heads that may seem insignificant at first glance still contribute to the

output.

32
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Most of the attention heads do not perform identifiable roles, and many of their calculations are

excessive. Xiao, Li, Zhu, Yu, and Liu (2019) noted that plenty of attention layers share similar

distributions, which suggests a high level of redundancy. Since attention is expensive to use

in a decoder, replacing it entirely with a less costly alternative would be the best option. For

example, a linear approximation such as SSRU (Simpler Simple Recurrent Unit) can replace a

decoder self-attention. However, this does not optimise encoder or context attention.

All the research above indicates that attention has the potential to be downsized. Voita et

al. (2019) analysed the attention mechanism further and noticed that majority of heads are

“useless”. They either do not have linguistically interpretable roles or cannot make reliable

choices when making alignments. While contradicting the previously mentioned analysis by

Serrano and Smith (2019), Voita et al. (2019) deems confident heads — those that assign

large weights on average — to be overall more important to a model as they seem to perform

most of the work in it. The essential contribution of their analysis says that “specialised heads

do the heavy lifting, the rest can be pruned”. To put it to the test, they pruned attention heads

using a structural L0 regularisation (see Sec. 2.5.4). They showed it is possible to prune a

significant amount of attention heads from NMT models with negligible damage to quality.

However, they did not investigate how slicing and removing heads affects speed. This lack of

analysis inspired me to look into pruning of the attention mechanism in the context of actually

speeding up inference. In particular, I want to prune models in highly-optimised deployment

settings characterised by a different model configuration than usual such as fewer layers or

reduced layer dimensions. It is possible to prune all attention heads from a layer (as well as

other parameters such as feedforward layers) as it will simply pass the input forward through

residual connections (Fig. 2.4).

The study’s primary purpose in this chapter is to understand the workload reduction of the

attention mechanism and the potential of extending these solutions to other transformer

structures such as feedforward layers. The chapter is split into three major sections that present

the research findings focusing on key themes that have led towards the overall direction of this

dissertation. The first idea looks into reinventing the traditional attention mechanism and its

heads into a Mixture-of-Experts approach. The next one discusses the reduction of attention

entropy to force it to make confident decisions which, in turn, may require fewer calculations to

perform. The last idea directly follows the previous two, inspired by their outcome, and focuses

on the structural pruning of a transformer architecture using the Lottery Ticket Hypothesis

(LTH) (Frankle & Carbin, 2019). In particular, it analyses attention pruning for faster inference

in machine translation. Later in this chapter, I apply blockwise pruning on feedforward layers,

generalising structural block sparsity with the LTH method and showing the results of stacking

both attention and feedforward layers being pruned. The analysis of pruning results in this

chapter serves as a direct motivation for future work in the thesis.
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The research on pruning attention using lottery tickets presented in this chapter has been

published in Behnke and Heafield (2020) and further applied in Bogoychev et al. (2020).

3.2 Attention mechanism as a Mixture-of-Experts

As a first exploration of the attention mechanism topic, I speculated that a transformer could

choose which attention heads to use. As Voita et al. (2019) has later shown in their research,

attention heads perform different functions within a model, often corresponding to specific

linguistic roles. However, not every word in a sentence needs all of that (grammatical or not)

analysis. Most probably only require peeking at neighbouring words, connecting a noun to its

verb, et cetera.

3.2.1 Methodology

An attention head could be described as an expert that has an assigned job. Inspired by

Shazeer et al. (2017), I modified the attention mechanism to have it learn which heads to

use per word and mask the calculations appropriately. I apply Mixture-of-Experts network by

training a gating network alongside a typical architecture. The gate is calculated based on

attention input (query) and scales the attention output on a word level.

With Q,K,V defined as keys, queries and values (see Eq. 2.1 and 2.2), σ being a softmax

function (see Eq. 2.3), the gated attention is defined as follows:

Gated Attention(Q,K,V) = Gate(Q)∗Attention(Q,K,V)

= Gate(Q)∗σ
Ç

QK>√
n

å
V

(3.1)

Following Shazeer et al. (2017), I try two gating approaches:

Softmax Gating All attention heads are used but scaled to varied degrees.

With an additional trainable layer Wg, the softmax gate is simply defined as:

Gate(Q) = σ(QWg) (3.2)

Noisy Top-K Gating One of the issues in the Mixture-of-Experts approach is balancing the

number of training examples seen by each subnetwork. A model may easily favour a

few selected experts simply because the gates chose them in the first training batches.

According to Shazeer et al. (2017), adding a tunable Gaussian noise helps with load

balancing. Besides the Wg layer, there is also Wnoise that controls how much noise is

added to the gate during training. It is disabled during inference.
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Finally, the Top-K gating looks as follows:

H(x)i = (QWg)i +φ · σ̂(QWnoise)i (3.3)

TopK(zi,K) =

zi, if zi in top K elements of z

−∞, otherwise
(3.4)

Gate(Q) = σ(TopK(H(Q),K)) (3.5)

(3.6)

with φ = X ∼N (µ, σ2) being a sample from a Gaussian distribution.

σ̂ represents a softplus function that is a smooth approximation to ReLU:

σ̂(x) = log(1+ ex) (3.7)

3.2.2 Setup: a base transformer (English→German)

Data

I use English→German parallel data allowed by the constrained condition of the WMT17 news

task (Bojar et al., 2017). The corpus consists of ∼4.56M sentences.

The preprocessing steps are as follows:

1. Normalisation — the standardisation of punctuation (such as quotations styles across

different languages), removing non-Unicode characters, removing extra spaces, et

cetera.

2. Tokenisation — splitting words from punctuation.

3. Truecasing — lowercasing all words beside entities, names, et cetera.

4. BPE segmentation — splittings compound words to smaller subwords using a Byte Pair

Encoding algorithm (Sennrich, Haddow, & Birch, 2016).

Normalisation, tokenisation, truecasing are done using Moses1 scripts. BPE was trained jointly

with 36000 operations. The vocabularies are shared for both languages in a pair and contain

36000 words.

All models are evaluated on untokenised WMT data using BLEU calculated with sacreBLEU

(Post, 2018). I develop models on the WMT13 devset and use testsets from 2014, 2015 and

2016 for testing.

1. https://github.com/moses-smt/mosesdecoder

https://github.com/moses-smt/mosesdecoder
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Architecture

All models follow the settings of a base transformer with hyperparameters predefined by

Vaswani et al. (2017a). Both the encoder and decoder have 6 stacked layers with 8 fixed

attention heads of size 64 (see Tab. 3.1).

Type Size
dimemb 512
dimFFN 2048
dimhead 64
Heads per layer 8
Encoder layers 6
Decoder layers 6

Table 3.1: A base transformer base architecture setup.

The gradient descent optimizer is Adam (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.98 and

ε = 10−9 . The learning rate is set to 0.0003, which warms up for the first 16000 updates

and then decays following the inverse square scheme (Vaswani et al., 2017a). Each model is

exponentially smoothed with 0.0001 and optimised for cross-entropy averaged over words in a

batch. A model stops training after ten consecutive stalled checkpoints.

All experiments are trained using Marian NMT2 (Junczys-Dowmunt, Grundkiewicz, et al., 2018),

a C++ toolkit, on 4 × NVIDIA P100 (16GB) GPUs. The batch size is dynamic, aiming to fill 13

GB of each GPU memory, with approximately 700 sentences per batch.

3.2.3 Experiments

To test the mixture-of-experts methods, I train English→German base transformer models (see

Sec. 3.2.2) with both softmax and Top-4 attention mechanisms. The training progression is

presented in Fig. 3.1. The average cross-entropy overfits faster than in the baseline, though

the best BLEU validation stays competitive. Most interestingly, the models trained with gated

attention have a smoother training progression at the beginning — instead of starting from 1–3

BLEU points as is typical in a transformer, those models validate with 11-12 BLEU in the first

checkpoint.

2. https://marian-nmt.github.io

https://marian-nmt.github.io
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Figure 3.1: Training validation of transformer models with a gated attention.

The most interesting part of this experiment is how the gating network behaves during the

inference. Hence in Fig. 3.2 I visualise the attention gates for a short input sentence hi how are

you ? EOS.3 The input has six subwords, and the output is generated with a beam size of 6.

Each pair of heatmaps represents a layer in the encoder, decoder and context attention, with 6

stacked heatmaps representing 6 layers. The heatmaps on the left represent softmax gates,

and the ones on the right represent Top-K gates. Since the gates mask the attention per word,

each heatmap is 6x8 for 6 words in an input/beam and 8 attention heads per layer.

Overall, Top-4 gates confidently favour specific heads rather than being spread thin as much

as possible within the constraints of 4 heads. However, even softmax gates often align to a

single chosen head, especially while decoding. In many cases, the gating mechanism strongly

selects the same single head for the whole sentence. This direct observation inspired me to

look into attention pruning.

3.2.4 Conclusions

Mixture-of-experts are getting increasingly popular in large language models (Artetxe et al.,

2021; Gao, Liu, Zhao, Lu, & Wen, 2022) and multilingual models (Y. J. Kim et al., 2021). In this

research, I investigated applying a mixture-of-experts approach onto the attention mechanism.

Unfortunately, the word-level gating methods would require dynamic slicing, which would be

challenging to optimise speed-wise across batches. Since the results were not groundbreaking

and the potential for speed-up small, I decided to give up this research direction of dynamic

attention selection to instead focus on attention pruning with efficiency in mind.

3. EOS = a special “End of Sentence” token, it signalises to a network to stop generating translations.
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It is worth noting that recent work by J. Li, Cotterell, and Sachan (2021) has also utilised a

similar approach to prune attention heads. Their paper introduces a “differentiable subset

pruning” of attention heads, which trains Top-K gates with a Gumbel noise instead of Gaussian,

resulting in a hard sparsity at test time. This method is less dynamic than a typical Mixture-

of-Experts as it requires a user-specified hard constraint on the number of used heads, and

the rest is subsequently pruned rather than selected on the fly. They report a 33% speed-up

in inference time and 24% decrease in model size while maintaining over 80% accuracy on

the MNLI dataset using a transformer-based language model BERT (Devlin, Chang, Lee, &

Toutanova, 2019).

3.3 Reducing attention entropy to make it confident

In their paper, Voita et al. (2019) notice that heads of high quality are those that make “confident”

decisions, as in assigning large weights to one specific word. Partially inspired by the notion of

IBM alignment models (P. F. Brown, Della Pietra, Della Pietra, & Mercer, 1993) incentivising

alignment fertility, I want to test whether we can explicitly train models with more confident

alignment decisions.

The most confident head regularly assigns a weight close to 1 to a single word and almost 0

to others. In other words, the entropy of such heads should be minimal. Otherwise, a model

with a higher penalty added to the cost function should get punished. This should minimise the

alignment fertility into the minimal subset of the most important words.

3.3.1 Methodology

I modify a cost function to include the sum of entropies from weights of all attention heads in a

model:

E∗(x) = E(x)+λ ∑
h∈heads

σ(
QhKh

>
√

n
) · log(σ(

QhK>h√
n

))

where E(x) is a typical cross-entropy loss, σ is a softmax function and Q and K being queries

and keys in the attention mechanism.

The additional penalty is scaled by a hyperparameter λ so that it does not overpower the

standard cost.
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3.3.2 Experiments
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Figure 3.3: Training progression for models trained with head entropy penalty with mean and
scaled cost functions.

I train English→German models using the setup described in Sect. 3.1 with the additional

entropy penalty added to the cost function. I experiment with two types of cost functions: mean

(Eq. 2.22) and scaled (Eq. 2.23). As can be seen in Fig. 3.3, forcing a cost function to include

entropies of attention weights has considerably slowed down the convergence of the models.

A model with an entropy penalty requires two to five times more batch steps to reach its

best validation results. I observed no distinctive difference in attention behaviour between a

baseline model and the ones trained with this method. Since the main goal was to maintain the

translation quality at least, and there are no other advantages, this research direction has been

abandoned instead to focus on pruning.

3.4 Structural pruning of attention heads using Lottery Ticket

Hypothesis

Pruning is fast becoming a staple approach to optimisation, and it is no different for machine

translation. Around the time of the research presented so far, Voita et al. (2019) have published

their work on the analysis of attention mechanisms in a transformer and, most importantly,

pruning of it. Unfortunately, their paper did not focus on the inference optimisation aspect

of pruning. This, in turn, actively motivated me to pursue this direction myself and look into

attention pruning for faster translation.
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The following section presents the setup for all languages and architectures used in experiments.

I follow with the introduction of a pruning method called the Lottery Ticket Hypothesis which

serves as a basis for my pruning approach. Next, I proceed to outline the methodology of my

attention pruning method. Then, I establish solid baselines with related work. Finally, I present

the results of the experiments themselves with in-depth analysis.

In order to investigate how generalisable my pruning methods are, I explore a wide variety of

use cases. There are two “types” of experiments: regular and optimised.

First, I focus my research on exploring standard transformer base and big models. Here I

concentrate on two language pairs: English→German (base) and Turkish→English (big). The

first one is considered a high-resource language pair, with English not being a target language.

In contrast, Turkish→English is low-resource, even with additional back-translated data.

Last but not least, I apply my pruning method to a highly-optimised English→German model

trained under a knowledge distillation scheme for a WNGT2020 efficiency shared task (Heafield

et al., 2020). The goal is to test the real impact of this pruning method on translation speed

when used “straight out of the box” in efficiency-focused settings.

3.4.1 Background: Lottery Ticket Hypothesis

As introduced in Sect. 2.4, coefficient sparsity is the most popular form of pruning due to its

relative non-invasive manner: it is easier to remove individual parameters across dimensions

without compromising on quality than removing larger groups of parameters in a single instance.

The usual approach to pruning assumes that a model is converged first and pruned second,

which requires either extended tuning or complete retraining.

Frankle and Carbin (2019) have introduced Lottery Ticket Hypothesis, a pruning method that

leads to superior results to training from scratch and in comparison to other pruning regimes.

The hypothesis states as follows:

A randomly-initialised, dense neural network contains a subnetwork such that –
when trained in isolation – it can match the test accuracy of the original network
after training for at most the same number of iterations.

In other words, according to the hypothesis, some parts of the neural network are luckily

initialised, resulting in them performing most of the work. Larger networks usually outperform

smaller ones because they have more chances to sample “good” parameters in the initialisation

lottery. A winning ticket is a combination of parameters that, when trained in isolation, achieves

similar or better quality in contrast to the whole network. This ticket can be formally expressed

as a binary mask applied to parameters.

As defined by Frankle and Carbin (2019), the simplest variant of this hypothesis implies that

this winning ticket is generated by training at least twice. Given a model f (x;θ), the following

steps form the procedure:
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1. Initialise parameters randomly to θ0 (e.g. Glorot distribution (Glorot & Bengio, 2010)).

2. Train a model for j iterations, resulting in parameters θ j.

3. Prune p% of the parameters, creating a mask m.

4. Apply the mask m to θ0, resetting the rest of parameters to initial values.

5. f (x;m�θ0) is the winning ticket of the lottery.

6. Train f (x;m�θ0) until convergence.

STEP 1:
INITIALISE

STEP 3:
PRUNE

THE FINAL
MODEL

STEP 2: CONVERGE

STEP 4: 
REINITIALISE UNPRUNED 

PARAMETERS TO THE
STARTING CHECKPOINT

STEP 5: RETRAIN (PRUNED)

Figure 3.4: One-shot lottery ticket pruning.

This method is quite aggressive as parameters get removed in one swoop, which may be

detrimental to overall quality. For this reason, Frankle and Carbin (2019) focused on iterative

pruning in their work. In this approach, steps 2–4 are repeated n times, with each iteration

pruning a fraction of parameters from a model. In their follow-up work, Frankle et al. (2019)

have shown that iteratively pruning a model uncovers smaller and better quality subnetworks

in comparison to pruning just once at the end. To avoid full training loops in their iterative

approach, Frankle et al. (2019) introduced late resetting and early turnaround. Late resetting

reverts parameters after pruning back to a checkpoint from the early stages of training (θi>0),

not to the starting initialisation (θ0). It can just be the same checkpoint every time, meaning

we pretrain a model first. This checkpoint may also dynamically change. For example, Brix

et al. (2020) used θ j−1 instead of θ0. Early turnaround means a model does not need to be

fully trained to make a pruning decision but can do so much earlier into training. Both of these

methods combined shorten the training time of each step in the iterative lottery scheme.

LATE
RESETTING

CHECKPOINT

STEP 4:
PRUNE

THE FINAL
MODEL

STEP 3: TRAIN FOR 
Y UPDATES

STEP 5: REINITIALISE 

STEP 6: CONVERGE

STEP 1:
INITIALISE

STEP 2: 
TRAIN FOR 
X UPDATES REPEAT STEPS 3-5 

UNTIL SATISFIED

Figure 3.5: Iterative lottery ticket pruning.
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Lottery ticket pruning has been successfully applied to natural language processing tasks,

including NMT (Yu et al., 2020). The winning ticket for that task was “remarkably robust to

pruning” of singular weights if embeddings were spared from pruning. However, they also

noted a linear drop in BLEU with sparsity. In turn, Brix et al. (2020) succeeded in applying

the stabilised lottery ticket hypothesis to prune individual coefficients from a transformer in

NMT settings with good results. In their experiments, a stabilised version of pruning with the

lottery ticket method damages translation quality by 2 BLEU points while removing 80% of

all parameters. They improved upon that further by proposing a mix of the lottery ticket and

magnitude pruning. They aimed to compress a model and did not report any speed results,

subsequently clarifying after their conference presentation that they did not achieve a speed

improvement.

3.4.2 Methodology

Voita et al. (2019) showed that many attention heads could be pruned in a fully trained NMT

model, but removing the same heads before training yielded lower quality. In my research, I

investigate the third way: pruning heads in early training using the lottery ticket hypothesis.

Empirically, this method enables even more pruning, which is helpful for faster machine

translation.

Reinitialisation of a model with the same pruned structure underperformed in Voita et al.

(2019), which is consistent with the lottery ticket hypothesis. Prior lottery ticket research

prunes individual parameters to form a sparse network; I show that this logic extends to entire

structures such as transformer heads. I follow stabilised lottery ticket strategies (Frankle et al.,

2019) to prune in early training, achieving a better trade-off between pruning and quality than

pruning after training (Voita et al., 2019).

The main goal is faster inference speed for machine translation deployment with minimal

impact on quality. Pruning heads means they can be removed from the model entirely (with

other heads shifted down), resulting in a layer configured to have fewer heads. Unlike most

work on pruning (Gale et al., 2019; Zhu & Gupta, 2017), there is no need for sparse matrices,

block-sparse matrix operators, or additional masking. In particular, we go further than Voita et

al. (2019) by removing heads rather than masking them.

In this work, I combine findings of both Voita et al. (2019) (“what”) and Frankle and Carbin

(2019) (“how”) to prune attention heads. First, we define a training scheme based on an

iterative approach that does not require full convergence of a model each time partial pruning

occurs. To analyse the impact of pruning in various settings, I experiment with a stock system

across two language pairs: Turkish→English and English→German and a highly optimised
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setup with English→German. The experiments show the remaining attention heads creating

similar architecture patterns across both high- and low-resource language pairs. My work also

confirms the findings of both previously mentioned papers that it is impossible to train a model

with such reduced architectures from scratch without damaging the quality.

“How to prune?” — Structural Lottery Ticket Hypothesis I use a stabilised variant of the lottery

ticket procedure as a basis for the pruning approach to the problem. In structural pruning, one

could train a whole model, identify unlucky heads with a pruning heuristic, and retrain the

pruned model starting with the same initialisation. However, removing most attention heads in

one go seems too drastic using a simple heuristic since other heads in layers may adapt to

having fewer parameters. The roles of pruned heads may even transfer to those still active. For

all these reasons, I apply a loop that iteratively prunes attention heads guided by partial training

as described by Frankle et al. (2019). More details can be found in Sec. 3.4.1 describing the

lottery ticket hypothesis. The detailed training scheme is presented in Figure 3.5.

First, I train a model for a set number of updates and keep it as a late resetting checkpoint.

Then the pruning phase starts — the model trains for a while, and selected heads are removed

to have other parameters reinitialised to the checkpoint mentioned earlier at the end. That loop

repeats until we are satisfied with how many attention heads got pruned. Finally, the smaller

model can be converged.

“Why prune it?” — Attention Confidence The lottery ticket hypothesis explains how pruning

should progress, but the question remains: which heads qualify as pruning candidates in each

lottery iteration? Inspired by Voita et al. (2019), we are mostly interested in heads that are

confident in their decisions. Their paper defines an attention head as confident when it assigns

a large weight to one of the words within a sentence. That head should routinely make strong

alignments to be considered a candidate to remain in a model.

When a head appears, its softmax layer computes a probability distribution over the words it

attends to. I record the maximum of this probability distribution as confidence. For example, a

context head attends over source words s and the confidence score can be formally defined as:

c = max
s

attention(s) = max
s

σ(
QK>√

n
)V (3.8)

for Q, K and V being query, key and value with σ being a softmax function.

These confidence values get averaged over all times the head appears while translating

a development corpus. For example, a context head appears once per output word, so its

confidence is averaged over all output words.
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All heads are assigned a confidence score c ∈ [0,1] by which they are sorted. The attention

heads with the lowest confidence are good candidates to be pruned.

3.4.3 Setup: a base transformer (English→German)

I reuse the same setup as described in Sect. 3.1.

3.4.4 Setup: a big transformer (Turkish→English)

Data

I use all the parallel data allowed by the constrained condition of the WMT18 new task (Bojar

et al., 2018). The corpora consist of 1M sentences in total: ∼200k parallel sentences plus an

additional ∼800k sampled from News Crawl and back-translated using a shallow NMT model

trained on the existing small bilingual corpora (Haddow et al., 2018).

The preprocessing follows the same steps that were previously set for English→German:

1. Normalisation — the standardisation of punctuation (such as quotations styles across

different languages), removing non-Unicode characters, removing extra spaces, et

cetera.

2. Tokenisation — splitting words from punctuation.

3. Truecasing — lowercasing all words beside entities, names, et cetera.

4. BPE segmentation — splittings compound words to smaller subwords using a Byte Pair

Encoding algorithm (Sennrich et al., 2016).

Normalisation, tokenisation, truecasing are done using Moses4 scripts. BPE was trained jointly

with 36000 operations. The vocabularies are shared for both languages in a pair and contain

36000 words.

All models are evaluated on untokenised WMT data using BLEU calculated with sacreBLEU

(Post, 2018). I use the WMT16 devset for the development, with the final evaluation on the

2016, 2017 and 2018 testsets.

Model settings

For Turkish→English, I experiment with big transformer models. The settings and hyperpara-

meters are predefined by Vaswani et al. (2017a). Both the encoder and decoder have 6 stacked

layers with 8 attention heads, rather than the standard 16 in a big transformer as defined

by Vaswani et al. (2017a) motivated by no quality change in a big transformer with halved

heads exhibited in Tab. 3.4. To keep experiments consistent, each head has a fixed size of

64 (Tab. 3.2). As shown later in Tab. 3.4, halving the number of heads does not affect the

4. https://github.com/moses-smt/mosesdecoder

https://github.com/moses-smt/mosesdecoder
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quality but greatly reduces the pool of pruning candidates. Thus, all big and base models have

144 attention heads: 48 (6 layers with 8 heads each) self-attention heads in the encoder, 48

self-attention heads in the decoder, and 48 context heads in the decoder that attend to the

encoder.

The gradient descent optimizer is Adam (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.98 and

ε = 10−9 . The learning rate is 0.0006, warming up for the first 8000 updates. Each model is

exponentially smoothed with 0.0001 and optimised for cross-entropy averaged over words in a

batch. A model stops training after 10 consecutive stalled checkpoints.

All experiments are trained on 4 × NVIDIA P100 (16GB) GPUs. The batch size is dynamic,

aiming to fill 13 GB of each GPU memory, with approximately 700 sentences per batch.

Type Size
dimemb 1024
dimFFN 4096
dimhead 64
Heads per layer 8
Encoder layers 6
Decoder layers 6

Table 3.2: A modified big transformer architecture used in experiments.

3.4.5 Setup: A knowledge-distilled tiny transformer (English→German)

Data

This optimised tiny transformer architecture follows the deployment directions set by our work

in WNGT2020 Efficiency Shared Task Bogoychev et al. (2020). Tiny models were data-distilled

from an ensemble of larger architectures under the teacher-student regime (Y. Kim & Rush,

2016a). For the teacher, I used the sentence-level English-German system from Microsoft’s

constrained submission to the WMT’19 News Translation Task (Junczys-Dowmunt, 2019). It is

an ensemble of four deep transformer-big models (Vaswani et al., 2017a), each with 12 blocks

of layers in encoder and decoder, model size of 1024, filter size of 4096, and 8 transformer

heads.

The student models get trained on pairs of the source and teacher-translated target sentences

generated from parallel English-German datasets and English News Crawl data available

for WMT19 (Barrault et al., 2019). For parallel data, we generated 8-best lists and selected

translations with the highest sentence-level BLEU to reference sentences. Monolingual data

was translated with a beam size of 4.

The final training set, which was used in Edinburgh’s submission to WNGT2020 (Bogoychev et

al., 2020), consisted of 185M sentences, including 20M of initial parallel data. In my experiments

with knowledge distillation, I use a smaller subset consisting of 13.5M parallel sentences.
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Model settings

All tiny students have standard transformer encoders (Vaswani et al., 2017a) and light-weight

RNN-based decoders with SSRU (Y. J. Kim et al., 2019) with the dimensions presented in

Tab. 3.3. The vocabulary is shared with 32,000 subword units preprocessed with SentencePiece

(Kudo & Richardson, 2018).

Type Size
dimemb 256
dimFFN 1536
dimhead 32
Heads per layer 8
Encoder layers 6
Decoder layers 2 (tied)

Table 3.3: The tiny transformer architecture used in WNGT2020 experiments.

Since a student model should closely mimic the teacher, I did not use regularisation techniques

like dropout or label smoothing. The models were trained using the concatenated English-

German WMT testsets from 2016–2018 as a development set5 until BLEU has stopped

improving for 20 consecutive validations. Then, the checkpoints with the highest BLEU scores

were selected.

Other training hyperparameters were Marian defaults for training a base transformer model.6

Student models have sharp probability distributions (as they overfit teacher-translated data),

so it is possible to use beam size 1 without a quality loss. A baseline student model translates

about 2335 words per second on a single CPU core, thanks to all the optimisation settings.

3.4.6 Related work

Coefficient-wise pruning is not hardware friendly. On the other hand, block-wise sparsity

(Narang, Undersander, & Diamos, 2017) can practically skip loading pieces of a tensor into

GPU’s memory. In this paper, we concentrate on a specific case of block sparsity that removes

entire attention heads from a model (no masking)

Xiao et al. (2019) reused attention output within adjacent layers in a model to save on

computations. This reuse of parameters could be interpreted as a pruning method that

concentrates on removing vertical redundancy, in contrast to our research, which is more

horizontal.

5. The validation sentences are not teacher-translated.
6. Available via -task transformer-base.
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SSRU (Y. J. Kim et al., 2019) replaces the decoder self-attention mechanism but leaves

an encoder and context between them unchanged. The lottery ticket pruning of attention

heads is complementary and can remove encoder and context heads on top, further reducing

computational load.

The main focus of Voita et al. (2019) was an analysis of attention and its behaviour, rather than

pruning and efficiency. As shown in Sect. 3.4.7, I could not reproduce the positive results on

my dataset and got major damage to translation quality.

3.4.7 Establishing baselines for attention pruning

Just fewer attention heads

Do we even need to prune attention heads at all? Can we train a model that has fewer heads

from the beginning? Are more heads better for quality? The typical transformer implementation

described by Vaswani et al. (2017a) initialises attention matrices based on the embedding

dimension, and those matrices are split into separate heads. That means the fewer heads

there are set to be in a model, the larger they are. To compare models with a different number

of heads reasonably, I fixed their size to a constant instead.

I experimented with the following model to explore how the number of attention heads affects

quality. I used all the parallel data allowed by the constrained condition of the WMT17 news task

(Bojar et al., 2017) for English→German (4.56M sentences) following a standard preprocessing:

normalisation, tokenisation, truecasing using Moses scripts 7, and BPE segmentation (Sennrich

et al., 2016) with 36000 subwords. I tried training a model with 32 heads but could not due

to memory constraints. For that reason, we start with a typical big transformer (Vaswani et

al., 2017a) architecture using recommended hyperparameters. It has 16 heads of size 64

(64×16 = 1024). Then, I trained the same model but with 8, 4 and 2 heads of the same size.

The results are below in Table 3.4.

Model Heads wmt14 wmt15 wmt16 Avg.
Big transformer 16 26.7 29.8 33.9 30.1
Big transformer-8 8 27.2 29.7 34.2 30.4
Big transformer-4 4 26.1 29.0 34.2 29.8
Big transformer-2 2 26.0 29.0 33.6 29.5

Table 3.4: The quality of big transformer models with different number of attention heads for
English→German.

7. https://github.com/marian-nmt/moses-scripts

https://github.com/marian-nmt/moses-scripts
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The model needs a reasonable number of attention heads to perform well when it comes to

quality. The more this number gets reduced, the worse the quality. However, more heads do not

necessarily equal better translation quality. Using 8 heads per layer strikes a perfect balance

between memory consumption and quality degradation. This quality of models with reduced

attention heads is damaged even more the smaller the overall architecture is.

Michel et al. (2019) pruning

Michel et al. (2019) experimented with pruning attention heads during and after training using

a different heuristic: they introduced a mask variable for each head then defined importance

as the gradient of the loss with respect to the mask variable. Their reported results are poor:

pruning 40% of the total heads results in “staying within 85–90% of the original BLEU score”.

Pruning after training is even worse: about 3 BLEU points were lost with 40% sparsity, and 10

BLEU points were lost with 60% sparsity. Comparisons are based on their reported numbers,

which use non-standard tokenized BLEU that is known to boost scores falsely (Post, 2018).

Voita et al. (2019) pruning

Using the same language pair and dataset, I tried a pruning method presented by Voita et al.

(2019). I used their Tensorflow implementation8 with their training scripts, in which they set up

a base transformer architecture that gets pruned globally.
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Figure 3.6: Validation BLEU for English→German transformer-base baseline and pruned with
Voita et al. (2019) models.

This pruning scheme requires a baseline model to be fully converged first and then tuned with

a L0 regulariser that masks the heads. A λ hyperparameter controls the attention sparsity.

8. https://github.com/lena-voita/the-story-of-heads

https://github.com/lena-voita/the-story-of-heads
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Model Sparsity wmt14 wmt15 wmt16 Avg. ∆

Baseline 0% 26.7 29.8 34.5 30.3 -
λ = 0.05 22% 26.4 29.7 34.0 30.0 -0.30
λ = 0.10 53% 25.1 27.9 31.8 28.3 -2.00
λ = 0.15 67% 23.5 25.8 28.8 26.0 -4.30

Table 3.5: Evaluation BLEU of English→German transformer-base models pruned with Voita
et al. (2019)

Even though I used the authors’ implementation and the baseline achieved a good score,

pruning degraded its quality. Looking at Figure 3.6, the more sparsity was enforced with

regularisation, the lower the translation quality. Removing about half of the attention heads

lost about 2 BLEU points, and removing two-thirds damaged the quality by more than 4 BLEU

points. Even though we tuned for as long as the baseline training, the models did not recover.

I tried experimenting with various hyperparameters settings, such as learning rate and its

scheduling, but with no further success. Finally, I could not reproduce the positive results

presented by Voita et al. (2019) and focused on improving upon that work.

3.4.8 Experiments: Foreword

These experiments aim to prune as many attention heads from a transformer as possible

without damaging translation quality.

25k 15k 400k+

x 9–15

Initialisation
Late resetting

checkpoint

(a) English→German

12k 300k+8k

x 9–15

Initialisation
Late resetting

checkpoint

(b) Turkish→English

Figure 3.7: Visualisation of the stabilised lottery ticket pruning with the hyperparameters
selected for the experiments.
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The pruning procedure has some hyperparameters: the late resetting point, how long to train

before making a pruning decision and how many heads to prune each iteration. Exploring this

space is expensive; I arbitrarily set these to the following values and found them working well

within my experiments. I pretrain models for about 5–6 saving checkpoints (25k batches for

English→German, 12k for Turkish→English). By this time, the translation quality stabilises

quickly by jumping from 1-2 BLEU points towards 15-30 BLEU. Then, each pruning iteration

lasts about 3–4 checkpoints (15k batches for English→German, 8k for Turkish→English), after

which selected attention heads are removed. After each iteration, I change a seed value to

make a model see data in a different order when I restart training.

The number of heads removed is roughly half of a total number of layers containing attention.

Removing less than that makes pruning slow. Removing more in one go results in a unified

distribution of attention heads, as the algorithm usually picks one head per layer, which may

be too aggressive. There are 18 attention layers in this specific case: 6 layers for encoder,

decoder, and context. For both language pairs, I prune 8 heads per iteration (assuming the

number of attention layers being 18 divided by two is relatively close to 8).

I focus on results roughly within 50% to 83% heads removed. This range covers the interesting

part from minor to noticeable degradation in translation quality. For evaluation of an iteration,

heads are pruned as usual; then, I reset the model back to the late resetting checkpoint to

continue training until convergence.

3.4.9 Experiments: Pruning big and base transformer models

Since I have shown that there is no need for having 16 heads per layer in a big transformer

architecture (see Tab. 3.4), I halve attention matrices to start pruning from 8 heads per layer to

save time. Thus, all big and base models have 144 attention heads in total. The models are

pruned with the workflow presented in Fig. 3.7a and 3.7b.

After every pruning iteration, the models are immediately evaluated on their development sets,

as illustrated in Fig. 3.8. With each pruning step, the models slowly deteriorate in quality to

finally take considerable damage at roughly 70% of all heads removed (iter. 11–12). Having

that in mind, even if a model reaches low BLEU after the limited number of updates used to

make pruning decisions, the model, in most cases, recovers from most of that damage when

finally allowed to converge. The convergence progression of each pruned checkpoint for both

language pairs is presented in Fig. 3.9.

The baselines reach the top BLEU scores quicker during training, but many pruned models

still achieve competitive results later in training as they recover from pruning damage. The

dashed vertical lines in Fig. 3.9 show the late resetting checkpoints. Pruning from half up

to two-thirds of the attention heads leads to longer convergence times, but similar BLEU

results on the development set. As each pruning iteration removes additional 8 heads, the
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Figure 3.8: Validation BLEU after each pruning iteration for English→German and Turk-
ish→English.

final convergence of those models ends up with progressively worse quality. Using different

pruning hyperparameters, such as longer pretraining or pruning loops, could improve training

convergence. There is a breaking point of considerable damage at about 78–83% heads

removed, especially for Turkish→English. At 83% sparsity, there are about 8 heads on the

average left across all layers per encoder, decoder and context. Doing more pruning at this

stage would mean obliterating most if not all attention heads from at least one of those, making

a model incapable of performing translating tasks.

In Tab. 3.6a and 3.6b, I perform the final evaluation on “unseen” testsets and calculate the

average difference in BLEU between the unpruned baselines and pruned models. I also show

the total attention sparsity with the distribution of heads in each layer. In terms of quality, even

the harshest pruning results in about 1 BLEU point damage. However, most customers may

prioritise quality over sparsity and would not tolerate such quality degradation. They may agree

to compromise on quality if the BLEU drop is relatively small (0.1–0.3). I keep that in mind

when analysing the results.

As evident in Tab. 3.6a and 3.6b, pruning 72–78% of all attention heads mostly maintains the

quality set by the baselines to then sharply degrade beyond that point. It indicates that there

exists a minimum set of attention heads needed to perform at a given quality level.
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Figure 3.9: Convergence of big transformer models after removing a given percentage of all
attention heads.
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3.4.10 Experiments: Pruning knowledge-distilled tiny transformer models

I repeat the English→German experiments, but this time in a highly-optimised teacher-student

training setting. The decoder is already reduced to two tied layers in this knowledge-distilled

architecture. In practice, it makes the decoder a single layer of parameters. The single context

layer becomes a bottleneck since decoder self-attention gets replaced with an SSRU. I decided

not to prioritise context in the pruning algorithm and focus on pruning the encoder only. I

follow the workflow set in Fig. 3.7a with pretraining the model for 25k batches and pruning

iterations lasting 15k updates. I remove 3 heads from the encoder in each pruning step across

14 iterations. The final evaluation results are presented in Tab. 3.6c.

The pruning of student models follows the trend set by the big transformer experiments: 75–81%

of encoder heads can be removed with slight (0.2–0.3 BLEU) damage to the quality. Pruning

more than that, like in the previous experiments, damages the model more aggressively by 0.9

BLEU point and can be treated as a trade-off between sparsity and quality with the focus on

sparsity instead.

3.4.11 Quality analysis: Is pruning worth it?

Overall, the lottery ticket approach successfully prunes entire attention heads in both a large

transformer model and a tiny student architecture based on a simple heuristic; most heads can

be removed from a model with negligible damage to the translation quality.

Structural pruning can be interpreted as a form of architecture searching. To confirm whether

the lottery ticket hypothesis remains valid or if the architecture of a winning ticket is the key

aspect, I run the following experiments. Each English→German pruned model I trained so

far is reinitialised, so that the identical architecture and the number of parameters are kept.

Then, I re-train these models from scratch to see if there is no need to bother with pruning

at all, as we could use found sparsity patterns. The results are presented in Tab. 3.7 with big

transformer experiments in Tab. 3.7a and knowledge-distilled tiny students in Tab. 3.7b. The

pruned models in red columns accompany the same models trained from scratch (Reinit).

Among the notable examples is the big model with 78% of all attention heads removed, losing

about 0.3 BLEU with the reinitialised model losing 1.0 point. Similarly, the knowledge-distilled

student is damaged by about 0.2 BLEU at 75% attention sparsity in the encoder, while the

same reinitialised baseline loses 0.6 BLEU point. The quality gap gets smaller with the most

aggressive pruning, again implying a minimum set of attention heads is required for a model to

perform well without severe damage to quality.
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To summarise, the pruned models outperform the identical standalone architectures across

a variety of model sizes (big vs base vs tiny) and training methods (normal vs knowledge-

distillation). The results demonstrate that the advantage of lottery ticket pruning comes from

random initialisation, not the architecture itself. The careful selection of parameters with a

rewind mechanism in place leads to better translation quality in NMT.
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Figure 3.10: The total number of remaining attention heads per encoder, decoder and context
in a big transformer (English→German). The decoder and context attention heads are pruned
rather quickly and harshly in comparison to those in the encoder.

3.4.12 Sparsity analysis: Attention distribution

In this section, I take a closer look at the distribution of attention heads that remain after pruning.

Tab. 3.6 presents the number of heads left in each layer after every pruning iteration, which is

further visualised in Fig. 3.10, 3.11 and 3.12.

First, the heuristic based on attention confidence favours keeping encoder heads over those

in the decoder and context. The plot in Fig. 3.10, which visualises the total number of heads

left in a model, shows that the encoder is the least pruned part of a model. If we follow the

logic of “confident heads equals important heads”, then the encoder seems to hold more of the

important heads overall.

Self-attention heads in the decoder seem especially useless. As shown in Tab. 3.6a and

its visualisation in Fig. 3.11, all self-attention layers in the decoder except the first one get

aggressively pruned, aiming to remove them from a model completely. This finding is quite

interesting in itself as this seems to support the claim of other researchers that deem decoder

self-attention redundant (Xiao et al., 2019) or approximable (Y. J. Kim et al., 2019). Positive

pruning results further affirm this. For example, one of the Turkish→English models (Tab. 3.6b)

removed more than 85% of decoder and context heads at the cost of only 0.1 BLEU point. The

remaining heads are concentrated within a few layers, reducing the overall depth of a model.
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There are two (and possibly more) interpretations of this. Foremost, a model may not need

such a deep decoder, as endorsed by the general popularity of reduced decoders (1–2 layers).

On the other hand, the gap left by redundant attention after pruning is probably minimised by

feedforward layers as they take over the network workload and address potential calculative

limitations.
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Figure 3.11: Attention distribution in each layer per pruning iterations for English→German
from Tab. 3.6a.

Most interestingly, different language pairs also exhibit similar patterns in attention distribution.

In Fig. 3.12, I present the histogram of attention heads in big transformer models with

67% heads removed for English→German and Turkish→English. Both experiments share a

comparable structure. The encoder is valley-shaped, with the second layer being its bottom.

The self-attention in the decoder keeps the first layer intact and (almost) obliterates the rest.

The reverse is true for the context attention: the first layer has been removed, and further layers

participate progressively more. This pattern reveals that a model prefers to first attend to its

translation and then confront it with a source context later.
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Figure 3.12: Attention distribution in the pruned models for English→German and
Turkish→English. The pruned models for both language pairs follow similar patterns.
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Model Pretrain Pruning Convergence Total
Baseline - - 475k 475k
Pruned 81% 25k 15k × 13 iterations 400k 620k

Table 3.8: The number of training updates in the baseline and the pruned English→German
student model.

Since this appears to be the case for two diverse training data sets, a transformer architecture

may require less attention in general, with a varying number of heads up to the task in each

layer. If initialised luckily, it could be potentially trained from scratch with good quality results.

The lottery ticket hypothesis only uncovers the winning ticket that may be, to some degree,

universal across different language pairs.

However, it is important to remember that this distribution pattern is the direct outcome of

using attention confidence as a threshold function. It is entirely possible that using an entirely

different heuristic in the lottery ticket scheme may produce other architecture variants.

3.4.13 Speed analysis: Foreword

The main objective of this research is to remove heads from a transformer to make inference

faster. Due to resetting the parameters in the lottery ticket hypothesis, a model requires a

longer time to train than when trained from scratch. Because of that, I make a trade-off between

a total training time and inference speed, which is particularly useful in an industrial production

environment, where we may afford to train slightly longer but have a faster model to deploy. In

Table 3.8, I show an example comparison of how long it takes to prune and train a model in

contrast to the baseline. In practice, if a model trains for 2–3 days, an additional day may be

needed for a pruning procedure on top of it.

Given two objectives that we have (inference speed and quality), there is no single best model.

Instead, we look at the best possible speed at given quality. Depending on the usage, we

may be more interested in the best translation quality possible, but we have to compromise

on speed. If we do not care about quality, we may prioritise speed instead. Despite attention

heads being just a small fraction of all parameters (∼5% fewer parameters with about 10% size

reduction), pruning them lessens the burden on inference significantly, especially for models

with a deeper decoder. In the knowledge-distillation settings, Junczys-Dowmunt, Heafield, et

al. (2018) achieved 8.57× speed-up with −0.8 BLEU loss on GPU when scaling down from

a big transformer teacher to a base transformer student. In another experiment, they gained

1.31× speed-up with −0.6 BLEU when using 8-bit quantisation on the CPU. My pruning

method complements those as lottery ticket pruning can always remove heads on top of
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existing solutions. For this reason, it is important to explore the benefit of pruning in different

environments. The following sections evaluate and analyse experiments regarding speed for

various architecture sizes: a typical base transformer architecture and a highly-optimised model

based on the efficiency shared task.

3.4.14 Speed analysis: A non-optimised transformer

Let us start by evaluating a larger base transformer with English→German. Tab. 3.9 presents

the results of the speed evaluation. A decoder is the most expensive part of a transformer

architecture, so aggressively pruning its attention leads to a significant speed-up. As seen

in Tab. 3.9, removing more than half of all attention heads leads to 1.6× faster translation

with only 0.1 change in BLEU. Pruning about three-quarters results in more than twice faster

translation speed at a small (0.2–0.3) BLEU cost. This model reaches about 2000 words per

second in inference speed. This shows that the lottery ticket pruning could reduce the cost of

using the largest and most expensive models, prioritising quality over the speed at the end of

the day.

Architecture Average BLEU Inference speed
Model Att. sparsity Model size WMT14–16 ∆ Avg. time Speed-up WPS
Baseline 0% 241MB 30.4 - 75.7 1.00 897
Pruned i=9 50% 201MB 30.1 -0.3 52.1 1.45 1304
Pruned i=10 56% 197MB 30.3 -0.1 45.9 1.65 1479
Pruned i=11 61% 193MB 30.2 -0.2 42.7 1.77 1593
Pruned i=12 67% 189MB 30.0 -0.4 39.0 1.94 1739
Pruned i=13 72% 185MB 30.2 -0.2 35.9 2.11 1892
Pruned i=14 78% 181MB 30.1 -0.3 33.8 2.24 2011
Pruned i=15 83% 177MB 29.4 -1.0 32.0 2.37 2124

Table 3.9: Inference speed analysis of base transformer models for English→German after
removing a given percentage of all attention heads. WPS is words per second. All models run
on 16 CPU cores.

3.4.15 Speed analysis: A highly-optimised transformer

Knowledge-distillation is the state-of-the-art approach to getting the fastest possible translation

with a negligible quality compromise. The base and tiny experiments are not comparable due to

training for different tasks/data sets. However, in terms of speed, the most pruned base model

reaches about 2000–2100 words per second, while the tiny baseline translates about 2300

words per second (see Tab. 3.10). These numbers show that, depending on the task, data, and

target deployment, it may be better to utilise a smaller, more robust architecture rather than

bother with pruning to get similar speed-up effects.
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A small student model translates about 10% faster when pruned at 75% of sparsity at the

cost of 0.1 BLEU point. It is important to remember that the decoder is the key reason the

transformer architecture is slow, despite being optimised with an SSRU. Thus, this type of

model has a smaller margin of improvement. The hardware and low-level code optimisations

limit further advancement. Again, in this case, attention pruning is complementary and pushes

the state-of-the-art even further.

Just for comparison, I also include simple baseline models trained with half (4) and one

(1) attention head in each layer (including context attention). The model with just one head

everywhere is slightly faster than our pruned model but at the cost of 2 BLEU points. This loss

clearly shows again that careful pruning gives much better results than just training a smaller

model from the start.

Architecture BLEU Inference speed
Att. sparsity # params WMT19 ∆ Time Speed-up WPS

Baseline 0% 15,7M 39.9 0.0 18.1 1.00 2283
Baseline.half 50% 14.8M 39.0 -0.9 18.0 1.01 2300
Baseline.one 88% 14.1M 37.8 -2.1 15.2 1.20 2729
Pruned i=9 56% 14,8M 40.0 0.1 16.9 1.07 2443
Pruned i=10 63% 14,7M 39.7 -0.2 16.7 1.08 2475
Pruned i=11 69% 14,6M 39.9 0.0 16.6 1.09 2489
Pruned i=12 75% 14,5M 39.8 -0.1 16.3 1.11 2542
Pruned i=13 81% 14,4M 39.5 -0.4 16.4 1.11 2527
Pruned i=14 88% 14,3M 38.9 -1.0 16.2 1.12 2558

Table 3.10: Inference speed analysis of knowledge-distilled tiny transformer models for
English→German after removing a given percentage of encoder attention heads. WPS is
words per second. All models run on 1 CPU core.

3.4.16 Speed analysis: The Efficiency Shared Task (WNGT2020)

To compare my work with the state-of-the-art in machine translation speed, I submitted

English→German student models to the WNGT2020 efficiency shared task (Bogoychev et al.,

2020) as a part of the Edinburgh team. These submissions were converged on a larger amount

of data (185M sentences instead of 13.5M) for maximised quality. The speed got evaluated by

translating 1M sentences on a single CPU core and a single GPU. The quality was evaluated

on WMT1*, which is an average over WMT10–19 testsets, excluding WMT12. The results are

presented in Tab. 3.11 and 3.12.

Since the pruning method usually selects one head to remove per layer, I experimented with

more aggressive (pushy ) and lenient (steady ) pruning by removing 6 and 3 heads per iteration,

respectively. The steady pruning results in a uniform distributions. My pruned submissions

were on the Pareto frontier for speed and quality, meaning that no other submission was

simultaneously faster and higher quality.
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On CPU, the speed-up is about 10% with 75% encoder heads removed (Tab. 3.11). In terms of

GPU, the best pruned model gains 15% speed-up w.r.t. words per second, losing 0.1 BLEU in

comparison to an unpruned model (Tab. 3.12). These results show that the pruned models

achieve comparable quality with faster translation even when tested on a larger scale and push

the Pareto frontier forward.

BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 2050

Tiny.Steady i=12 2 0 2 1 3 4 14.5M 56MB 41.4 32.4 2282
Tiny.Steady i=14 0 0 1 1 1 3 14.3M 55MB 40.2 31.4 2350

Tiny.Pushy i=6 2 2 2 2 2 2 14.5M 56MB 41.1 32.4 2298
Tiny.Pushy i=7 1 1 1 1 1 1 14.3M 55MB 40.8 32.1 2346

Table 3.11: Quality and inference speed of our WNGT2020 models with pruned attention on
CPU. Words per second (WPS) is evaluated in float32 with a single CPU core on the official
WNGT2020 input of 1M sentences. WMT1* is an average over WMT10–19 testsets, excluding
WMT12.

BLEU
Model Enc. heads Params. Size WMT19 WMT1* WPS

Tiny 8 8 8 8 8 8 15.7M 61MB 41.5 32.9 8210

Tiny.Steady i=12 2 0 2 1 3 4 14.5M 56MB 41.4 32.4 9518

Tiny.Pushy i=6 2 2 2 2 2 2 14.5M 56MB 41.0 32.4 9508

Table 3.12: Quality and inference speed of our WNGT2020 models with pruned attention on
GPU. Words per second (WPS) measured on an AWS g4dn.xlarge instance with one NVidia
T4 GPU. WMT1* is an average over WMT10–19 testsets, excluding WMT12.

We chose two models for our CPU submissions: those with “202134” and “222222” distributions

of attention heads (Tiny.Steady i=12 and Tiny.Pushy i=6). They were evaluated batch-wise on 1

CPU core as well as in latency with a batch set to a single sentence. Due to a memory leak our

team encountered during our submission period, the organisers allowed a few models to be

re-evaluated down the line. The pruned models achieved about 32 BLEU points averaged over

WMT1* testsets, which is slightly different to Tab. 3.11. The official Pareto analysis is presented

in Fig. 3.13 for both single-core and latency tasks. I highlighted the pruned models on the plots

to easily distinguish them from all other submissions. The models with the attention pruned

through the structural lottery ticket approach are on the Pareto frontier in the tasks, proving

that this method produces state-of-the-art robust architectures in quality and speed.
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Figure 3.13: The official Pareto trade-offs for English→German models in WNGT2020
Efficiency Shared Task (Heafield et al., 2020). The pruned models are circled.
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3.5 Exploring block-wise pruning outside of attention

So far, the lottery ticket approach successfully pruned entire attention heads based on a

simple heuristic without damaging the quality. This section looks into a general use case of a

block-wise lottery ticket. Attention pruning is a special case of it, in which quite large blocks

(e.g. 256×32) can be entirely removed from a model without enforcing sparsity in matrices.

Slicing is possible due to the nature of the attention mechanism and its calculations. The

generalisation of block-wise lottery ticket pruning needs to be adapted appropriately.

3.5.1 Methodology

First and foremost, blocks in feedforward layers must be much smaller: their dimensions are

usually from 8 to 32. In their work on block sparsity and lottery ticket hypothesis, Siswanto

(2021) gauged that coarser block sizes lead to worse prediction accuracy in image recognition

models trained on MNIST dataset.

Figure 5-5: Effect of varying block granularity on accuracy for fully connected LeNet
trained on MNIST benchmark. Left: Networks with fine-tuning. Right: Networks
with weight rewinding (lottery ticket). Blocks are long strips with a power-of-two
side length (top) or squares with power-of-two side lengths (bottom).

46

Figure 3.14: The effect of block sizes in block-sparse lottery ticket pruning performed on a
LeNet architecture on MNIST image recognition benchmark (taken from (Siswanto, 2021)).
Block sparse networks perform best quality-wise when sparsified more granularly.

Larger blocks are hardware friendly as matrix multiplication algorithms may require less

overhead, but, in turn, they are less flexible in sparsity patterns, especially in smaller models.

Next, not all layers may benefit from block-wise sparsification. For example, each row in

an embedding layer corresponds to a word in a vocabulary. Applying square block sparsity

patterns over the embedding matrix would insinuate some relations between neighbouring

words while they are not related or sorted. The embedding matrices are frequently sliced with

words selected in shortlisting. It would be difficult to take advantage of structural sparsity in

such case without impacting multiplication overhead negatively.
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BLEU
Model Block size FFN Sparsity WMT16 WMT17 WMT18 WMT19 Avg. ∆

Baseline - 0% 36.4 29.3 43.2 39.9 37.2 -
+ pruned attention - 0% 36.3 28.8 43.1 39.8 37.0 -0.2

+ pruned FFN 8 50% 35.7 28.2 41.5 38.6 36.0 -1.2
+ pruned FFN 16 50% 35.8 28.3 41.9 38.7 36.2 -1.0
+ pruned FFN 32 50% 35.4 28.1 41.7 39.0 36.1 -1.2
+ pruned FFN 8 75% 34.6 27.2 40.5 37.6 35.0 -2.2
+ pruned FFN 16 75% 34.6 27.2 40.6 37.6 35.0 -2.2
+ pruned FFN 32 75% 34.5 27.1 40.5 37.4 34.9 -2.3

Table 3.13: The results of simple feedforward pruning on a top of a model with attention heads
pruned with the lottery ticket. Each layer has been uniformly pruned with 50%/75% of blocks
removed. Pruning was performed in a single step on a late resetting checkpoint and then
subsequently trained until convergence.

3.5.2 Setup

Feedforward layers are much simpler and, just like attention, significantly contribute to compu-

tations. As a follow-up for my work, my next goal is to build upon the attention sparse results I

have gotten so far. For this reason, I chose an English→German knowledge-distilled model

(see Sect. 3.4.5) with an already pruned encoder attention. I selected a checkpoint with 75%

of encoder heads removed (see Tab. 3.6c, Pruned i=12) as it only lost −0.2 BLEU in quality.

3.5.3 Experiments: A one-off block-sparse pruning

In this experiment, I test how a model behaves when feedforward layers are pruned straightaway

on a slightly pretrained and already attention-sparse model. I masked 50% and 75% of blocks

layerwise in feedforward layers based on the largest parameter in each block. Tab. 3.13 provides

the breakdown on the results for different block sizes: 8×8, 16×16 and 32×32. In the end,

there is not much difference in translation quality between those models. The most probable

explanation is that this pruning is simplistic and too aggressive. Still, since there is no major

difference for this baseline between block sizes and Fig. 3.14 has shown that smaller blocks

are better for quaility, I focus on experimenting with 8×8 blocks due to their flexibility from now

on.

3.5.4 Experiments: A block-sparse feedforward pruning with a lottery ticket
approach

Having defined a block size, I proceed with proper experiments on iterative lottery ticket

pruning. In each pruning iteration, I mask an additional 10% of blocks with the lowest maximum

magnitude. Then, I converge the checkpoints with induced 50–90% sparsity.
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Sparsity BLEU
Model Attention FFN WMT16 WMT17 WMT18 WMT19 Avg. ∆

Baseline 0% 0% 36.4 29.3 43.2 39.9 37.2 -
Pruned baseline 75% 0% 36.3 28.8 43.1 39.8 37.0 -0.2
Pruned iter=5 75% 50% 35.5 28.0 41.9 39.1 36.1 -1.1
Pruned iter=6 75% 60% 35.9 28.1 41.9 38.7 36.2 -1.0
Pruned iter=7 75% 70% 35.1 27.9 41.1 38.7 35.7 -1.5
Pruned iter=8 75% 80% 35.0 27.4 40.7 37.9 35.3 -1.9
Pruned iter=9 75% 90% 34.2 26.9 39.3 36.9 34.3 -2.9

(a) Uniform pruning with iter. step = 10k
Sparsity BLEU

Model Attention FFN WMT16 WMT17 WMT18 WMT19 Avg. ∆

Baseline 0% 0% 36.4 29.3 43.2 39.9 37.2 -
Pruned baseline 75% 0% 36.3 28.8 43.1 39.8 37.0 -0.2
Pruned iter=5 75% 50% 35.7 28.6 42.7 39.1 36.5 -0.7
Pruned iter=6 75% 60% 36.0 28.4 42.3 39.1 36.5 -0.7
Pruned iter=7 75% 70% 35.6 28.0 41.6 38.9 36.0 -1.2
Pruned iter=8 75% 80% 35.1 27.6 41.1 38.5 35.6 -1.6
Pruned iter=9 75% 90% 34.6 27.4 40.1 37.4 34.9 -2.3

(b) Uniform pruning with iter. step = 25k
Sparsity BLEU

Model Attention FFN WMT16 WMT17 WMT18 WMT19 Avg. ∆

Baseline 0% 0% 36.4 29.3 43.2 39.9 37.2 -
Pruned baseline 75% 0% 36.3 28.8 43.1 39.8 37.0 -0.2
Pruned iter=5 75% 50% 36.1 28.6 42.6 40.0 36.8 -0.4
Pruned iter=6 75% 60% 36.1 28.6 42.3 39.1 36.5 -0.7
Pruned iter=7 75% 70% 35.7 28.4 42.2 39.1 36.4 -0.8
Pruned iter=8 75% 80% 35.2 27.9 41.5 38.4 35.8 -1.4
Pruned iter=9 75% 90% 34.6 27.2 40.4 37.6 35.0 -2.2

(c) Uniform pruning with iter. step = 45k
Sparsity BLEU

Model Attention FFN WMT16 WMT17 WMT18 WMT19 Avg. ∆

Baseline 0% 0% 36.4 29.3 43.2 39.9 37.2 -
Pruned baseline 75% 0% 36.3 28.8 43.1 39.8 37.0 -0.2
Pruned iter=5 75% 50% 36.0 28.5 42.6 39.2 36.6 -0.6
Pruned iter=6 75% 60% 35.5 28.4 42.4 38.9 36.3 -0.9
Pruned iter=7 75% 70% 35.6 28.1 41.7 38.7 36.0 -1.2
Pruned iter=8 75% 80% 35.1 27.7 41.2 38.2 35.6 -1.6
Pruned iter=9 75% 90% 34.5 27.2 40.5 37.7 35.0 -2.2

(d) Global pruning with iter. step = 25k

Table 3.14: Evaluation of knowledge-distilled transformer models converged at ith pruning
iteration with the following sparsity of attention and feedforward layers. Feedforward layers
were pruned uniformly (a, b, c) and globally (d) with an 8×8 block pattern at given sparsity
level.

To further investigate how the length of pruning loops affects the final quality, I prune and

reset after 10k (Tab. 3.14a), 25k (Tab. 3.14b) and 45k (Tab. 3.14c) batches. Additionally, I also

compare layerwise and global pruning in 25k pruning loops (Tab. 3.14b and 3.14d). Alongside

the attention-pruned baseline model that I use as a starting checkpoints in these experiments,

I present the unpruned baseline as well to fairly compare the overall translation quality.
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It is apparent that, within the constraints of this specific pruning heuristic, longer pruning steps in

the iterative lottery ticket method lead to better translation quality when converged. For instance,

the encoder with three-quarters of attention heads removed, and 70% of parameters blocks in

feedforward layers masked damaged the model by 1.5 BLEU when trained with 10k pruning

steps. Meanwhile, the damage gets reduced by almost half (−0.8) with 45k steps. Ideally, one

would fully train a model for as long as possible, but time constraints and computational costs

are a limit here. It is up to an engineer to decide whether they can afford longer training times;

however, it seems a good idea to have a loop at least see a significant portion of data before

making a pruning decision.

Next, I investigate a contrast between local and global pruning, as in uniform and irregular

sparsity patterns and how they affect the quality. The layerwise results from Tab. 3.14b can be

directly compared to Tab. 3.14d with global ones. The two tables do not show any meaningful

difference in BLEU. It is important to remember that it is not a general conclusion but one

drawn just on this specific pruning heuristic. It could be that another pruning function would

favour a different outcome.

In terms of the overall translation quality of the pruned models, pruning half of the parameters

in encoder feedforward layers on top of already pruned attention loses about 0.4 BLEU point

when compared to a fully dense baseline. Being more aggressive than that results in 70% of

feedforward sparsity at the cost of less than 1 BLEU point and 90% sparsity with slightly more

than 2 BLEU in damage. These numbers show that it is possible to prune transformer layers

extensively with a trade-off in translation quality. The question is: can this pruning method

lead to a faster inference? Individual blocks in feedforward layers cannot be entirely removed

without utilising a block-sparse memory representation and corresponding matrix multiplication

routines. As will be shown in the next chapter (see Sect. 4.9), optimising sparse matrices

is quite difficult. A matrix needs to be at least 70–80% sparse to get any more efficient in

compression and memory consumption. Even if we ignore that aspect and focus on speed, we

need at least 50% sparsity to get a similar speed level of a dense operator.

At that point, I investigated the possibility of incorporating sparse operators into a machine

translation toolkit (Marian NMT), at least for CPU and found the support for those operators

severely lacking. Without fully customised machine-learning focused operators, any modific-

ations I would have to perform to force a toolkit to work around compatibility issues would

diminish any potential speed gains due to required overhead operations. It would also require

substantial amount of time of code development. There was no issue with attention pruning

as a model can be sliced into a smaller but still dense architecture, leading to faster inference

without specialised kernels. Given the problems above and many more, I shift my research

focus to methods that would alleviate the issues by remaining dense and simplify/shorten a

whole pruning process while potentially achieving better translation quality.
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3.6 Conclusions

In this work, I investigated iterative pruning with rewinding to apply blockwise pruning to a

transformer model. Specifically, I targeted the attention mechanism to shrink a model and

make it faster. As experiments have shown, I achieved a real inference speed-up, which does

not require any sparse matrix multiplication routines or low-level code optimisations. The

lottery ticket algorithm removes a majority of attention heads in a model, making them faster

with negligible or no change to translation quality. This pruning method complements other

optimisation techniques such as knowledge distillation and quantisation, further pushing the

Pareto frontier of the state-of-the-art approaches. Attention is one of the most expensive layers

in a model, and the structural pruning applied to it proved to be effective in optimising them. It

does not only removes individual heads but leads to pruning whole layers as well, which allows

skipping most calculations altogether. The experiments on NMT have proved that it is possible

to remove a significant percentage of all heads (50–72%) in a large transformer, which directly

results in 1.6–2.2× faster translation. It has also successfully been applied in a competitive

efficiency shared task setting, resulting in 10–15% faster translation at only 0.1 BLEU cost for

an already highly-optimised architecture.

The natural progress of this research would be to prune other parts of the network — with

the lottery ticket approach or not — to see how far block pruning can go without too much

impact on quality. Besides attention, embedding and feedforward layers also contribute to

a workload and may also benefit from pruning. I have performed experiments on blockwise

pruning of feedforward layers, stacking on already attention-pruned architectures. The results,

although quite promising, have highlighted the limitations of sparse calculations in the context

of optimisation. Moreover, the lottery ticket approach is a rather tiresome method. Among

its constraints is training time. The lottery ticket algorithm requires training and resetting

parameters in a loop, making a model “stuck” until pruning finishes. Even though it is a simple

method, the lottery ticket pruning takes too long to perform, especially for NMT models. The

heuristic algorithms I chose can be improved upon, especially since there is still room for

translation quality improvement and a better speed-BLEU trade-off. Ideally, a pruning method

would require only one training pass to prune concurrently without damaging the quality. Long

pruning time is one of the lottery ticket’s weak points, and I plan to explore pruning methods

outside of it in my next work.



Chapter 4

Structural Pruning of Transformer for

Speed Using Group Lasso

The main disadvantage of the lottery ticket hypothesis is the enormous time it takes to train a

model from start to finish. Empirically, it can make training progress twice as long for a large

state-of-the-art model on 4 GPUs. Moreover, there are many hyperparameters, such as the

lengths of pretraining and pruning phases, sparsity level for each iteration, et cetera. The grid

search makes deployment even more costly.

There is no direct feedback to a neural network during the process in a typical pruning

approach. Usually, parameters are chosen based on some heuristic (like their magnitude)

and then masked for the rest of the training. Backpropagation has to abruptly accommodate

their absence, even if a pruning process only removes a minuscule subset of parameters

every so often. Moreover, the complexity of pruning and excessive training time continues to

be a concern in the thesis. The previous study highlighted a necessity for simpler and better

structural pruning methods in a transformer. The key research question of this chapter is

whether or not a less time-consuming regularisation method can result in a Pareto-optimal

inference speed for machine translation.

4.1 Motivation

In this chapter, I investigate structural pruning through regularisation. As introduced in Sect. 2.5,

regularisation is a technique that reduces the complexity of a model to make it more flexible

and prevent overfitting. Sparsity gets achieved by penalising a cost function with parameters

themselves. Then, the training objective forces the parameters to go down alongside the

penalty. Various regularisation terms have different characteristics. In particular, I examine

the usage of group lasso to sparsify parameters in a transformer architecture structurally.

The group lasso penalty offers an effective way to prune continuously during training without

expensive lottery ticket loops that do not move the training progress forward. Structural sparsity

such as block-wise has a potential for significant inference speed-up as it is more hardware

friendly than coefficient-wise pruning, which I also plan to explore in this work.

69
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4.2 Background: Group Lasso

Given parameters w split into groups G, the simplest instance of a non-overlapping group lasso

is defined as follows:

R( f ) = λ
|G|
∑
g=1

Ã
|Gg|
∑
i=1

(
wg

i
)2 (2.20 revisited)

λ controls the overall strength of the regularisation term. The larger it is, the more aggressive

sparsity it enforces. The example use case of a group lasso and its impact on a cost function is

visualised in Fig 2.9e and 2.10f.

The group lasso penalty is, just like any other regulariser, added to the cost function and further

scaled by a batch size as well:

E(batch) =
1

|batch|

(
∑

x∈batch
CE(x)+ ∑

l∈layers
R(l)

)
(2.21 revisited)

4.3 Research outline

First, I continue my research into block sparsity by applying block-sparse group lasso onto

feedforward layers in various configurations. These preliminary experiments serve as an

exploratory ground in quality performance and clarify the methodology used in the following

research. Next, I proceed with an independent analysis of sparse kernels and their efficiency,

looking for potential optimisation opportunities. Taking block-sparse matrices extracted directly

from a pruned model, I run an evaluation of sparse×dense matrix multiplication operators

using various matrix representations. This analysis highlights that, despite quite positive

speed-up in multiplication routines, the overhead to perform them is substantial. Moreover, the

re-implementation efforts to adapt sparse kernels for deep learning usage would be too much

time-consuming for the scope of this PhD.

Even though I found this research direction fruitless in terms of real-life efficiency, an inter-

esting pattern emerged from those experiments. A block-sparse transformer prefers to prune

parameters within the same neural connections, as in rows and columns. It allows for easy

model slicing: its sparse matrices can be sliced and collapsed to be smaller but still dense in

a way that does not affect the flow of calculations. Further experiments support this notion:

models that get sliced at the end of training maintain their quality while collapsing zeroed-out

connections and significantly boosting inference speed with no need for specialised kernels.
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This observation pushed the direction of research toward group lasso applied to individual

neurons directly instead of blocks. I investigate neuron-level regularisation of transformer layers

in Sect. 4.11 and 4.12. Sect. 4.13 extends this work into larger structures with regularisation

over entire attention heads.

W1

h

b1

input output

W2

b2

Sparse parameters

W1

h

b1

input output

W2

b2

Before slicing

After slicing

Figure 4.1: Visualisation of feedforward calculations with pruned connections corresponding
to rows and columns. Sparse parameters can be removed and matrices collapsed without
affecting input and output.
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Next, I analyse the resulting models in parameter distribution and Pareto optimality in speed

vs quality. Following that, I present the findings of the Efficiency Shared Task, in which I

participated and applied this structural pruning approach in practice. Last but not least, I look

into the human evaluation and its subsequent judgement.

The research on group lasso pruning presented in this chapter has been published in Behnke

et al. (2021) and subsequently explored in Behnke and Heafield (2021).

4.4 Methodology

4.4.1 Model slicing

Due to the nature of affine calculations, it is possible to slice the matrices in a feedforward

layer to obtain a smaller but still dense architecture. To show it is possible, I illustrate matrix

calculations performed in one feedforward layer in Fig. 4.1. The first affine operation is in a

dot-dashed line, in which the input tensor is multiplied with the W1 parameter matrix and the

bias term b1 is added. The second affine operation is in a green dashed line, and the process

is repeated with the other set of parameters instead. The dark blue segments of W1 and W2

(and their biases) are to be removed. It is possible to slice corresponding rows and columns to

collapse matrices in a way that affects neither input, output, nor the hidden representation h

in-between.

4.4.2 Pruning scheme

Throughout the preliminary experiments in Sect. 4.8.3, I explore various pruning schedules

to achieve the best translation quality without compromising on training time. Inspired directly

by the three steps in the lottery ticket method (see Fig. 3.7), I adapt a similar approach with

structural regularisation. Fig. 4.2 presents the general regularisation scheme used in this

chapter.

Initial stages of transformer training are known to be problematic and sensitive to model

hyperparameters (Aji, Heafield, & Bogoychev, 2019; L. Liu, Liu, Gao, Chen, & Han, 2020;

Nguyen & Salazar, 2019). During a learning rate warm-up, a transformer starts training with

1–2 BLEU and quickly jumps over to 15–30 or more within a short training period, then slows

down.
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Thus, the first step of the pruning is short pretraining to stabilise the quality in early stages

of training, just like in the previous work. BLEU improvement slows down to be less than 1

BLEU point in a single checkpoint. This way, I avoid potential damage to a model during this

critical initial period. The next phase turns regularisation on and prunes parameters structurally

at the end of it. Finally, a model is allowed to converge with its architecture collapsed into a

smaller one after removing sparse parameters. In case of the regularisation being on until

convergence, the architecture is only sliced at the end.

25k 250k 250k+

Initialisation
Regularisation

ON

Pretraining
phase

Pruning
phase

Regularisation
ON/LESS/OFF

Convergence
phase

Figure 4.2: Visualisation of pruning schemes using structural regularisation.

Each experiment in this chapter has its own scheduling methodology variant explained in their

specific sections.

4.5 Related work

Using regularisation to sparsify groups of parameters was introduced by Yuan and Lin (2006)

and has been since then built upon in the machine learning field (Scardapane, Comminiello,

Hussain, & Uncini, 2017; Wen, Wu, Wang, Chen, & Li, 2016). Dodge, Schwartz, Peng, and

Smith (2019) used group lasso to sparsify a variant of RNN for text classification, which is an

easier task to learn than NMT. They have to train until convergence twice, which I avoid. They

provide no speed or model size analysis, suggesting that there is no improvement or proper

implementation.

Wuebker, Simianer, and DeNero (2018) previously used the group lasso to compress the delta

between a base model and a domain adapted version of the model. They still have to run

a full-sized model in inference, so they have no overall speed gain. They also have to store

the full base model; compression only refers to the delta. In contrast, my work makes the

base model faster and smaller. The different goals also mean different groups: they focus on

embeddings that update in domain adaptation, while I focus on costly parts of the architecture.

Though we use the same algorithm of group lasso, our method differs in several ways from

(Murray, DuSell, & Chiang, 2019). In my later experiments, I prune submatrices in addition to

rows and columns, though experiments on just rows and columns show better performance

than theirs. They pruned only feedforward layers; I see more speed-up from feedforward layers
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and additionally prune attention. Finally, I use the normal Adam optimiser Kingma and Ba

(2014) instead of proximal gradient descent (Parikh & Boyd, 2014). Empirically, I find turning

regularisation off after some training is important to quality. Overall, I achieve a much better

trade-off between quality and speed/compression, which I will proceed to show in this chapter.

4.6 Problems with existing sparse kernels

A primary concern of machine translation deployment is efficiency. In the previous chapter,

I focused on pruning attention heads first and foremost, and there are multiple key issues

in the pruning research field. Unfortunately, the further I looked into researching the topic

during my PhD, the more disappointed I got with the current solutions. For instance, many

existing methods, such as Voita et al. (2019), often turn out not to be reproducible on large-

scale datasets. Most pruning papers suffer from the overly theoretical analysis without a clear

demonstration that their brand new method is better than the current state-of-the-art. For the

most part, they report size compression but not speed as its optimisation is difficult. They

usually present potential boost in FLOPs that does not reflect the real-time impact. Those

papers that do speed analysis often report slower performance (e.g. Yao et al. (2019) report a

87.5% sparse model being 1.6× slower using cuSPARSE that they eventually improve upon

with their custom balanced pruning being 2.4× faster instead) or no gains at all (Brix et al.,

2020).

Researchers’ huge oversight in the field is comparing their methods to bad baselines. Too

much work (Gu et al., 2018; J. Lee et al., 2020; Y. Wang et al., 2020) on efficiency compares a

bare baseline model with their optimised system, which is smaller or faster in exchange for

some reduction in BLEU. These papers fail to prove that their method works better than existing

approaches that also provide a similar quality–efficiency exchange. Among them are techniques

such as knowledge distillation Y. Kim and Rush (2016a), quantisation (Aji & Heafield, 2020)

or simple benchmarks like training a smaller model with fewer layers, reduced dimensions et

cetera. Comparing to a pure unoptimised baseline skews the perception, resulting in “orders of

magnitude faster performance” when it does not apply; engineers prefer smaller robust models

over new complicated methods with questionable payoff. Blalock, Ortiz, Frankle, and Guttag

(2020) has summarised and highlighted many such issues in the pruning research field. The

question is whether the trade-off offered by a new method is any better than the trade-offs

already available, regardless of the type of method. Stacking the existing methods produces a

variety of data points with different speeds and quality. The Pareto frontier is the set of data

points that a practitioner would choose from: no other data point is simultaneously faster (or

smaller) and of higher quality. I strongly believe that a new method’s empirical justification

should advance the Pareto frontier. The following research seeks to remedy these shortcomings

by building upon and comparing them to strong baselines to show the frontier advances.
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4.7 Setup: knowledge-distilled tiny transformers

In the experiments, I concentrate on three language pairs: English→German, Spanish→English

and Estonian→English. I use knowledge distillation (Y. Kim & Rush, 2016a) under teacher-

student regime. Let us start with tiny student models, which are already very small and fast,

making them a solid baseline for optimisation research.

Students for all language pairs have an embedding dimension of 256 and feedforward of 1536,

based on “tiny” architecture from Y. J. Kim et al. (2019). The attention has 8 heads in each

layer except for decoder self-attention, which is replaced by a faster SSRU (Simpler Simple

Recurrent Unit) Y. J. Kim et al. (2019). The models use a shared vocabulary of 32,000 subword

units generated by SentencePiece Kudo and Richardson (2018). The shortlisting translates

using the top 50 words per input token and overall and top 50 most frequent words in the

vocabulary.

I tested different configurations of layers to examine trade-offs between them and potential

bottlenecks. The number of layers in both encoder and decoder describe each architecture and

whether the decoder is tied. Thus, I investigate the following architectures: “6–2 tied”, “6–2”,

“6–6” and “12–1”.

I evaluate the quality and speed on a single CPU core. In order to expand beyond BLEU and

to further explore the impact of pruning on translation quality, I additionally evaluate some

experiments with chrF (Popović, 2017) and COMET1 (Rei, Stewart, Farinha, & Lavie, 2020),

with a human evaluation down the line as well. I use SacreBLEU (Post, 2018) for BLEU and chrF.

Training finishes when BLEU stops improving for 20 consecutive validations. The checkpoint

with the highest BLEU score is then selected.

Other training hyperparameters were Marian defaults for training a base transformer model.2 I

used dynamic batching, filling a 10GB workspace on each of 4 GPUs, resulting in about 71,000

words per batch in a “6–2 tied” student and about 46,000 words per batch in a “6–6” student.

As is more effective in the teacher-student regime, no dropout or label smoothing is applied.

The optimiser is Adam (Kingma & Ba, 2014).

1. I used the default ’wmt20-comet-da’ metric model.
2. Available via -task transformer-base.
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English→German

For English→German, I re-use the same knowledge-distilled setup as described in Sect. 3.4.5.

I follow the Workshop on Neural Generation and Translation 2020 Efficiency shared task

(WNGT2020) 3 under the WMT 2019 data condition (Barrault et al., 2019). The training corpus

consists of 13.5M parallel sentences, using the concatenated English→German WMT testsets

from 2016–2018 as a development set.

Spanish→English

For Spanish→English, I use teachers provided by the Bergamot project,4 which is an ensemble

of two big transformer models (Vaswani et al., 2017a) with 6 layers in encoder and decoder,

embedding size of 1024 and feedforward size 4096 and 8 attention heads. The students trained

on 242M sentences which included about 15M of mixed forward- and backtranslations. The

development set is the WMT13 testset.

Estonian→English

Similarly to Spanish, I use Estonian→English teachers provided by the Bergamot project

with the same architecture described above. The students trained on 132M sentences which

included about 30M of mixed forward- and backtranslations, and a WMT18/dev was used for

development.

4.8 Block-sparse regularisation of feedforward layers

Expanding the work from the previous research, I proceed with block sparsity over feedforward

layers. The lottery ticket approach turned out to be quite expensive to perform, and while it

resulted in good translation quality, there is a wide array of possible improvements. Instead of

using the lottery ticket hypothesis, I achieve block-wise sparsity in feedforward layers through a

group lasso. Since block sparsity should be hardware friendly, I perform additional analysis of

matrix multiplication routines on parameters using sparse kernels. The goal is to get an even

better quality-sparsity trade-off and show a real-time inference speed-up on CPU hardware.

3. https://sites.google.com/view/wngt20

4. https://github.com/browsermt/students

https://sites.google.com/view/wngt20
https://github.com/browsermt/students
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4.8.1 Setup

I begin with English→German experiments as described in the Setup (Sect. 4.7). The

architecture is 6–2 with a tied decoder.

4.8.2 Methodology

I follow the general schedule defined in Sect. 4.11.1. I decided to pretrain for 25k batches in

these experiments. After the pretraining phase, I take the checkpoint and start a fresh training

round with the regularisation turned on until a model converges.

4.8.3 Experiments: Preliminary

For the first experiments described in this section, I focus on pruning feedforward layers, which

consist of two affine operations with parameter matrices W1 and W2. I apply a block-wise group

lasso with a block size set to 8×8 to both encoder and decoder layers. The bias terms are

included in regularisation with 1×8 block sizes instead.

The λ is grid-searched over {0.1,0.2,0.3,0.4,0.5,0.75,1.0} to see a variety of sparsity levels.

The results are presented in Tab 4.1, which specifies the percentage of blocks pruned in each

feedforward layer. A block is considered pruned if a sum of absolute parameters within it is less

than 1e−6.

Again, the single decoder layer is a bottleneck, reluctantly pruned only with increasingly stronger

regularisation. There is a jump in a sparsity level between λ being 0.1 and 0.2, which means

there exists a point where the regularisation fully launches for most layers. The first encoder

layer is prioritised but reaches similar sparsity to other layers when aggressively pruned in

general.

In terms of quality, removing about half the blocks damages the model by −1.1 BLEU point.

Pruning more than 90% results in 2.0–2.7 BLEU loss. It is substantial damage, given that we

do not know yet how much faster these models could potentially be with block-sparse kernels

in place. Moreover, the models were trained with regularisation until convergence. It may impair

the overall quality as a network does not have the opportunity to recover from pruning without

the constraint of a penalty.
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Reg. λ → Base 0.1 0.2 0.3 0.4 0.5 0.75 1.0

B
lo

ck
sp

ar
si

ty

Enc. 1 0% 42% 84% 93% 94% 95% 96% 96%
Enc. 2 0% 6% 65% 86% 90% 93% 92% 96%
Enc. 3 0% 0% 54% 79% 89% 93% 96% 97%
Enc. 4 0% 5% 64% 85% 90% 95% 96% 98%
Enc. 5 0% 5% 63% 84% 89% 92% 96% 98%
Enc. 6 0% 0% 40% 71% 81% 87% 93% 97%
Dec. 1 0% 0% 0% 38% 58% 73% 86% 91%
Avg. 0% 8% 53% 77% 84% 90% 93% 96%

B
LE

U

WMT16 36.7 36.8 36.0 35.4 35.2 35.2 34.6 34.6
WMT17 29.6 29.1 28.4 28.0 27.8 27.9 27.3 27.2
WMT18 44.0 43.4 42.4 41.8 41.4 40.9 40.5 40.2
WMT19 40.0 40.6 39.2 39.1 38.3 38.2 37.5 37.4
Avg. 37.6 37.5 36.5 36.1 35.7 35.6 35.0 34.9
∆ — -0.1 -1.1 -1.5 -1.9 -2.0 -2.6 -2.7

Table 4.1: Quality analysis of tiny knowledge-distilled transformer models for English→German
after removing a given percentage of blocks.

Reg. λ → Base 0.3 0.3→ 0.1 0.5 0.5→ 0.1

B
lo

ck
sp

ar
si

ty

Enc. 1 0% 93% 92% 95% 94%
Enc. 2 0% 86% 86% 93% 93%
Enc. 3 0% 79% 78% 93% 93%
Enc. 4 0% 85% 85% 95% 94%
Enc. 5 0% 84% 84% 92% 91%
Enc. 6 0% 71% 70% 87% 86%
Dec.1 0% 38% 37% 73% 69%
Avg. 0% 77% 76% 90% 89%

B
LE

U

WMT16 36.7 35.4 35.8 35.2 35.6
WMT17 29.6 28.0 28.4 27.9 28.0
WMT18 44.0 41.8 42.4 40.9 41.6
WMT19 40.0 39.1 39.4 38.2 38.9
Avg. 37.6 36.1 36.5 35.6 36.0
∆ — -1.5 -1.1 -2.0 -1.6

Table 4.2: Quality analysis of tiny knowledge-distilled transformer models for English→German
with block-sparse group lasso compared to the same model trained with λ reduced to 0.1
about halfway through training (250k batches).

4.8.4 Experiments: Reducing λ halfway through training

For this experiment, I select the two models trained with λ ∈ {0.3,0.5}. They converged in

about 500k batches, but most parameters got pruned much earlier. For this reason, I re-run the

experiment but this time reducing λ to 0.1 about halfway through training. This change should

positively impact quality while still enforcing sparsity at the same time. I arbitrarily set the pivot

to reduce λ at 250k batches as it is roughly halfway through training.
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As presented in Tab. 4.2, the decrease of λ reactivated some blocks (about 1% per layer) but

improved the translation quality by 0.4 BLEU on average. It indicates that it could be a good

idea to introduce a form of regularisation scheduling that either reduces λ over time or stops

it altogether to allow a model to focus on training towards quality after most pruning phase

finishes.

4.9 Optimising matrix multiplications with sparse kernels

Despite the popularity of the pruning topic in deep learning research, there are rarely any

clear advantages in speed. If they are, they are unavailable without custom implementations or

specialised hardware. There is an ongoing effort to include pruning as a ’staple’ optimisation

approach performed alongside others. However, for a long time, pruning has been known to be

not worth the effort unless it can achieve high (> 90%) sparsity levels without compromising on

quality. The fact that image recognition is the most popular task for pruning research obscures

the extent of damage pruning may cause to other tasks such as those from natural language

processing, which are more sensitive to parameter reduction.

The question is: what is a potential speed-up if the neural network toolkit properly implements

and supports sparse calculations? The goal of this section is to analyse potential potential

speed and compression gains from block-wise sparse operators in matrix multiplications. I

select the model from the previous section trained with λ = 0.3→ 0.1 (see Tab. 4.2), which

loses about 1.1 BLEU points and has varied sparsity rates for each layer.

I evaluate various matrix multiplication routines directly in C++ using Intel MKL library5. To

emulate similar circumstances within the neural network, I loaded matrices from the model and

multiplied them with random dense matrices . I declare A being a sparse matrix of (256,1536)

dimensions with parameters taken a tiny transformer and B being a randomly initialised dense

matrix of size (1536,512) which simulates typical sizes for activation matrices. Then, I measure

the execution of matrix multiplication routines (C = AB) and memory consumption using the

following sparse representations: COO, CSR and BSR as introduced in Sect. 2.4. The last one

should be the most suitable since the model has been specifically pruned block-wise. GEMM is

a standard dense matrix multiplication routine. The matrices are between 37% to 92% sparse,

which should be an informative enough range to gauge the speed impact.

5. Intel(R) Math Kernel Library Version 2019.0.4 Product Build 20190411 for Intel(R) 64 architecture applications
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Byte compression
Layer Sparsity COO CSR BSR

Encoder 1 92% ×9.31 ×9.68 ×12.31
Encoder 2 86% ×2.61 ×2.16 ×2.18
Encoder 4 85% ×2.39 ×1.96 ×1.98
Encoder 5 84% ×2.10 ×1.70 ×1.71
Encoder 3 78% ×1.66 ×1.32 ×1.33
Encoder 6 70% ×1.12 ×0.87 ×0.88
Decoder 1 37% ×0.53 ×0.40 ×0.41

Table 4.3: The comparison of memory byte compression between dense and various sparse
representations of matrices from the block-sparse model regularised with λ = 0.3→ 0.1.
Layers are sorted by sparsity.

Execution time (s)
Layer Sparsity GEMM COO BSR CSR

Encoder 1 92% 18.74 1.77 2.60 2.53
Encoder 2 86% 18.66 3.78 4.64 5.56
Encoder 4 85% 18.71 3.95 4.82 5.76
Encoder 5 84% 18.65 4.48 5.32 6.23
Encoder 3 78% 18.72 5.38 7.21 8.64
Encoder 6 70% 18.61 7.46 9.95 11.94
Decoder 1 37% 18.73 15.60 20.67 24.74

Table 4.4: A comparison of speed between dense and sparse matrix multiplication routines
on matrices from the block-sparse model regularised with λ = 0.3 → 0.1. Most sparse
multiplication routines require matrices to be at least 50% sparse to be noticeably faster.
Layers are sorted by sparsity.

4.9.1 Analysis: Byte compression

First, I looked into each layer’s byte compression of allocated memory. COO has two arrays

holding row and column pointers for each value, which triples the number of bytes. Both CSR

and BSR use their 3-array representations. As shown in Tab. 4.3, a matrix needs to be at least

at least two-thirds sparse to be storage-efficient. It is a considerable threshold to uphold, given

that not all layers have been pruned that much (e.g., the decoder is only 37% sparse). As the

quality evaluation shows in Tab. 4.1 and 4.2, there may be a significant damage required to

trade for such sparsity.
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Execution time (s)
Layer Sparsity GEMM COO BSR CSR

Encoder 1 92% 18.72 2.24 32.56 2.88
Encoder 2 86% 18.64 3.96 32.77 5.28
Encoder 4 85% 18.64 4.31 32.77 5.70
Encoder 5 84% 18.54 4.98 32.69 6.55
Encoder 3 78% 18.71 6.33 32.84 8.88
Encoder 6 70% 18.70 8.10 32.70 11.55
Decoder 1 37% 18.74 15.47 32.77 23.08

Table 4.5: A comparison of speed between dense and shuffled sparse matrix multiplication
routines on matrices from the block-sparse model regularised with λ = 0.3→ 0.1. When block
structures are destroyed, BSR has no advantage anymore. Layers are sorted by sparsity.

4.9.2 Analysis: Execution timing

Next, I looked into evaluating the speed of matrix multiplication routines. Each sparse multiplica-

tion executes 5 times to allow the library to run its internal optimisations, and then it is averaged

across 20 runs. For dense operations, I used the standard cblas_gemm function. For sparse

multiplications, I used mkl_sparse_optimize and mkl_sparse_s_mm functions. The results are

presented in Tab. 4.4. Surprisingly, the simplest coordinate representation COO is the fastest

of all. BSR comes second, outperforming CSR due to explicit block-wise optimisation. However,

both BSR and CSR surpass dense GEMM (general matrix multiplication) at about 50% sparsity.

To confirm the advantage of BSR for block sparsity, I shuffled the matrices and re-ran the

evaluations again as presented in Tab. 4.5. The sparsity of each layer is still the same, but

there is no block-wise structure anymore, which is reflected in BSR being almost twice as slow

as a dense multiplication.

Of all three sparse representations, it is surprising to see COO outperform BSR, specifically

implemented to work with blocks. It indicates that the Intel MKL library may be unoptimised for

typical NMT use cases. The next issue is that this specific library only supports sparse× dense

matrix multiplication but not dense × sparse, which are required in a deep learning toolkit.

A similar effect could be achieved by double transposing both matrices before and after the

multiplication, but that would negatively balance any speed-up we may gain. Due to increased

matrix multiplication overhead and the significant amount of work required for proper sparse

assimilation into a deep learning toolkit, I decided to abandon this research direction favouring

simpler sparse solutions. This analysis inspired me to look into sparsity in NMT that does not

require any elaborative sparse routines to achieve actual speed-up.
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Figure 4.3: A visualisation of feedforward layers in a block-sparse model regularised with
λ = 0.3 → 0.1. Each colored block represents an active 8× 8 block of parameters in a
256×1536 matrix.
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4.10 Slicing and collapsing sparse models for speed

During the last experiment on the block-sparse NMT, I looked into the pruned model’s

parameters and discovered something peculiar. The group lasso regulariser pruned blocks

of parameters concurrently within the same rows and columns. To further demonstrate it, I

visualise the first feedforward matrix (W1) of the model in Fig. 4.3 for all layers. Each coloured

dot represents the sum of absolute values in an 8×8 block, with white areas depicting pruned

parameters. The second matrices (W2), though not shown here, look almost identical in their

sparsity to the first ones but are flipped instead.

This lack of randomness in sparsity induced by a block-wise regularisation strongly suggests

that a transformer may prefer fewer but still dense subnetworks in it. Most importantly, the

fact that blocks align within the same rows and columns implies that backpropagation aims to

remove neural connections. It is not the case when using a coefficient-wise regularisation such

as L1 or Elastic Net, where individual parameters are scattered around.

4.10.1 Experiment

As explained in Sect. 4.11.1 and Fig. 4.1, neural connections can be easily sliced out and

removed entirely from a model. It is especially exciting from the optimisation point of view.

If we can slice feedforward layers straightforwardly like attention heads, we can get a more

noticeable inference speed-up with no need for specialised matrix multiplication kernels. To

test this notion in practice, I slice the models from Tab. 4.1 and 4.2 and remove the inactive

connections. A neuron is considered inactive if a sum of absolute parameters in a row/column

is less than 1e−6. There is no additional training involved, just simple slicing of the already

converged models.

Having done that, I re-evaluate the models, noting a speed-up on a single CPU core. The

results are presented in Tab. 4.6. The quality is mostly the same, with a few occasional ±0.1

BLEU changes, which can be attributed to a slight decrease in numerical precision due to

slicing parameters that are not exactly zero but close to it. Moreover, the models are neither

fine-tuned nor further trained so a model cannot accomodate to sudden removal of parameters.

Still, the quality change is negligible, showing that the architectures do not depend on those

parameters anymore.

Each feedforward layer has a new custom dimension now. I also highlight two representative

models in terms of achieved quality. Removing three-quarters of feedforward neurons leads to

1.36× faster translation at the cost of 1.1 BLEU points on average, while being more aggressive

with 90% sparsity results in 1.45× speed-up with −1.6 BLEU in damage.
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Base 0.1 0.2 0.3 0.3→0.1 0.4 0.5 0.5→0.1 0.75 1.0

FF
N

di
m

en
si

on

Enc. 1 1536 782 143 47 55 42 25 28 20 21
Enc. 2 1536 1402 478 187 196 129 74 77 43 22
Enc. 3 1536 1528 686 305 308 155 98 98 45 27
Enc. 4 1536 1416 531 201 214 134 67 68 34 15
Enc. 5 1536 1430 548 244 244 168 119 134 58 24
Enc. 6 1536 1536 889 440 458 287 200 201 96 40
Dec. 1 1536 1536 1536 889 968 572 394 465 196 123

B
LE

U

WMT16 36.7 36.8 36.0 35.4 35.8 35.2 35.2 35.6 34.6 34.6
WMT17 29.6 29.1 28.4 28.1 28.4 27.8 27.9 28.0 27.3 27.2
WMT18 44.0 43.4 42.4 41.8 42.4 41.4 40.9 41.6 40.5 40.2
WMT19 40.0 40.6 39.2 38.9 39.4 38.3 38.2 38.9 37.5 37.4
Avg. 37.6 37.5 36.5 36.1 36.5 35.7 35.6 36.0 35.0 34.9
∆ — -0.1 -1.1 -1.5 -1.1 -1.9 -2.0 -1.6 -2.6 -2.7
Avg. time 38.6 37.7 32.5 27.9 28.3 26.3 25.7 26.6 24.9 24.6
Sparsity 0% 10% 55% 78% 77% 86% 91% 90% 95% 97%
Speed-up 1.00 1.02 1.19 1.38 1.36 1.47 1.50 1.45 1.55 1.57

Table 4.6: Quality and speed analysis of “6–2 tied” tiny transformer models for Eng-
lish→German with block sparsity after slicing inactive neurons out.

4.10.2 Efficiency of previous attention pruning and new results

I performed a similar speed analysis on the same knowledge-distilled architecture in my

previous research on attention pruning. I put the direct comparison between two models of

similar translation quality but with different pruning approaches in Tab. 4.7.

Model Att. sparsity FFN sparsity WMT19 BLEU Speed-up
Lottery ticket iter=14 88% 0% 38.9 1.12
Group lasso λ = 0.5→ 0.1 0% 90% 38.9 1.45

Table 4.7: Direct comparison between two models pruned with the lottery ticket and group
lasso of similar translation quality but different speed-up gains.

They both evaluate 38.9 BLEU on the WMT19 testset but get largely different inference speed-

up compared to the baseline. In the previous research on the lottery ticket, I only achieved

1.12× speed-up when removing 80% of all attention heads. With the similar quality trade-off

on WMT2019, the same model is 1.45× faster with 90% of feedforward neurons removed. At

that time, I argued that optimising small state-of-the-art architectures is quite difficult, and there

may be a limit on how far we can push. However, these recent experiments on group lasso

pruning of feedforward layers clearly show that there is still more room for improving efficiency.
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Execution time (s)
Full Sliced

Layer Sparsity GEMM COO GEMM

Encoder 1 92% 21.10 0.79 1.01
Encoder 2 86% 21.03 3.87 2.67
Encoder 4 85% 21.04 4.31 3.63
Encoder 5 84% 20.94 5.16 3.52
Encoder 3 78% 21.06 6.29 4.29
Encoder 6 70% 20.98 9.12 6.97
Decoder 1 37% 21.13 19.25 13.72

Table 4.8: A comparison of speed between sparse and dense sliced matrix multiplication
routines on matrices from the block-sparse model regularised with λ = 0.3→ 0.1. Slicing
removed inactive connections (rows and columns), making dense GEMM faster.

4.10.3 Speed evaluation of sliced matrices and sparse kernels

Previously in Sect. 4.9, I analysed the performance of various sparse multiplication routines

using matrices from one of the pruned models. Here, I will show that sparse kernels are not

required to be speed-efficient and that, in fact, they perform worse than dense calculations on

smaller sliced matrices.

Tab. 4.8 presents execution times similar to those in Tab. 4.4. First, I evaluate the same block-

sparse model regularised with λ = 0.3→ 0.1 but with all connections intact (see Tab. 4.6).

I re-run GEMM afresh for a fair evaluation. Coordinate (COO) sparse representation was

the fastest in the Intel MKL library in the previous evaluation in Tab. 4.4, so I chose it as a

representative of sparse kernels. Next, I take the same model but with sliced and collapsed

architecture. This model performs the same quality-wise in both full and sliced circumstances.

In the sliced case, the multiplication is dense with a reduced “sparse” matrix (256,X) and

dense activations (X ,512), with X ∈ [0,1536] being a new smaller inner dimension.

As you can see in Tab. 4.8, sliced matrices outperform the full block-sparse matrices when

using dense GEMM as well as COO multiplier. The simplicity of removing connections out from

a model and collapsing matrices combined with significantly faster calculations makes this

method the best choice to handle sparsity. Not only slicing does not require sparse kernels to

be efficient, but dense GEMM is also better on small matrices than the fastest sparse kernel

I have tested. For these reasons, I proceed with this easy yet extremely effective approach

further into my research.

Given that the block-wise group lasso pruned parameters in a lined-up way, I shift my attention

towards a specific case of block sparsity, in which a block is 1×N with N being the dimension

of a layer. In other words, my goal is to apply group lasso over rows and columns directly to

avoid forcing a network to prune neighbouring connections unnecessarily with blocks.
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4.11 Neuron-level regularisation of feedforward layers

The following study aims to assess neuron-level group lasso pruning of feedforward layers

to produce smaller but still dense architectures. This section systematically explores the

best approaches to regularisation and subsequent pruning. I continue to work with robust

knowledge-distilled models to show that this method pushes the state-of-the-art forward in

highly-optimised settings.

Multiple directions will be examined. First of all, the previous experiments have shown that

reducing λ improved translation quality without compromising on final sparsity. I hypothesise

that regularisation should stop to allow a model to recover better from pruning damage. A

model could even be sliced during training to remove parameters and then continue training

with lower memory usage. Furthermore, I intend to address the potential decoder bottleneck. A

decoder is expensive, and its pruning is highly beneficial to efficiency. On the other hand, it

is often not as eagerly pruned when regularised and being too aggressive may damage the

quality too much.

Also, I expand my experiments into a variety of languages and datasets to consider different

scenarios. One of the unanswered questions in the pruning research field is how pruning

behaves under high-resource conditions. We do not know how reliable new pruning methods

are, so I include an analysis of a setup with 242M parallel sentences in a corpus. Experiments

of such scale are still widely unexplored in machine translation, raising whether known methods

are beneficial in real-life scenarios. Most pruning papers use English→German models under

WMT14 constraints (Bojar et al., n.d.), which is only 4.5M sentences (Brix et al., 2020; Hsu et

al., 2020; See et al., 2016), sometimes branching into different languages such as Russian or

French in a similar scope of data size(Kasai, Pappas, Peng, Cross, & Smith, 2020; Voita et al.,

2019).

Last but not least, recent reports from the machine translation community (Kocmi et al., 2021)

highlight the need to go beyond BLEU in quality evaluations as it is not a perfect measure

by itself to judge whether a model is “good” for deployment or not. For that reason, I provide

additional analysis with chrF and COMET scores.

4.11.1 Methodology

I follow the same approach as described in Sect. 4.2, but this time I apply group lasso over

rows and columns in parameter matrices. I am yet to gauge what is the best scheduling for

regularised pruning in NMT, but there are overall three steps to the procedure:

1. Pretraining phase — to avoid issues in the early stages of transformer training. It is quite

short as it only serves to stabilise BLEU performance.

2. Regularisation phase — this is the key step in which the penalties zero out most of the

parameters it is supposed to.
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3. Convergence phase — at this point, the regularisation strength is either decreased or

entirely halted to allow a model to regain its lost quality.

The next experiment determines the approximate length and variants of these phases. After

each step, I copy the latest checkpoint and start a fresh training round. Thus, all training

hyperparameters (learning rate etc.) and optimizer state get reset. I checked and found no

additional advantage to the baselines by refreshing learning rate scheduling or Adam optimiser.

I do so to avoid partially retraining the same settings during the development phase, but Brix et

al. (2020) found it beneficial in their pruning scheme.

4.11.2 Experiments: Exploring pruning phases

Let us start with the most straightforward approach: prune everything (as in feedforward

layers in both encoder and decoder) by regularising until convergence. The slicing happens

at the end as the last step just before the evaluation. The models are trained with λ ∈
{0.1,0.2,0.3,0.4,0.5,0.7,1.0} to check a whole range of sparsities. Results are presented

in Tab. 4.9a. A target dimension of each feedforward layer after slicing is specified, with the

overall percentage of feedforward connections removed. Evaluation BLEU is averaged over

the WMT testsets from 16 to 19 for more concise reporting, with speed-up expressed in words

per second (WPS). I highlight the trade-off between the BLEU difference and gained inference

acceleration on a single CPU core compared to the baseline.

From the quality point of view, the drop is quite considerable as the regularisation gets more

intensive in its pruning. Even though the only decoder layer is the least pruned among all,

it is still greatly sparsified, which, in turn, accelerates translation. Removing about half of

the feedforward connections results in 1.13× faster inference at the cost of −0.4 BLEU.

Considering this is a highly optimised setup, it is quite promising. It shows that directly targeting

rows and columns (connections) instead of blocks with similar aligned sparse patterns in the

aftermath is generally better on quality. In Tab. 4.6, removing a little more than half of the

connections through a block-sparse training caused −1.1 BLEU in damage in contrast to the

−0.4 mentioned above. It is a vast improvement, and there is still room for more.

To understand how pruning progresses, I visualise neuron distribution for each feedforward layer

during training for one of the models in Fig. 4.4. Like in the previous block-sparse experiments,

most parameters get removed rather early. The later sparsity gains are not as impressive since

a model most probably focuses on keeping penalties in check while still optimising translation

quality as much as possible. I set the pivot at 250k batches once again: it proved to be a reliable

choice given that it is roughly halfway through the training process for most of my experiments.

By that point, most parameters that were to be pruned had been done so.
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Figure 4.4: Pruning progression of feedforward layers in an English→German tiny transformer
model (λ = 0.5). About “halfway” through, most parameters are already removed. The dashed
line represents the checkpoint I selected as a pivot at 250k batches.

So far, reducing λ in the middle of the training regime has helped maintain the sparsity levels

and improve the final translation quality. Now I repeat the experiments, but this time with neuron-

wise regularisation. I train selected checkpoints with λ reduced to 0.1 after 250k updates. I

omit setups with λ ∈ {0.1,0.2} due to their redundancy. The results are presented in Tab. 4.9b.

Removing about half of the parameters maintains the average quality instead of losing −0.4

BLEU point, which was the case when regularising until convergence. About 2% of connections

got reactivated due to the smaller λ used, but it does not affect speed-up (1.14× vs 1.13×).

If reducing λ does help, what about just turning it off completely? I repeat the experiments, now

disabling the regularisation at 250k checkpoints, with the results in Tab. 4.9c. The difference

in target sparsity between models regularised until convergence and those tuned without it

is small: between 2 to 5%. Only a few parameters get removed through the second part of

training. Compared to reducing λ , turning regularisation off leads to further improvements,

especially in the most pruned models. For example, a model with 85% parameters removed

lost −1.1 BLEU when the equivalent model with the reduced λ lost −1.5.

In summary, I explored three variants of the approach described in Methodology (Sect. 4.11.1):

Train until convergence Regularisation phase lasts until convergence, with a model sliced

only at the end of training.

Reduce λ After 250k updates, reduce λ to 0.1, continue training with it until convergence.

Slice a model at the end.

Stop regularisation After 250k, stop regularisation. Slice a model and continue training a

smaller architecture until convergence.



4.11. Neuron-level regularisation of feedforward layers 89

Reg. λ −→ Base 0.1 0.2 0.3 0.4 0.5 0.7 1.0

FF
N

di
m

en
si

on

Enc. 1 1536 1301 681 281 144 87 39 21
Enc. 2 1536 1475 1111 551 337 222 112 47
Enc. 3 1536 1521 1393 794 459 306 151 74
Enc. 4 1536 1453 1291 673 379 242 126 56
Enc. 5 1536 1467 1207 645 391 279 164 90
Enc. 6 1536 1536 1506 930 589 421 253 135
Dec. 1 1536 1536 1536 1520 1211 890 513 255

WMT16-19 37.6 37.8 37.6 37.2 36.7 36.3 35.9 35.6

B
LE

U

∆ — 0.2 0.0 -0.4 -0.9 -1.3 -1.7 -2.0

FFN sparsity 0% 4% 18% 50% 67% 77% 87% 94%
WPS 2404 2400 2440 2728 2799 3006 3291 3419

E
ffi

ci
en

cy

Speed-up 1.00 1.00 1.01 1.13 1.16 1.25 1.37 1.42

(a) With the regulariser on until convergence.
Reg. λ −→ Base 0.1 0.2 0.3 0.4 0.5 0.7 1.0

FF
N

di
m

en
si

on

Enc. 1 1536 ——- ——- 303 157 99 42 25
Enc. 2 1536 ——- ——- 576 356 240 118 55
Enc. 3 1536 ——- ——- 827 493 324 161 79
Enc. 4 1536 ——- ——- 698 397 251 133 60
Enc. 5 1536 ——- ——- 668 414 288 170 93
Enc. 6 1536 ——- ——- 974 626 451 269 148
Dec. 1 1536 ——- ——- 1528 1293 981 554 295

WMT16-19 37.6 ——- ——- 37.6 37.3 36.7 36.1 35.8

B
LE

U

∆ — ——- ——- 0.0 -0.3 -0.9 -1.5 -1.8

FFN Sparsity 0% ——- ——- 48% 65% 76% 87% 93%
WPS 2404 ——- ——- 2738 2796 2992 3252 3462

E
ffi

ci
en

cy

Speed-up 1.00 ——- ——- 1.14 1.16 1.24 1.35 1.44

(b) With the regulariser reduced to λ = 0.1.
Reg. λ −→ Base 0.1 0.2 0.3 0.4 0.5 0.7 1.0

FF
N

di
m

en
si

on

Enc. L1 1536 ——- ——- 330 179 113 52 29
Enc. L2 1536 ——- ——- 633 387 266 135 57
Enc. L3 1536 ——- ——- 882 533 351 175 82
Enc. L4 1536 ——- ——- 738 420 269 137 66
Enc. L5 1536 ——- ——- 720 447 309 179 100
Enc. L6 1536 ——- ——- 1079 686 488 293 166
Dec. L1 1536 ——- ——- 1534 1373 1072 626 339

WMT16-19 37.6 ——- ——- 37.8 37.4 36.8 36.5 36.1

B
LE

U

∆ — ——- ——- 0.2 -0.2 -0.8 -1.1 -1.5

FFN sparsity 0% ——- ——- 45% 63% 73% 85% 92%
WPS 2404 ——- ——- 2613 2748 3067 3215 3420

E
ffi

ci
en

cy

Speed-up 1.00 ——- ——- 1.09 1.14 1.28 1.34 1.42

(c) With the regulariser switched off.

Table 4.9: “6–2 tied” transformer models for English→German with feedforward connections
in encoder and decoder pruned. Evaluated on 1 CPU core.
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Reg. λ −→ Base 0.1 0.2 0.3 0.4 0.5 0.7 1.0

FF
N

di
m

en
si

on

Enc. 1 1536 1291 621 258 146 77 34 25
Enc. 2 1536 1474 1030 523 345 202 88 52
Enc. 3 1536 1522 1332 732 440 263 116 59
Enc. 4 1536 1448 1248 615 342 208 97 50
Enc. 5 1536 1462 1136 578 367 224 131 75
Enc. 6 1536 1536 1436 795 515 344 180 114
Dec. 1 1536 1536 1536 1536 1536 1536 1536 1536

WMT16-19 37.6 37.9 37.5 37.1 36.7 36.4 36.2 35.9

B
LE

U

∆ — 0.3 0.0 -0.5 -0.9 -1.2 -1.4 -1.7

FFN sparsity 0% 4% 22% 53% 66% 73% 80% 82%
WPS 2404 2402 2497 2719 2895 2916 3066 3072

E
ffi

ci
en

cy

Speed-up 1.00 1.00 1.04 1.13 1.20 1.21 1.28 1.28

(a) With the regulariser until convergence.
Reg. λ −→ Base 0.1 0.2 0.3 0.4 0.5 0.7 1.0

FF
N

di
m

en
si

on

Enc. L1 1536 ——- ——- 310 164 98 42 24
Enc. L2 1536 ——- ——- 597 372 239 104 50
Enc. L3 1536 ——- ——- 831 480 302 143 59
Enc. L4 1536 ——- ——- 692 376 234 115 48
Enc. L5 1536 ——- ——- 664 400 253 142 73
Enc. L6 1536 ——- ——- 948 575 399 209 112
Dec. L1 1536 ——- ——- 1536 1536 1536 1536 1536

WMT16-19 37.6 ——- ——- 37.6 37.3 36.8 36.8 36.4

B
LE

U

∆ — ——- ——- 0.0 -0.3 -0.8 -0.8 -1.2

FFN sparsity 0% ——- ——- 48% 64% 72% 79% 82%
WPS 2404 ——- ——- 2748 2916 2929 3054 3096

E
ffi

ci
en

cy

Speed-up 1.00 ——- ——- 1.14 1.21 1.22 1.27 1.29

(b) With the regulariser switched off.

Table 4.10: “6–2 tied” transformer models for English→German with feedforward connections
in encoder pruned. Evaluated on 1 CPU core.

The gap in quality between Tab. 4.9a and 4.9c is quite substantial. Explicitly turning the

regularisation off results in up to 0.7 better ∆BLEU trade-off with respect to the baseline. It is

proof that a model needs time to finish training successfully without penalty restrictions in place.

Suppose we have an approximate 1.0 BLEU point budget for potential damage. In that case,

we can remove two-thirds of feedforward connections if regularising until the end or remove

85% when converging a sliced model with the regulariser turned off. Naturally, this results in

faster inference as well.
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4.11.3 Experiments: Skipping a decoder to avoid a bottleneck

Having a tied decoder means only one layer of parameters to prune potentially. Regularising

both encoder and decoder, as visualised in Fig. 4.4, shows that the decoder is the least

prioritised. The sudden quality decrease when the regularisation starts enforcing pruning over

a decoder illustrates a bottleneck. In the following experiment, I examine applying a pruning

scheme to only an encoder.

The results are presented in Tab. 4.10 with regularising until convergence (Tab. 4.10a) and

turned off (Tab. 4.10b). Again, disabling regularisation proves to be more beneficial to the

quality. However, the peak speed performance is worse than that with a pruned decoder. Here,

the fastest model is 1.29× better than the baseline. Meanwhile, the one with a pruned decoder

on top of it is 1.42× faster in the most aggressive case. With no change in BLEU, it removes

about half of the encoder parameters. At the −0.3 BLEU cost, two-thirds of parameters get

pruned with 1.21× speed-up.

All the pruned models trained so far, either with the decoder included or not, offer different

quality vs speed trade-offs. I leave a more extensive Pareto analysis for later in this chapter.

4.11.4 Experiments: Pruning models with a deep decoder

In the previous section, the hypothesis was that a shallow decoder could be a bottleneck

when pruned. Preferably, a decoder should have one or two (ideally tied) layers to reduce

computations of a single translation step in a loop and better fit a model into a CPU’s cache.

However, a typical 6-layered architecture is still often used as it provides a better quality despite

slower translation.

I proceed with applying group lasso pruning over the encoder and decoder in the same setup I

have been using but this time with 6 decoder layers. The previous experiments proved that

stopping regularisation and allowing a model to converge freely achieves the best quality. For

this reason, I move forward solely with this approach with the results presented in Tab. 4.11.

Since there are many decoders layers to prune parameters from, a potential speed-up is even

higher. Removing only one-third of parameters does not affect the quality but gives a good

1.12× in a speed boost. For a small cost of 0.2 BLEU, two-thirds of parameters can be removed

and achieve a 1.34× speed-up. In the most extreme case, where almost all feedforward layers

get obliterated (98% sparsity), translation is 1.61× faster for less than 2 BLEU points.

The last decoder layer does not start shedding parameters until the 80% sparsity mark is

reached. The reluctance to prune it is understandable: this is the last layer that generates a

probability distribution for translation, and trimming this specific layer impacts an output directly.
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Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

FF
N

di
m

en
si

on

Enc. L1 1536 821 453 259 100 56 35 12
Enc. L2 1536 932 506 327 166 93 65 22
Enc. L3 1536 1009 502 298 129 79 47 10
Enc. L4 1536 1213 663 384 147 70 41 11
Enc. L5 1536 1149 646 392 186 119 87 16
Enc. L6 1536 1366 919 610 322 208 148 43
Dec. L1 1536 542 231 121 43 15 8 1
Dec. L2 1536 836 435 259 108 50 27 4
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 1064 623 422 229 142 111 25
Dec. L5 1536 1528 1260 876 450 276 198 49
Dec. L6 1536 1536 1536 1536 1517 1216 835 178

WMT16–19 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8

B
LE

U

∆ — 0.2 0.1 -0.2 -0.8 -0.9 -1.1 -1.7

FFN sparsity 0% 31% 55% 69% 81% 87% 91% 98%
WPS 1225 1377 1543 1639 1741 1827 1867 1976

E
ffi

ci
en

cy

Speed-up 1.00 1.12 1.26 1.34 1.42 1.49 1.52 1.61

Table 4.11: “6–6” transformer models for English→German with feedforward connections in
encoder and decoder pruned. Evaluated on 1 CPU core.

This deep architecture prioritises quality over speed, but the experiment has shown that it is

easy to make it faster without compromising quality. It can be useful in offline translation, which

requires many resources to obtain the best quality.

4.11.5 Analysis: Quality outside of BLEU

Though simple to use, a BLEU score does not correlate well with human evaluation. There

are many instances of models maintaining BLEU after optimisation or other modification, but

the user-perceived quality goes down. Human evaluation is expensive and time-consuming

to perform, often completely inaccessible for researchers. However, I had an opportunity to

evaluate models pruned in this chapter later in Sect. 4.17 as a part of the Efficiency Shared

Task.

To check whether my pruning method performs well and if there are no false-positive outcomes

obscured by using just BLEU, I further analyse models with chrF (Popović, 2017) and COMET

(Rei et al., 2020). I evaluate all best English→German models trained so far in this chapter with

the regulariser switched off halfway. The review is presented in Tab. 4.12 (“6–2 tied“, encoder

and decoder pruned), Tab. 4.13 (“6–2 tied”, encoder pruned only) and Tab. 4.14 (“6–6”, pruned

both). Besides the Quality section containing BLEU, chrF and COMET scores averaged over

WMT16–19 testsets, I also provide total sparsity across feedforward layers, inference speed-up

and the disk size of a model in megabytes in Efficiency.
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Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0

Q
ua

lit
y BLEU 37.6 37.8 37.4 36.8 36.5 36.1

chrF 63.3 63.8 63.4 63.1 62.8 62.5
COMET 49.7 51.1 50.4 48.9 47.2 46.0

E
ffi

ci
en

cy FFN sparsity 0% 45% 63% 73% 85% 92%
Size (MB) 61 51 47 45 43 41
Speed-up 1.00 1.09 1.14 1.28 1.34 1.42

Table 4.12: Quality evaluation of “6–2 tied” tiny transformer models for English→German with
feedforward connections in encoder and decoder pruned. Averaged over WMT16–19 testsets.
I highlight in red a good representative model that maintains baseline quality.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0

Q
ua

lit
y BLEU 37.6 37.6 37.3 36.8 36.8 36.4

chrF 63.3 63.4 63.4 63.1 62.9 62.8
COMET 49.7 50.4 49.8 49.8 48.3 47.8

E
ffi

ci
en

cy FFN sparsity 0% 48% 64% 72% 79% 82%
Size (MB) 61 50 47 45 44 43
Speed-up 1.00 1.14 1.21 1.22 1.27 1.29

Table 4.13: Quality evaluation of “6–2 tied” tiny transformer models for English→German with
feedforward connections in encoder pruned. Averaged over WMT16–19 testsets.

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

Q
ua

lit
y BLEU 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8

chrF 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1
COMET 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6

E
ffi

ci
en

cy FFN sparsity 0% 31% 55% 69% 81% 87% 91% 98%
Size (MB) 83 72 63 58 54 52 50 48
Speed-up 1.00 1.12 1.26 1.34 1.42 1.49 1.52 1.61

Table 4.14: Quality evaluation of “6–6” tiny transformer models for English→German with
feedforward connections in encoder and decoder pruned. Averaged over WMT16–19 testsets.

Both chrF and COMET follow the trend set by the BLEU results, which further solidifies this

pruning method as reliable. I highlight the representative models which maintain quality across

most scores. These models prune 63–72% of all feedforward connections leading to about

30–40% compression in disk size. Depending on the architecture, translation is 1.22× faster in

a shallow model and 1.34× with a deep decoder.
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4.11.6 Experiments: Pruning or architecture search?

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
Pruned 37.2 37.8 37.4 36.8 36.5 36.1

BLEU
Reinit — 37.1 36.5 36.5 36.1 35.3
Pruned 63.3 63.8 63.4 63.1 62.8 62.5

chrF
Reinit — 63.2 62.8 62.7 62.3 62.0
Pruned 49.7 51.1 50.4 48.9 47.2 46.0

COMET
Reinit — 48.8 47.3 47.3 45.7 42.7

Table 4.15: The evaluation of English→German “6–2 tied” students with pruned both encoder
and decoder (Pruned), compared to the same architecture trained from scratch (Reinit).

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Pruned 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8

BLEU
Reinit — 38.1 38.0 37.6 37.3 37.2 37.0 36.6
Pruned 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1

chrF
Reinit — 64.0 63.9 63.7 63.6 63.4 63.3 63.0
Pruned 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6

COMET
Reinit — 53.8 53.3 52.3 51.5 51.4 49.7 49.1

Table 4.16: The evaluation of English→German “6–6” students with pruned both encoder and
decoder (Pruned), compared to the same architecture trained from scratch (Reinit).

Akin to the lottery ticket approaches, the natural question is whether the pruning procedure

is necessary or does it serve as an architecture searching method. If the latter is true, then a

model can be trained from scratch with the identical architecture without additional steps.

To test this hypothesis, I perform the following experiment. I take English→German models

with “6–2 tied” and “6–6” architectures with feedforward layers pruned neuron-wise. Now, I

reinitialise parameters with the same sliced dimensions and train these models again from

scratch. I evaluate them once more with BLEU, chrF and COMET to compare with those

pruned. The results are presented in Tab. 4.15 and 4.16.

The same models achieve noticeably worse translation quality when trained from the get-go

than when carefully pruned through regularisation. A possible explanation is that a model

adapts to the removal of selected parameters allowing for a better training flow. Another key

aspect is that a larger parameter capacity early into training may be beneficial. While crucial for

training purposes, most parameters become obsolete in later stages, which is a fundamental

reason why pruning of neural networks works in general. It also justifies why most pruning

methods prefer to prune parameters from an already converged model. The gap in quality

between pruned and trained from scratch models is the widest for lower and mid sparsity

ranges, becoming smaller at the other end of the spectrum as pruning is the most extensive.

The contrast between pruned and reinitialised models is especially evident in COMET scores,

which supposedly reflect well on human evaluation.
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Reg. λ −→ Base 0.05 0.1 0.15 0.2 0.3 0.4

FF
N

di
m

en
si

on

Enc. L1 1536 1159 484 203 103 34 25
Enc. L2 1536 1317 380 182 105 48 29
Enc. L3 1536 1320 358 169 97 49 33
Enc. L4 1536 1435 638 255 132 55 28
Enc. L5 1536 1404 817 400 239 108 63
Enc. L6 1536 1506 964 462 275 128 75
Dec. L1 1536 1536 1536 1536 1536 1536 1536
Dec. L2 1536 1536 1536 1536 1536 1536 1536
Dec. L3 1536 1536 1536 1536 1536 1536 1536
Dec. L4 1536 1536 1536 1536 1536 1536 1536
Dec. L5 1536 1536 1536 1536 1536 1536 1536
Dec. L6 1536 1536 1536 1536 1536 1536 1536

WMT12–13 37.3 37.5 37.0 36.9 36.8 36.9 36.7

B
LE

U

∆ — 0.3 -0.3 -0.4 -0.5 -0.4 -0.6

FFN sparsity 0% 6% 30% 41% 45% 48% 49%
WPS 1407 1444 1508 1558 1540 1591 1577
Speed-up 1.0 1.03 1.07 1.11 1.09 1.13 1.12

Table 4.17: “6–6” transformer models for Spanish→English with feedforward connections in
encoder pruned. Evaluated on 1 CPU core.

4.11.7 Experiments: Pruning in high-resource settings

To continue the investigation into group lasso pruning, let us expand into a high-resource data

setting with a “6–6” architecture for Spanish→English. The corpus contains 242M sentences

which is much larger than 13.5M for English→German. Experiments of such scale are still

widely unexplored in research, raising the question of whether known optimisation methods

are beneficial in real-life scenarios. Most pruning papers use English→German models under

WMT14 constraints (Bojar et al., n.d.), which is only 4.5M sentences (Brix et al., 2020; Hsu et

al., 2020; See et al., 2016), sometimes branching into different languages such as Russian or

French in a similar scope of data size (Kasai et al., 2020; Voita et al., 2019).

In the following experiment, I prune the encoder only to show how much a decoder contributes

to an inference cost in a deep architectural setup. I use λ ∈ {0.05,0.1,0.15,0.2,0.3,0.4} with

the results presented in Tab 4.17. Removing almost all feedforward parameters in the encoder

makes inference only 13% faster. The damage in quality is less than 0.6 BLEU, which is

substantial given the small speed-up.

I repeat the experiments, this time pruning both encoder and decoder. The regularisation is

set to λ ∈ {0.1,0.15,0.2,0.3,0.4,0.5,1.0}. The results are presented in Tab 4.18. The overall

damage to quality is larger as now pruning is more broadened. However, sparsifying a deep

decoder is worthwhile from the optimisation perspective. At the cost of half a BLEU point,
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Reg. λ → Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

FF
N

di
m

en
si

on

Enc. L1 1536 563 258 137 52 30 24 12
Enc. L2 1536 454 236 156 73 47 31 15
Enc. L3 1536 421 221 135 73 47 37 19
Enc. L4 1536 799 368 197 96 52 34 16
Enc. L5 1536 999 565 350 189 114 83 32
Enc. L6 1536 1227 751 472 258 166 115 40
Dec. L1 1536 418 167 77 15 5 2 1
Dec. L2 1536 491 229 117 38 18 10 1
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 787 443 294 143 104 68 24
Dec. L5 1536 1475 1037 684 343 214 156 33
Dec. L6 1536 1536 1536 1533 1220 753 459 138

WMT12–13 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9

B
LE

U

∆ 0.0 -0.4 -0.5 -0.6 -1.0 -1.0 -1.2 -1.4

FFN sparsity 0% 48% 67% 77% 86% 91% 94% 98%
WPS 1407 1655 1811 1891 2017 2071 2112 2204

E
ffi

ci
en

cy

Speed-up 1.00 1.18 1.29 1.34 1.43 1.47 1.50 1.57

Table 4.18: “6–6” transformer models for Spanish→English with feedforward connections in
encoder and decoder pruned. Evaluated on 1 CPU core.

the model is 1.29× faster than the baseline. In the most aggressive case, pruning 98% of all

feedforward parameters results in 1.57× faster translation with −1.4 BLEU loss. The choice

between pruning a decoder or not is clearly in favour of doing it. At a similar quality loss, the

speed-ups are 1.13× and 1.29× respectively for encoder only and both.

Next, I proceed with reinitialising these models with the quality analysis in Tab. 4.19. Most

interestingly, the models trained from scratch achieve comparable quality to their pruned

counterparts, despite previous experiments on English→German having a significant gap

between those. The only differences between German and Spanish experiments are the

languages involved and the scale of the training data: Spanish students trained on a 19×
larger corpus. To check whether the data size affects the pruning outcome, I sampled 13M

sentences from the corpus of 242M, the same amount as English→German) and repeated

the experiment. Experimenting with that data, I came to similar conclusions, meaning that the

Spanish subpar results are not related to architecture or data size. In the experiments so far,

the quality of pruned models either surpasses or is at least as good as those trained from

scratch. Thus, I conclude that in some cases, structural pruning serves as an architecture

search method to find a Pareto optimal trade-off.



4.12. Neuron-level regularisation of both feedforward and attention layers 97

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Pruned 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9

BLEU
Reinit - 37.0 36.7 36.5 36.3 36.2 36.2 35.8
Pruned 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8

chrF
Reinit - 62.5 62.2 62.1 62.0 61.9 61.9 61.7
Pruned 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3

COMET
Reinit - 57.3 56.7 55.9 55.1 54.6 54.5 53.0

Table 4.19: The evaluation of Spanish→English “6–6” students with pruned encoder and
decoder (Pruned), compared to the same architecture trained from scratch (Reinit) averaged
over WMT12–13.

4.12 Neuron-level regularisation of both feedforward and atten-

tion layers

The extensive study in the previous section shows that most feedforward connections can be

regularised and sliced out of a model, making it smaller and faster at negligible quality change.

Given that attention layers have been unaltered so far, it is safe to assume that attention

overtakes the brunt of the neural workload, allowing a network to keep the quality high. On the

other hand, there is yet untapped optimisation potential in attention layers.

Due to how a transformer architecture is built like, individual connections cannot be easily

sliced out of attention layers, unless whole heads are removed. Still, I proceed with regularising

rows and columns in attention layers. Next, I approximate the desire of a model to remove

a particular attention head based on how many connections got sparsified. In the end, an

entire head gets sliced if at least half of its connections are dead (the sum of each row/column

being less than 1e−5). I experimented with English→German using the “6–2 tied” architecture.

As it is the first time pruning attention on top of feedforward layers, I once more investigate

the bottleneck by regularising the encoder only as well as both encoder and decoder. I use

λ ∈ {0.2,0.3,0.4,0.5,0.7} and prune in three stages as usual: pretraining for 25k batches,

regularising for 250k batches with convergence after slicing. The results are presented in

Tab. 4.20.

Because of lenient thresholding combined with a non-coarse regularisation of attention layers,

the pruning of heads is not as invasive as neuron pruning in feedforward layers. Nonetheless,

up to half of all heads were removed from the models in these experiments. In terms of quality,

both approaches of regularising only the encoder (Tab. 4.20b) and regularising the whole

model (Tab. 4.20a) rank on a similar BLEU level. The models with pruned decoders achieve a

slightly higher speed-up in larger λ experiments as they reluctantly start stripping feedforward

connections from the decoder.
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The most striking observation is that not a single head gets removed from the context

attention in all these experiments. This outcome identifies the true bottleneck in a model,

the context attention, which serves as a bridge between an encoder and decoder. Thus,

removing parameters from the only layer performing this function could directly prevent a model

from being able to successfully translate at all. This may not a problem with many decoder

layers to prune from, but it becomes an issue in shallow decoder architectures with a single

layer.

Overall, the regulariser can remove about 40% of encoder parameters at a small change of

−0.1 BLEU and make inference 22% faster. Being harsher than that, it can push speed-up up

to 47% at the cost of 1.6 BLEU by removing half of the attention heads and 80% of feedforward

parameters. These results are quite promising, but the quality loss is still substantial for more

drastic optimisation. A tied decoder is favoured as it allows to fit a model into a cache, but

it still stacks N repeated layers (2 in the case of “6–2 tied”). Ideally, a model should have a

small shallow decoder from the beginning so that we can shift our focus to prune an encoder

part of the neural network solely. Unfortunately, a “6–6” architecture outperforms “6–2 tied”

quality-wise as the consensus is that the more parameters, the better. Naturally, more layers

mean slower translation, but those who prioritise quality may be unwilling to compromise on it

even with a faster inference.

Kasai et al. (2020) argues that shifting layers from decoder to encoder makes a model much

faster at almost no cost in translation quality. Their experiments have shown that “12–1” layer

proportions perform as good as “6–6”. As already demonstrated, pruning an already reduced

decoder may cause a bottleneck that damages quality too much. However, if most of the

workload gets shifted into an encoder, we can focus on pruning it exclusively. To check whether

this claim is true, I train “12–1” architecture and compare its quality with “6–6” in Tab.4.22.

Indeed, a simple shift of layers from the decoder to the encoder caused −0.3 BLEU in damage

but at the same time made inference 1.58× faster. This trade-off is a competitive option to

consider when training models for deployment. Thus, I will concentrate on this architecture in

the next pruning experiments. The results on pruning only the encoder are in Tab. 4.21.

Now that there are 12 layers to prune from, the potential speed-up is even larger. Removing

57% of attention heads and 87% of feedforward connections leads to −1.2 BLEU loss, but a

model translates 1.79× faster. It is the largest ratio jump in speed compared to an unpruned

baseline there has been so far. One of the less pruned models offers a satisfying trade-off of

0.3 BLEU in quality for 51% faster translation. This specific model removed half of the attention

heads and two-thirds of feedforward parameters.
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Architecture BLEU COMET WPS
“6–6” 38.5 54.8 1225
“12–1” 38.2 49.5 1930

Table 4.22: A quality comparison between “6–6” and “12–1”’ architectures for Eng-
lish→German.

Reg. λ −→ Base 0.2 0.3 0.4 0.5 0.7
Q

ua
lit

y BLEU 38.2 37.9 37.3 37.0 37.0 36.6
chrF 63.9 63.6 63.2 62.9 62.9 62.5
COMET 49.5 49.6 48.2 46.5 45.5 44.6

E
ffi

ci
en

cy

Att. sparsity 0% 48% 56% 58% 57% 59%
FFN sparsity 0% 63% 76% 81% 84% 87%
Size (MB) 85 54 48 45 44 43
WPS 1930 2918 3029 3430 3446 3485
Speed-up 1.00 1.51 1.57 1.78 1.79 1.81

Table 4.23: Quality evaluation of “12–1” tiny transformer models for English→German with
feedforward connections in encoder and decoder pruned. Averaged over WMT16–19 testsets.

Let us go ahead with the extended quality analysis in Tab. 4.23. It turns out that there is a

considerable drop in COMET between the “6–6” and “12–1” architectures, with the former

scoring 54.8 points and the latter getting 49.5. This gap raises the question of how valid is the

hypothesis stated by Kasai et al. (2020), especially when human evaluators judge models. I

leave this question open for future work.

4.13 Head-level regularisation of attention layers

So far, I have regularised individual neurons in feedforward and attention layers. While it is

easy to slice those out from the former, it is not as trivial in the latter case. I removed entire

heads in the previous experiments if at least half of their connections were dead. Then, inactive

neurons in the remaining heads are quickly reactivated during a convergence phase to get

fully utilised again. Y. Wang et al. (2020) shows that rejuvenating parameters after they were

pruned allows a model to achieve higher BLEU quality and may serve as a method to prevent

overfitting. My pruning approach for attention is a heuristic with a custom threshold as a model

does not make an explicit decision to remove a specific head all at once. At the same time, it is

easier for a model to give up single connections instead of larger structures as it could lead to

sudden quality degradation. If we zero out connections in an attention head but decide to keep

the entire head, in the end, those connections will get rejuvenated once more when the model

is allowed to converge.
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The groups in a group lasso have been of the same size until now: all rows and columns

pruned from a model were 1×N with N representing a hidden dimension of a model. In

the knowledge-distilled students, it would be 1× 256. Equal size of groups means that all

of them are penalised on the same scale. The more generalisable variant of group lasso

orthonormalises groups of different sizes by scaling them with a ν scalar (Simon & Tibshirani,

2012; Yuan & Lin, 2006).

Given parameters w split into groups G, the scaled version of a group lasso penalty is defined

as:

R(w) =
|G|
∑
g=1

ν ‖wg‖2 =
|G|
∑
g=1

ν

Ã
|Gg|
∑
j=1

Ä
w j

g

ä2
. (4.1)

Usually, we scale by the number of covariants in a group. I chose to scale by the inner dimension

of a parameter matrix as it is the main difference between groups: ν =
√

dg. When regularising

only rows and columns, I left ν = 1 as it would be the same value everywhere and can be thus

included in the global λ scalar.

Now, I proceed with the experiment on the regularisation applied to connections in feedforward

layers, and entire attention heads together to compare it with the exclusively neuron-wise

approach so far. I train Estonian→English models with a “6–2” architecture to diversify

experiments. As there are two decoder layers instead of one, I regularise the entire model to

gauge the potential impact of a bottleneck and see how context attention behaves under these

pruning circumstances. I do not sweep hyperparameters, opting for λ = 0.3 as it provided a

middle-ground sparsity in the previous experiments. Additionally, I reinitialise these models

and train them from scratch to compare with the pruned ones. The results are presented in

Tab. 4.24.

As aforementioned, I compare two pruning approaches:

• regularising individual connections and then removing heads with more than half of

connections inactive (rowcol + rowcol = rows/columns in both feedforward and attention

layers)

• regularising entire heads with group lasso (rowcol + heads = rows/columns in feedforward

layers, blockwise heads in attention)

Due to how the penalty is scaled with γ in Eq. 4.1, the regularisation of entire heads is much

more aggressive towards them, removing some layers entirely, which get skipped during

inference. Both pruning methods perform within a −0.1 to −0.3 BLEU difference compared to

the same architecture trained from scratch. However, despite only a 0.1 BLEU difference, the

same model loses 2.3 COMET points, further validating that training from scratch is subpar.

Those results show potential in regularising larger structures and even entire layers as a way

of architecture searching. I leave the improvement of the method for the upcoming chapter.
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Model −→ Base rowcol + heads rowcol + rowcol
Layer type −→ FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 579 0 210 7
Enc. L2 1536 8 793 1 552 1
Enc. L3 1536 8 959 0 712 3
Enc. L4 1536 8 913 0 459 6
Enc. L5 1536 8 1212 3 708 4
Enc. L6 1536 8 1523 2 1033 8
Dec. L1 1536 8 1536 2 1535 7
Dec. L2 1536 8 1536 7 1536 8

BLEU
Pruned 31.5 29.8 30.4
Reinit — 28.5 30.3

chrF
Pruned 58.4 57.0 57.6
Reinit 56.0 57.5

COMET
Pruned 54.8 49.9 53.0

Q
ua

lit
y

Reinit — 46.8 50.7
Sparsity 0% 0% 26% 77% 45% 31%
WPS 1414 2012 1614
Speed-up 1.00 1.42 1.14

Table 4.24: The WMT18 testset evaluation of Estonian→English “6–2” students pruned with
group lasso on 1 CPU core with the same architectures trained from scratch (Reinit).

4.14 Analysis: Parameter distribution

This section looks into the distribution of parameters in models left after pruning and analyses

general sparsity patterns emerging across different layers.

Fig. 4.5 visualises the reduction of feedforward dimensions as λ increases in the neuron-level

regularisation done on the English→German “6–2 tied” architecture. As observed before, the

only decoder layer is a bottleneck and is the least prioritised in pruning. The opposite is true

for the first encoder layer, as it is the most pruned. There is an emerging pattern of each next

layer in the encoder being less and less sparse.

To further analyse these patterns, I train Spanish→English models with the “6–6” architecture,

in which I regularise individual connections in both feedforward and attention layers. The

models are trained with λ ∈ {0.1,0.2,0.3,0.4} for 250k updates. Then, I account for still active

connections. Fig. 4.6 presents the histogram of parameters per layer in the baseline and

pruned models. Since SSRU (Y. J. Kim et al., 2019) replaces the decoder self-attention, I only

show two “pairs” of parameters: encoder self-attention and decoder context attention, with their

feedforward counterparts.
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Figure 4.5: Pruning of FFN layers in English→German student models.

The research shows that feedforward parameters also seem to follow the same pattern on the

top of attention. The last decoder layer is the least pruned across the whole architecture, which

makes sense because this is the last layer before producing the output. The feedforward and

attention layers appear to be tied together even though regularisation itself does not enforce it.

Since attention has a more defined role, feedforward parameters probably just complement it.

There seems to be no need for model layers where feedforward parameters perform their work

alone. This is similar to findings from Bogoychev (2021).

Both encoder layer types follow a similar sparsity pattern making a “U-shape”, with the second

and third layers being the most aggressively pruned. On the other hand, the decoder parameters

are pruned less and less with each subsequent layer. This arrangement of parameters is

identical to that exhibited by pruned attention heads in my previous work Behnke and Heafield

(2020) on lottery ticket pruning of attention heads. As could be previously seen in Fig. 3.11,

the attention in the encoder also prunes middle layers, and the context attention retains more

heads in further layers. This specific distribution strongly indicates that the decoder prefers

to attend to itself first and confront context later. The Estonian models, in which I regularise

and prune entire attention heads (see Sect. 4.13), exhibit a roughly similar pattern, which is

a signal that structural group lasso pruning with its architecture search may have a broader

generalisation. Furthermore, a model may seek to remove entire transformer layers. I leave the

exploration of that for the next chapter.
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Figure 4.6: The distribution of feedforward and attention connections left in Spanish→English
“6–6” architectures when regularised on a neuron level.

4.15 Analysis: Pareto trade-off

Throughout this chapter, I have run numerous experiments on English→German with various

architectural setups and training regimes. I noted the achieved quality and translation speed

expressed in words per second in each instance. Additionally, I highlighted how faster a model

was than its corresponding baseline. Also, I trained many models from scratch to show that

pruning outperforms it. In the end, optimisation always means trading-off quality for efficiency.

An NMT model is optimal in a Pareto sense when there is no other model that produces higher

quality while being faster at the same time. In practice, there is no single “best” model but

rather a set of experiment points representing the Pareto frontier.
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Model −→ base base 1⁄2 base 1⁄4 base 1⁄8 base 1⁄16

Enc. L1–L6 1536 768 384 192 96
Dec. L1 1536 768 384 192 96

BLEU 37.6 37.0 36.6 35.8 35.8
∆ — -0.5 -1.0 -1.8 -1.8
chrF 63.3 63.3 62.9 62.3 62.4Q

ua
lit

y
COMET 49.7 48.6 47.7 44.1 44.5

Sparsity 0% 50% 75% 88% 94%
WPS 2404 2964 3296 3444 3586

E
ffi

ci
en

cy

Speed-up 1.00 1.23 1.37 1.43 1.49

Table 4.25: The evaluation of English→German “6–2 tied” baselines averaged over WMT16–19
testsets.

Model −→ base base 1⁄2 base 1⁄4 base 1⁄8 base 1⁄16

Enc. L1–L6 1536 768 384 192 96
Dec. L1–L6 1536 768 384 192 96

BLEU 38.5 37.8 37.7 37.15 37.1
∆ — -0.7 -0.8 -1.3 -1.4
chrF 64.2 64 63.9 63.3 63.3Q

ua
lit

y

COMET 54.8 53.6 52.9 50.5 50.3

Sparsity 0% 50% 75% 88% 94%
WPS 1225 1568 1740 1771 1932

E
ffi

ci
en

cy

Speed-up 1.00 1.28 1.42 1.45 1.58

Table 4.26: The evaluation of English→German “6–2 tied” baselines.

Model −→ base base 1⁄2 base 1⁄4 base 1⁄8
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads
Enc. L1–L12 1536 8 768 4 384 4 192 4
Dec. L1 1536 8 1536 8 1536 8 1536 8

BLEU 38.2 36.7 36.7 35.7
∆ — -1.5 -1.5 -2.5
chrF 63.9 63 62.6 62.3Q

ua
lit

y

COMET 49.5 48.3 45.9 44.4

FFN sparsity 0% 50% 75% 88%
Att. sparsity 0% 50% 50% 50%
WPS 1930 3171 3241 3532

E
ffi

ci
en

cy

Speed-up 1.00 1.64 1.68 1.83

Table 4.27: The evaluation of English→German “12–1” baselines averaged over WMT16–19
testsets.

I trained several simple baselines with reduced dimensions to provide an unbiased comparison

in the competition. It is an extremely easy method to get a smaller and more robust model from

the beginning. I reduce feedforward dimensions uniformly to {768,384,192,96} in both encoder

and decoder “6–2 tied” and “6–6” architectures. For “12-1” models, I reduce feedforward layers

to {768,384,192} in the encoder and additionally halve encoder heads from 8 to 4 to reflect

the sparsity percentages of pruned models roughly. The baseline results are presented in

Tab. 4.25, 4.26 and 4.27.
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Finally, I pit against each other the said baselines, the pruned models and their reinitialised

counterparts. The Pareto trade-off is visualised in Fig. 4.7. It includes every pruned model for

specific architectures grouped in the “Pruned” labels. All the baselines and their reinitialised

models are rendered in “Baselines” and “Reinits” respectively. The data points representing

the fastest models at given quality are circled in the “Pareto optimal” category. In theory, the

best possible outcome would be in the upper-right corner of the plot.

The points scattered across the left side of the plot are the “6–6” models. This architecture

offers the best quality at slower inference, with some gain when pruned. Eventually, it is better

to switch to an architecture with a shallow decoder instead of continuing to prune the “6–6”

layers. The points scattered to the right side are the architectures with a shallow decoder: “6–2

tied” and “12–1”. The Pareto plot shows that pruning a deep encoder in “12–1” aggressively

offers a superior trade-off than “6–2 tied” pruned in various ways. All the reinitialised models

are subpar and perform below the optimal frontier. The only noteworthy optimal baseline is the

unpruned “12–1” model placed in the middle of the plot. Overall, the “12–1” architecture is the

best choice to achieve the best speed performance, especially when pruned. If quality is the

priority instead, a deeper decoder is required, pruned or not.
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Figure 4.7: Pareto trade-off between average quality in BLEU and average translation time for
English→German students of different architectures.
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Figure 4.8: Pareto trade-off between average COMET quality and average translation time for
English→German students of different architectures.

As I mentioned before in this thesis, BLEU alone is not the best indicator of good performance.

Thus, I proceed with another Pareto analysis with COMET scores instead. It is presented in

Fig. 4.8.

The consensus remains: pruned models lead the Pareto frontier and provide the best quality-

speed trade-off. In contrast to Fig. 4.7, “12–1” architectures are outperformed by “6-2 tied”

in terms of quality. This difference can be attributed to the quality gap in COMET shown in

Tab. 4.22. These results serve as a reminder to not depend on just BLEU scores. Ideally,

researchers should use multiple scoring systems alongside human evaluation before making a

deployment decision.

4.16 Efficiency Shared Task (WMT2021)

To put my pruning method to the final test, I participated in the WMT2021 Efficiency Shared

Task6 as a researcher who established the direction of the submission (Behnke et al., 2021).

6. http://www.statmt.org/wmt21/efficiency-task.html

http://www.statmt.org/wmt21/efficiency-task.html
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The WMT21 efficiency shared task consists of two sub-tasks: throughput and latency. Systems

should translate English to German under the constrained conditions of the WMT21 news

task. For each task, systems are provided 1 million lines of raw English input with at most

150 space-separated words. The throughput task receives this input directly. The latency task,

introduced this year, is fed input one sentence at a time, waiting for the translation output before

providing the next sentence. Throughput is measured on multi-core CPU or GPU systems, and

latency is measured on single-core CPU or GPU systems. Entries to both tasks are measured

on quality, approximated via BLEU score, speed, model size, Docker image size, and memory

consumption. We did not optimise specifically for the latency task beyond configuring the

relevant batch sizes to one.

This section shows how my research has aided the development of this efficiency shared task

submission. We combined knowledge distillation, structural pruning and quantisation to achieve

the state-of-the-art English→German models, providing a proven recipe for optimised NMT. In

our models, I applied both neuron-level and head-level regularisation to prune feedforward and

attention layers structurally. Models were sliced and collapsed, resulting in smaller and more

robust architectures.

4.16.1 Setup

Our submission builds upon the work of last year’s submission (Bogoychev et al., 2020). We

trained our models in a teacher-student setting (Y. Kim & Rush, 2016b), using Edinburgh’s

En-De system submitted to the WMT2021 news translation task as the teacher model. For the

students, we used a Simpler Simple Recurrent Unit (SSRU) Y. J. Kim et al. (2019) decoder,

used a target vocabulary shortlist, and experimented with pruning the student models by

removing component- and block-level parameters to improve speed. We experimented with

quantising into smaller numerical formats, including fixed point 8-bit quantisation on the CPU.

Teachers

We used Edinburgh’s English↔German systems submitted to the WMT2021 news translation

task as teacher models (Chen et al., 2021). We trained transformer-big models Vaswani et al.

(2017b), using a shared 32K SentencePiece (Kudo & Richardson, 2018) vocabulary, built in

three stages: corpus filtering, back-translation and fine-tuning. The models achieved 29.90 and

51.78 BLEU on English→German and German→English WMT 2021 test, respectively (scored

by the task organisers, with multiple references).
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We used sequence-level knowledge distillation Y. Kim and Rush (2016b) to synthesise forward

and backward translations using the teachers. We filtered the synthesised parallel data using

handcrafted rules7, followed by removing the bottom 5% according to cross-entropy per word

on the generated side using KenLM (Heafield, Pouzyrevsky, Clark, & Koehn, 2013).

Students

We ran experiments using different combinations of teacher-synthesised corpora. The variant

I used for experiments in this section included the synthesised data: parallel, monolingual

backward and forward. All student models were trained with a validation set consisting of

the subset of sentences in the English-German WMT test sets from 2015–2019 that were

originally in English. The training concluded after reaching 20 consecutive validations without

improving the BLEU score. The student models used the same shared vocabulary as the

teacher ensemble. During decoding, we used a lexical shortlist (Devlin et al., 2014; Le, Allauzen,

& Yvon, 2012; Schwenk, R. Costa-jussà, & R. Fonollosa, 2007) of the top 50 most probable

alignments, combined through a union with the top 50 most frequent vocabulary items. Other

than this, we used the default training hyperparameters from Marian for the base transformer

model.

4.16.2 Experiment: Building the baselines

Each of the student models used transformer encoders (Vaswani et al., 2017b) and RNN-based

decoders with SSRU attention Y. J. Kim et al. (2019). Several different architectures were

explored; these differ in the number of encoder and decoder blocks as well as in the sizes of

the embedding and FFN layers. Further to this, some of our transformer architectures use a

modified attention matrix of shape (demb,nhead×dhead) rather than the typical (demb,demb). In

all cases, we use 8 transformer heads per layer and set dhead = 32 across all modified attention

models.

As evident in my research on pruning and finding the Pareto optimal machine translation

architectures, a “12–1” tiny transformer performed quite promisingly. Following that direction, I

have selected a variety of student architectures to train for the shared task. I focused mostly on

“12–1” but also tried “6–2” and tied variants such as “8–4 tied” and ”6–2 tied”. Depending on

embedding and feedforward dimensions, each architecture is defined as either large, base, tiny

or micro. All the student models are summarised in Tab. 4.28. On the newest WMT21 testset,

the students are within −0.1 to −1.4 BLEU difference towards the ensembled teacher.

7. https://github.com/browsermt/students/tree/master/train-student/clean

https://github.com/browsermt/students/tree/master/train-student/clean
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Depth Dimensions BLEU COMET
Model Enc Dec Emb. FFN Att. Heads Params. Size WMT20 WMT21 WMT20 WMT21 Speed (s)

teacher x 3 6 6/6/8 1024 4096 1024 16 619.0M 2.30GB 38.3 28.8 56.8 50.8 -
12-1.large 12 1 1024 3072 256 8 130.5M 498MB 37.6 28.7 54.0 47.7 92.2
12-1.base 12 1 512 2048 256 8 51.1M 195MB 36.7 28.2 50.7 44.1 38.9
12-1.tiny 12 1 256 1536 256 8 22.0M 85MB 36.1 27.6 48.2 41.9 19.2
12-1.micro 12 1 256 1024 256 8 18.6M 72MB 35.4 27.6 46.2 40.2 17.1

8-4.tied.tiny 8 4 256 1536 256 8 17.8M 69MB 35.7 27.8 50.3 43.9 30.4
6-2.tied.tiny 6 2 256 1536 256 8 15.7M 61MB 34.9 27.4 47.4 42.1 18.6

6-2.base 6 2 512 2048 512 8 42.7M 163MB 37.7 28.7 54.3 48.5 56.2
6-2.tiny 6 2 256 1536 256 8 16.9M 65MB 35.8 27.4 50.2 44.5 19.2

Table 4.28: Architectures for the different student models. The number of encoder/decoder
layers are reported with the size of the embedding, attention and FFN layers, the total number
of parameters, the model size on disk, quality in both BLEU and COMET as well as speed
on WMT21 testset. The first and second groups use a modified attention matrix shape, with
second group consisting of tied models. The third group uses the typical shape attention
matrices.

4.16.3 Experiment: Pruning and quantisation

Under the task constraints, we trained, pruned and quantised 12–1.tiny and 12–1.micro

architectures. I tried two pruning settings, following the directions set in Sect. 4.13: rowcol-lasso

and head-lasso. Both prune feedforward and attention layers in the encoder. rowcol-lasso

regularised individual connections and removed an entire attention head if at least half of its

connections were dead. head-lasso applied lasso to a whole head submatrix. Due to the scale

of the task, we had no opportunity to grid-search for the best pruning hyperparameters; thus,

the experiments are as close to ’out-of-the-box’ usage as possible. We used λ = 0.5 for both

methods. The models were pretrained for 50k updates and regularised for 150k, after which

the models were sliced and trained until convergence. The results are presented in Tab. 4.29.

head-lasso left attention layers almost completely unpruned, focusing on removing connections

from feedforward layers instead. It could be that 150k batches were not enough for this

lambda to suppress larger structures of parameters. rowcol-lasso was much more aggressive

in both layers at the cost of quality. To further optimise the models, they were quantised

to 8-bit. However, the smaller a model is, the larger the quality drop after its quantisation.

Additional finetuning allows us to recover at least partially from the quantisation damage.

Evaluating on the latest testset WMT21, our pruned models are 1.2–1.7× faster at 0.6–1.3

BLEU. With quantisation, those models are 1.9–2.7× faster, losing 0.9–1.7 BLEU compared to

the unpruned and unquantised baselines.
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BLEU COMET Sparsity
WMT20 WMT21 WMT20 WMT21 Att. FFN Speed (s)

12-1.tiny 36.1 27.6 48.2 41.9 0% 0% 19.2

+ head-lasso pruning 34.7 27.0 42.9 38.8 3% 75% 14.5
+ 8bit quantisation 33.9 26.2 38.8 33.6 3% 75% 9.3
+ 8bit finetuning 34.1 26.7 39.8 33.0 3% 75% 9.3

+ rowcol-lasso pruning 33.8 26.3 39.3 34.2 68% 73% 11.6
+ 8bit quantisation 32.9 25.6 33.7 28.7 68% 73% 6.9
+ 8bit finetuning 32.9 26.0 35.7 31.3 68% 73% 7.1

12-1.micro 35.4 27.6 46.2 40.2 0% 0% 17.1

+ head-lasso pruning 34.6 26.7 43.0 35.4 3% 72% 14.1
+ 8bit quantisation 33.4 26.0 36.7 31.2 3% 72% 9.2
+ 8bit finetuning 33.7 26.5 38.3 33.3 3% 72% 9.2

+ rowcol-lasso pruning 34.3 26.4 40.7 35.1 60% 59% 12.0
+ 8bit quantisation 32.7 25.5 34.2 29.1 60% 59% 7.5
+ 8bit finetuning 33.3 25.9 35.2 30.5 60% 59% 7.5

Table 4.29: 8bit model performance. BLEU score is calculated from WMT20. Speed is
measured on a single core CPU with a mini-batch of 32.

4.16.4 Analysis: Pareto frontier

Fig. 4.9 present the Pareto trade-offs for latency and throughput tasks, which include some of

the models mentioned above and a few more as well. Many of our submissions, including those

pruned, landed in the Pareto frontier. An interesting example of how pruning and quantisation

create a winning combination is the difference between Niutrans and Edinburgh models in

Fig. 4.9c. “3-1-512” submission by Niutrans means that this architecture has 3 encoders layers,

a 1 decoder layer with feedforward dimensions set to 512 (C. Wang et al., 2021). Despite being

an overall shallow model with only 4 layers, our aggressively pruned ‘12–1” models outperform

it in speed. Of course, many other aspects differentiate these submissions, such as toolkits

used, code-level optimisation, et cetera. Still, given the number of layers, the performance gap

is interesting.
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Figure 4.9: Pareto trade-offs of the official WMT2021 Efficiency Task submissions.
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4.17 Analysis: Human evaluation

Every year, the WMT conference provides human evaluation for the news translation shared

task; WMT2021 was no exception (Akhbardeh et al., 2021). The Efficiency Task at WMT2021

participated in the human evaluation as well, which was sponsored by Microsoft (Heafield,

Zhu, & Grundkiewicz, 2021). This human evaluation process has been acknowledged as

trustworthy method of quality judgement, treated as a golden standard in the research field

(Kocmi et al., 2021). In order to assess the impact of pruning and quantisation on translation

quality, I submitted selected models for this evaluation procedure. I chose models with an

identical starting architecture with the same hyperparameters alongside those with additional

pruning and quantisation. In particular, I chose the “12–1” tiny transformer (12-1.tiny) from

Tab. 4.29 with both types of pruning applied and fine-tuned with an 8-bit quantisation. These

models are now abbreviated to pruned-heads and pruned-rowcol with the ft8bit suffix when

the quantisation is applied.

Figure 4.10: The example of annotating environment for a standard DA in a human evaluation
(Akhbardeh et al., 2021). Annotators move the slides left and right, reflecting the quality of
given translations.
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The human evaluation is performed through the direct assessment (DA). A standard DA judges

the absolute quality of models and allows us to compare them with each other. This type of DA

(Cettolo et al., 2017; Graham, Baldwin, Moffat, & Zobel, 2013) has been performed following

the directions set by WMT2020 News Translation Task (Barrault et al., 2020). Annotators rate a

translation on an analogue scale using a slider corresponding to an underlying absolute range

between 0 and 100, representing how adequate a translation is when confronted with a source.

These scores get averaged over sentences (Ave.). Various annotators may favour different

scales when judging translations. For that reason, the scores are standardised (Ave. z). The

context was provided for the annotators, with individual sentences shown chronologically. All

annotators are bilingual native German speakers with a translation or linguistics background.

Annotations were collected using Appraise8 Federmann (2018). Fig. 4.10 shows an example

of annotating procedure for a standard DA.

Human Evaluation COMET Sparsity
System Ave. z Ave. WMT21 Att. FFN Speed (s)

12-1.tiny 0.130 94.6 41.9 0% 0% 19.2

12-1.tiny.pruned-heads 0.042 80.7 38.8 3% 75% 14.5
12-1.tiny.pruned-heads.ft8bit 0.036 76.2 33.0 3% 75% 9.3

12-1.tiny.pruned-rowcol -0.100 83.5 34.2 68% 73% 11.6
12-1.tiny.pruned-rowcol.ft8bit -0.044 85.7 31.3 68% 73% 7.1

Table 4.30: The human evaluation of WNGT2021 models based on a standard direct
assessment.

The results based on the standard DA are presented in Tab. 4.30. Most surprisingly, the rowcol

model outperforms the heads one despite being more aggressively pruned. The automatic

metric, COMET on the WMT2021 testset, reflects the opposite. Another interesting observation

of this model is that its quantised variant has a higher human-evaluated score than when it is

not. This gap does exist for the heads experiments.

There are several reasons for such atypical results. A standard DA is a less sensitive method:

unless the quality drop is large, it may be difficult to say with certainty which one is better.

Independent annotators generally evaluate models on a different subset of sentences, and too

much variability can cloud the interpretation.

For this reason, a pairwise contrastive DA has been performed as well. In this type of evaluation,

the same annotator compares outputs from two systems (A and B) concurrently. The annotators

do not change within a pair, which further reduces irregularities. The results based on the

pairwise DA are presented in Tab. 4.31. To highlight how significant ∆ between models is, a

8. https://github.com/AppraiseDev/Appraise

https://github.com/AppraiseDev/Appraise
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Wilcoxon rank-sum test was carried out with p < 0.05 for ∗, p < 0.01 for ∗∗ and p < 0.001 for

∗∗∗. In simpler words, the more ∗ there are in Tab. 4.31, the more significant the quality gap

between the models in a pair with a model A on the left being better than a B one. The example

of annotating procedure for a pairwise contrastive DA is shown in Fig. 4.11.

When the pruned models are compared to the baseline, the human evaluation scores follow

the pattern exhibited by the automatic metrics. The ∆ for rowcol is larger than for heads

(3.3 vs 1.1 in ∆). That makes sense, as the former one was more sparsified. Comparing the

pruned models results in a similar conclusion: more pruning leads to worse human-perceived

quality. Furthermore, we pit the standard pruned models against the quantised experiments.

Overall, the quantised models are worse in quality at the cost of faster translation. However,

the ∆ between rowcol and its quantised counterpart is only 0.3. Such a small value does not

necessarily indicate that those models are on a similar level. However, statistically speaking, it

is difficult to say which one is better or worse based on their translation. The same comparison

for heads yields ∆ = 2.7, which means there is a notable difference between the models with

and without the quantisation, further supported by p < 0.01.

System A System B Ave. A Ave. B ∆ p-val
12-1.tiny 12-1.tiny.pruned-rowcol 93.3 90.0 3.3 ***
12-1.tiny 12-1.tiny.pruned-heads 85.8 84.6 1.1

12-1.tiny.pruned-heads 12-1.tiny.pruned-heads.ft8bit 82.0 79.3 2.7 **
12-1.tiny.pruned-rowcol 12-1.tiny.pruned-rowcol.ft8bit 95.3 94.9 0.3

12-1.tiny.pruned-heads 12-1.tiny.pruned-rowcol 75.4 70.7 4.7 **
12-1.tiny.pruned-heads.ft8bit 12-1.tiny.pruned-rowcol.ft8bit 85.8 82.2 3.6 **

Table 4.31: The human evaluation of WNGT2021 models based on a pairwise direct
assessment.

Figure 4.11: The example of annotating environment for a pairwise contrastive DA in a human
evaluation (Akhbardeh et al., 2021). Annotators move the slides left and right, reflecting the
quality of given translations.
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The automatic metrics such as COMET are the cheapest and the fastest option during the

development. However, a human evaluation allows for the best analysis that reflects a user’s

experience, especially when analysing models for potential deployment.

4.18 Conclusions

This chapter investigated the structural pruning of a transformer architecture integrated into

a typical training routine. The research focused on shedding feedforward nodes and whole

attention heads as training progresses, and I achieved that through a group lasso regularisation,

which zeroes parameters out structurally. The experiments on various knowledge-distilled

robust models with deep and shallow decoders have shown that this type of pruning leads to

Pareto optimal architectures in both quality and speed. In general, pruning entire heads on the

top of feedforward nodes results in even faster models.

In contrast to the previous lottery ticket hypothesis method, the main advantage of this pruning

approach is that it converges in a single “pass” just like a baseline. There is no need to

repeat an entire or a part of training. Moreover, the resulting sparsity patterns exhibit similar

distributions across different language pairs. Whether it is in an encoder or a decoder, the first

and middle layers are priorities the most in pruning. On the other hand, the experiments on

sparsifying both feedforward and attention layers reveal that some of them, such as the last

context attention layer, distinctively avoid being pruned.

Among the English→German experiments, the notable Pareto optimal examples include a

model with 6 decoder layers being 34% faster at 0.2 BLEU loss and a model with “12–1”

encoder-decoder ratio gaining an additional 51% speed-up costing only 0.3 BLEU point. This

pruning approach combined with quantisation gives an even more significant speed boost. The

pruned and quantised models trained for the efficiency shared task translate 1.9–2.7× faster

at the cost of 0.9–1.7 BLEU.

The natural progression of this research would be to implement a matrix multiplication routine

that allows the attention mechanism to have heads of different sizes. The alternative would be to

improve the regularisation of whole heads, but experiments so far indicate that pruning prefers

to have multiple heads of various but often small sizes. The group lasso regularisation already

prunes some layers almost completely. Instead of leaving graph nodes with few parameters, it

may be possible to skip them altogether. In the case of pruning both attention and feedforward,

the algorithm could remove whole layers, focusing on those that are redundant. For example,

Sajjad et al. (2020) remove entire layers in BERT; however, they require the model to be fully

pretrained first.
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The group lasso regularisation has been shown to work with block and row/column sparsity.

Potentially, a different pattern shape could perform better quality-wise with proper speed

optimisation. The group penalty applied to block sparsity currently prioritises pruning them

within the same rows and columns. Applied to entire heads results in a sliceable architecture,

but the quality may suffer as larger structures imposed in regularisation may damage quality.

Given that specific layers get omitted during pruning and vice versa, I would like to explore the

direction of forcing more sparsity in obsolete networks and reducing a regulariser’s force for

bottleneck layers.



Chapter 5

Improving Structural Pruning through

Aided Regularisation

Group lasso regularisation has proved to be a reliable method of structural pruning when

applied to a transformer, producing state-of-the-art Pareto optimal architectures in terms of

translation quality and inference speed. So far in my research, I have worked on the most

granular level that allows the effortless slicing of parameters while still maintaining the density

of a model. Specifically, it means pruning on a neuron level in feedforward layers and on a

head level in attention mechanisms.

The current pruning approach has several drawbacks. Firstly, regularising coarser structures

forces a model to decide to zero out a large number of parameters simultaneously, leading to a

higher quality drop. For example, removing entire layer at once damages quality more than

doing so gradually neuron-wise. On the other hand, removing larger subnetworks makes a

transformer even faster. Ideally, entire layers could be skipped for the most optimal outcome. In

the research I have performed until now, there has been some indication that particular layers

get actively more sparsified than others and vice versa. Those layers that are not eager to

be pruned or even proactively refuse to do so may cause a bottleneck with quality worsening

as a model is forced to balance perplexity and a regularisation penalty it cannot effectively

decrease.

Typical regularisation does not differentiate between layers, and it is up to an engineer

to pick which parts of a model to regularise or not. For example, I opted to not apply to

apply regularisation to the decoder in “12–1” models. I empirically recognised that a single

decoder layer is not worth the regularisation effort, given no sparsity was enforced onto it,

which negatively impacted quality with no additional speed gain. The current research on

regularisation lacks a more nuanced approach with distinct behaviour towards specific parts

of a model. Most pruning methods externally evaluate parameters in a heuristic manner to

then mask and exclude them from further training. A model is not informed of it beforehand,

and it just accommodates around sudden removal of those parameters. Having a regulariser

push and ease off certain layers to a varying degree with additional information plugged into its

function is a research direction I plan to explore in this chapter.

119
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This chapter introduces a method called aided regularisation that scales penalties for each

layer based on either gradients or parameters. In Sect. 5.10, I provide a Pareto analysis of all

variants of these new pruning methods, just like in the previous chapters, to show that aided

regularisation results in models on the optimal frontier.

5.1 Motivation

Continuing the course set by research in the previous chapter, I look into improving the group

lasso approach to push towards removing entire layers in the process. Rather than pruning

whole layers in one go by deciding to keep them entirely or not, a regulariser serves as a

halfway measure, with a portion of parameters removed from a layer. However, it could also be

more strict if it recognises a layer to be obsolete during training. Then, it could aim to eradicate

this layer from the architecture. Preferably, the regulariser should also be able to ignore those

layers deemed too important to be pruned at all to maintain the highest translation quality

possible. This effect could be achieved by scaling λ individually for each layer depending

on some criteria. In other words, the scaling of λ directly modifies the actual regularisation

function and its behaviour. Last but not least, the quality vs speed trade-off still has room for

further improvement, and any advancement to the Pareto frontier is always welcome.

5.2 Analysis: Execution time of pruned graph nodes

Empirically, it has been shown that decoder calculations are more expensive than those in an

encoder, with attention presumed to be a really expensive operation in a transformer. In this

analysis, I shall look into these claims by directly measuring the execution time of nodes on a

computational graph in a knowledge-distilled transformer.

To understand how dimension reduction affects the speed of individual matrix multiplications, I

measure CPU time per operation on the graph. Since each operation is performed in a really

short time, I aggregate all node calculations done within a layer and sum them together. For

feedforward layers, that means assessing two affine operations with parameters (W1,b1) and

(W2,b2). In an attention mechanism, I consider all operations performed on keys, queries and

values (Wk,Wq,Wv with biases) as well as the final affine operation produced on the output

(Wo,bo).

All node execution times were measured with std::chrono C++ library on a single CPU

thread, expressed in seconds. I start by evaluating encoder layers across “12–1” architectures,

including the baseline and the pruned models on the WMT16 testset. The batch size is set

to 32. Fig. 5.1a presents a total timing of a feedforward layer given its dimension up to 1536.
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Fig. 5.1b does the same but for a self-attention layer given the number of heads in it. Both

feedforward and self-attention layers in an encoder get faster linearly as the dimension shrinks.

For instance, removing half of the neural connections from a feedforward layer makes it twice

as fast.

Regarding decoder analysis, I have omitted pruning context attention in my experiments as

it affected the quality, with self-attention replaced by SSRU. Because of that, I analyse “6–6”

architectures with pruned feedforward parameters instead. I accumulate every instance of each

decoder layer executing calculations during a decoding loop and present the results in Fig. 5.1c.

There is also a linear decrease of time utilised per layer in this case. A decoder feedforward

layer takes twice as much time as the encoder (1.6s vs 0.8s for the baseline dimensions of

1536). The decoder is run many times, which makes 2× time cost not as large as it may seem.

This efficiency is most probably due to repeated operations held in a CPU cache.

The most interesting part of this analysis is that a feedforward layer is almost twice as expensive

to run in contrast to an attention layer in an encoder. Even though it is indeed true that

attention in itself is expensive, especially the context one, which loops alongside the decoder,

these results show that feedforward optimisation is important to explore. In my regularisation

experiments, I first targeted feedforward layers, and it turns out it was the right path to progress.

Naturally, pruning of both layers gives the fastest results, as evident in the Pareto frontier, but

sparsifying just feedforward parameters also significantly boosts inference speed.

5.3 Analysis: The effect of regularisation on knowledge-distilled

models

As I trained models with the group lasso regularisation, I noticed something peculiar in the

validation of knowledge-distilled models. As a rule, in the knowledge distillation approach,

a student should overfit a teacher’s distribution. On the other hand, regularisation prevents

overfitting by design. In NMT, a distilled model is considered converged when BLEU stalls 10–

20 times consecutively. It is quite the opposite of a typical training routine where cross-entropy

is observed instead.

Fig. 5.2 visualises the training progression of English→German students with “6–6” architec-

tures, regularised under a group lasso using the provided λ . As can be seen in Fig. 5.2a,

the most striking result to emerge from it is that the cross-entropy skyrockets for the baseline

model. While expected, I overestimated how much overfitting happens in a student model. The

regularisation applied throughout the training process plateaus the cross-entropy that still, in

most cases, outperforms the baseline validation. This discrepancy may indicate that there

could exist a better training regime for the knowledge-distillation, which could still aim to overfit

a teacher while resulting in better final quality. I leave this observation as an open question for

future research.
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Figure 5.1: Execution times for feedforward and attention layers for English→German students
based on their dimensions or the number of heads.

5.4 Analysis: Perplexity vs regularisation penalty

Next, in the ongoing investigation into regularisation behaviour, I look into how penalties scale

during training. It is especially interesting in the context of potential bottlenecks. For this

analysis, I take the English→German student model with the “12–1” architecture and apply

a neuron-wise group lasso over feedforward and attention layers with λ = 0.03. I use the
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Figure 5.2: The training progression of English→German students with “6–6” architecture
(see Tab. 4.11 regularised until convergence.

pretrained checkpoint as the starting point as usual. Then, I print all partial losses participating

in training averaged over every 1k batches, including the perplexity responsible for the quality

and individual regularisation penalties over layers. This way, I scrutinise the training progress

and relations between these losses.

In Fig. 5.3, I visualise the perplexity and the total regularisation penalty sanctioned upon both

encoder and decoder (Fig. 5.3a). In the early stages of training, the penalty must be larger

than the perplexity to incentivise a model to begin zeroing parameters out. A model may focus

on quality if a penalty is too small due to λ . Naturally, the former happens in this case. As soon

as the model start to reduce the magnitude of parameters, the penalty goes towards zero, and

the perplexity takes over.

Just a reminder, the group lasso penalties are not scaled down only by λ but also by batch

size (words per batch). If a penalty is roughly within the same range and is not scaled by batch,

the perplexity will keep being either too large or too small all the time. Scaling the penalty by a

batch size makes it follow the similar trajectory up or down. This cost scaling is necessary so

that the penalty volume is steady and not constantly subdued by a perplexity that may shift

depending on a batch size as well as on how well a model deals with sentences in particular

updates.
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Batches also vary in how many sentences they carry. Using a static batching routine could

solve this issue. However, it would be grossly inefficient for training purposes in NMT as

dynamic batching fits as many sentences on GPUs as possible. As can be seen in Fig. 5.3,

both the perplexity and the penalty follow a similar trajectory in tandem. However, a few peculiar

exceptions shifted my focus in the direction of the outliers.

Even though the results are averaged over every thousand batches, there is still a notable

checkpoint that seems abnormal. I highlighted it with a dashed vertical line. In this example,

the perplexity is small, almost zero, and the regularisation penalty is at least 5–10× larger than

usual. Since this is average, multiple issues could be at play here. It is probably a mix of having

smaller batches on average combined with “easier” to translate sentences, which causes the

regularisation penalty to explode and the perplexity to diminish completely. This behaviour

could also mean that some low-quality data disturbs training. It does not seem as damaging

during normal training, but it may trigger poor regularisation phenomena. This problem is not

isolated to a group lasso alone, but it can happen to any regularisation method. It is more of an

issue in natural language processing than in image recognition, which typically trains using the

same-sized images and equal batches.

I repeat the same experiment, now regularising only the decoder, now presented in Fig. 5.3b. I

increase λ to 0.3 to compensate for fewer layers. The results follow a similar pattern as to the

fully regularised architecture. Besides that one extreme outlier, several other points overpower

the perplexity. To further illustrate how large this gap between perplexities and penalties is, I

compare the perplexity of only one selected penalty: the first affine operation W1 in the single

decoder feedforward layer (Fig. 5.4a) and the same for Wk in the context attention (Fig. 5.4b).

A dashed vertical line highlights the outlier checkpoint. Even a single parameter matrix penalty

is highly disproportionate to the perplexity.

Overall, this analysis shines a light on the inner workings of regularisation in the context of

NMT. The perplexity expresses a model’s strive towards a good translation quality with the

penalty enforcing sparsity over parameters. The ratio issues between these two may disturb

a training flow and impact the gradient descent negatively, possibly leading a model towards

suboptimal minima. The results above directly inspired me to look into scaling regularisation

penalties individually for each layer. Localising λ scaling could theoretically solve an issue of a

global ratio being skewed and thus improve training flow, which I leave for future work. Local

scaling, by design, could also identify bottlenecks or good candidates for more aggressive

pruning. I proceed with exploring the idea in this chapter.
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Figure 5.3: The cost comparison between the perplexity and the total regularisation penalty
during training of English→German students with “12–1” architecture. The red dashed-line
highlights a batch with a disproportional perplexity and a regularisation penalty.
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Figure 5.4: The cost comparison between the perplexity and the regularisation penalty in the
selected decoder layers during training of English→German students with “12–1” architecture.
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5.5 Aided Regularisation: Introduction

The previous analysis inspired me to look into scaling regularisation penalties. In other words,

it means modifying the regularisation function itself. Layer-wise approach is one of the aspects

of regularisation that I want to address and expand upon without forcing group lasso over too

large structures.

The idea is to use supplementary information to scale the penalties to steer them towards a

specific behaviour. In practice, it means adding a new scalar γ alongside an already existing λ :

E(batch) =
1

|batch|

(
∑

x∈batch
CE(x)+λ ∗ ∑

j∈layers
γ j ∗R( j)

)
(5.1)

As shown in Eq. 5.1, each layer has its individual γ , which gets updated after every back-

propagation pass. In order to avoid sudden shits in γ between individual batches, which could

make a ratio between perplexities and penalties even more unstable, γ are exponentially

smoothed as training progresses:

∀
i∈batches

∀
j∈layers

γ j = α ∗ γ̂ j
i +(1−α)∗ γ j−1 (5.2)

After every batch i, I calculate a local scalar γ̂ j
i for each layer j based on information gathered

during this specific update, which then updates a smoothed global γ j scalar. α is a constant

used in exponential average that controls the contribution of a new element in a sequence

towards the overall average. I use α = 1e−4 in my experiments.

“Aided regularisation”, as formally called from now on, uses external information to update and

steer these γ scalars per layer. These γ scalars are not a part of the computational graph.

Instead, they are calculated and updated outside of it and treated as constant nodes in the

network.

Pruning methods outside of regularisation assume that some parameters are obsolete due

to a predefined heuristic. Thus, they get removed with the hope that a model accommodates

their loss independently. In this case, backpropagation does not get any feedback or warning

of parameters being about to be removed. A typical regularisation modifies the objective

to enforce sparsity upon a model. However, a regulariser does not distinguish which layers

or parameters are more important than others. Backpropagation decides the best trade-off

between the best-quality objective and a set of parameters required for said quality. At the

same time, the force of regularisation remains equally strong, no matter what stage of training it

is or how crucial some parameters are to a model. Aided regularisation combines the strengths

of the approaches mentioned above to improve upon them.
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5.6 Setup

I run all my experiments on the well-familiar English→German knowledge-distilled student

introduced in Sect. 4.7). I focus on the 12–1 architecture as it proved to be a reliable choice

and an excellent example for structural pruning. Regularisation is always applied on the neuron

level using a group lasso unless stated otherwise.

5.7 Gradient-aided regularisation

The first direction that I explore is scaling penalties based on gradients. γ scalars should

increase as gradients stop flowing through a layer since it indicates that this layer does not

contribute to training as much, possibly stopping learning altogether. I hypothesise that a

layer with small gradients is a good candidate to be regularised more aggressively and vice

versa. If possible, γ could decrease for layers deemed too important for a model’s quality.

Similarly, if a regulariser does not prune some parameters over a long period, it can be an

accurate prediction that they should be kept in a model and not penalised too much, if at all.

Turning a regulariser off serves the same purpose but simultaneously across the whole model.

When using local gradients to scale penalties layer-wise, it is important to consider a global

gradient norm. The whole point of the gradient descent algorithm is to decrease all gradients

as parameters keep getting updated. γ needs to accommodate that to not penalise a model

progressively just because it trains successfully.

Feeding gradients into a regulariser that contributes towards the cost function may be prob-

lematic. On the other hand, taking backpropagation steps twice to get “pure” partial gradients

without penalties involved for γ scaling is too expensive. While not mathematically sound, I

use the gradients produced alongside the regularisation as an approximation. This empirical

approach should allow me to see how this method performs like in the first place with possible

alternatives down the line.

5.7.1 Establishing methodology & scaling variants

The following section explores various designs of γ functions using gradients with experiments

and consequent analysis.
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Exponential variant

As previously mentioned, the L2 norm of all gradients needs to be taken into account when

designing a γ . For the first experiment, I selected the exponential function f (x) = ex as the

basis for γ .

With Wi being a regularised layer and ∇W as accumulated gradients in a model, the exponential

γ is defined as follows:

γi = exp

Ç
1− ‖

∂Wi
∂E ‖2

‖∇W‖2

å
(5.3)

Here in Eq. 5.3, the numerator representing local gradients of an ith layer is always going to be

smaller than the norm of all gradients in the denominator. Thus, subtracting this fraction from

1 results in the range of γ between 0 and e. (approx. 2.72), which scales the regularisation

penalty for the relevant layer.

I experiment with this variant of aided regularisation on English→German knowledge-distilled

students (see Setup in Sect. 4.7) with 12–1 architecture. I apply neuron-level regularisation

to feedforward layers in both encoder and decoder to investigate the decoder bottleneck

and subsequent sparsities. I do not use any tricks to obtain the best quality possible: the

regularisation is applied to training from the beginning until the model converges.

The model trained for 450k batches with group lasso. After the training finished, I sliced

every checkpoint and removed inactive connections that sum up to less than 1e−5. Since

γ additionally scales penalties, the global λ must be smaller to avoid overly aggressive

regularisation that may hinder the translation quality. For this reason, I selected λ = 0.1 in this

experiment. I present the visualisation of structural pruning progression using the exponential

gradient-based regulariser in Fig. 5.5.

The single decoder layer remains the bottleneck with no parameters removed from it. It took

about 200k updates for the model to start pruning parameters, most probably due to the low

initial λ . However, when selected connections start to zero out, the further middle layers are

the first to go (7 to 9). As training progresses, layers 6 and 5 join as well. All other layers are

kept intact as more weight is put onto the aforementioned middle layers by the γ .

I do not save smoothing statistics for γ , so whenever a training run restarts in a cluster (about

every 80k batches), the γ scalars get averaged anew. Besides the natural changes in gradient

flows, the occasional larger hiccups in Fig. 5.5 may be caused by these restarts. The sparsity

fluctuations may also result from manual thresholding for structural slicing. After a short time,
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Figure 5.5: The sliced feedforward dimensions of English→German students with “12–1”
architecture during training with exponential gradient-aided regularisation.
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Figure 5.6: The sliced feedforward dimensions of English→German students with “12–1”
architecture during training with log-based gradient-aided regularisation.
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the parameters quickly catch up to where they were before. This brief reactivation of parameters

may serve a good purpose of potentially improving quality while allowing a model to expand

its capacity during training temporarily. For example, Y. Wang et al. (2020) have shown that

pruning and rejuvenating parameters achieve higher BLEU scores in their experiments.

As I suspected, the gradient flow through the middle layers seems to decrease with training time,

putting more pressure on the regulariser. The simple group lasso exhibited similar patterns

before, with these layers being top priority from the beginning, but the aided approach tips

the pruning further in that direction. Middle layers actively stripped out from a model with a

potential decrease in depth is a promising prospect. This variant of aided regularisation is

not too pushy: it scales penalties by ×2.7 at most. In this specific example, γ scalars scale

the initial λ = 0.1 up to ∼0.27. One could argue that this is not a wide range for a regulariser

unless it starts from a much higher λ . In the next section, I look into a more steep γ scaling.

Log-based variant

I proceed with a log function as the base for γ scaling. Following the similar variable definitions

as in Eq. 5.3, the log-based γ is defined as follows:

γi =−log

Ç
‖ ∂Wi

∂E ‖2

‖∇W‖2

å
(5.4)

Since the fraction is always smaller than 1, I add minus to the formula to nullify the negation.

I repeat the same experiment as described in the previous section. The progression of structural

pruning is presented in Fig. 5.6.

The aggressive regularisation of selected layers immediately stands out from the plot. Overall,

the log function leads to a more steep scaling, which suppresses those layers rapidly with

the gradient-based approach. This scaling method requires a smaller global λ to moderate

the regulariser’s strength. It took about 100k batches to start pruning, but three layers were

completely stripped from the model as soon as it began. Some of the other layers join this

endeavour later into training, while many are unaffected, just like in the exponential γ . At that

point, I only investigated training stability under such regularisation and did not converge the

models to judge their quality. As the log-based γ scaling tends to be more decisive in its pruning

(as in, it selects 3–4 layers to be removed swiftly in their entirety from a model), I proceed with

more in-depth experiments and studies of this regularisation technique.
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Figure 5.7: The training validation of English→German students with “12–1” architecture
regularised with the log-based gradient-aided approach.

5.7.2 Experiment: Training stability

Using the log-based variant of the gradient-aided regularisation, I run experiments pruning

feedforward and attention layers in encoder and decoder of the “12–1” architecture. This trial

run aims to understand better the impact of the modified regularisation on a transformer model

and explore potential refinements to the approach. Following the direction set by the previous

experiments, all models were pretrained for 25k updates. Then on a fresh training run, they are

regularised with λ ∈ {0.03,0.05,0.1,0.3} for 200k batches.

The training progress of models regularised with a gradient-aided approach is presented in

Fig. 5.7. The validation is stable in both BLEU and cross-entropy. Naturally, the larger λ is, the

more substantial the validation loss. These results show that transformer models successfully

train under the gradient-aided regularisation method, producing reasonable validation numbers.

Next, I look into how these models sparsify under this regularisation regime.

5.7.3 Analysis: Sparsity progression

The experiments with a standard group lasso have shown (see Fig. 4.4 and 4.5) that some

layers have less priority than others, but in general, most of them follow similar patterns to each

other. As λ increases, eventually, all layers give in to pruning in a similar fashion. Since aided

regularisation scales its penalties, I expect the differences between layers’ sparsity to be more

prominent.

Fig. 5.8 presents an extensive visualisation of pruning progress for transformer layers. Each row

of plots represents one training run under λ ∈ {0.03,0.05,0.1,0.3}, which shows how sparsity

changes throughout training. I chose to express it as a percentage of zeroed-out coefficients

(less than 1e−6) rather than reduced dimensions to minimise fluctuations and provide a
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smoother picture and analysis. The three columns of plots refer to regularisation progress

in the following parameter matrices: W1 in feedforward and Wk,Wv in attention layers. Group

lasso does not tie corresponding layers together, as each row and column for every matrix is

regularised independently. It does not change the outcome as structures are connected and

sliced out from a model cascadingly. For example, zeroing out columns in W1 entails pruning of

rows in W2, no matter if they themselves get fully reduced to zero. Similarly, entire attention

heads are removed despite all separate parts of attention mechanisms being regularised

separately. The regularisation naturally ties corresponding matrices, so there is no need to

group them further together. For this reason, I visualise Wk (keys) and Wv (values) only in

Fig. 5.8 as they are tied to Wq (queries) and Wo (output) multiplications respectively. They

exhibit identical patterns, so I omit them in the multiplot due to redundancy. At the same time,

plotting these parts separately allows us to see which parts of the attention mechanism are

prioritised by the regulariser.

λ set to 0.03 is too small to prune feedforward layers and requires a larger initial push. However,

attention keys are aggressively sparsified from the start. Attention values start to follow the

lead with a notable delay. This pattern raises the question of whether it is necessary to apply

regularisation to all parts of attention as suppressing values that serve as inputs. It may be

counter-intuitive to a model while deciding which attention heads to keep intact or not. In

general, attention may be pruned more as its matrices are smaller than feedforward ones, thus

increasing the γ . As gradients decrease, the scales for penalties go up drastically. In particular,

the regulariser targets encoder layers 7 to 11. As reflected in the previous work on a standard

group lasso (see Sect. 4.12), middle layers could become less useful as training continues

and, in turn, prove to be good candidates for subsequent pruning. The current results of aided

regularisation highlight it even better, with these layers being penalised even more as gradients

decrease in magnitude. Many layers reach complete sparsity sooner or later depending on

the global scaling with λ . Others remove a portion of their parameters to plateau at a specific

sparsity level. It could mean that layer pruning does not have to be a binary approach, where a

layer is kept entirely or not. Instead, it could be treated as a spectrum but with the emphasis on

removing whole layers.

5.7.4 Analysis: γ scalars

In Fig. 5.8, I looked into how sparsity changes during training. This time, I examine the γ scalars

directly and how they update for every layer. The visualisation of feedforward γ scaling under

different λ is presented in Fig. 5.9.

All the layers get immediately sorted from the start based on the gradients. Most importantly,

this order is mostly kept as training goes on. Both Fig. 5.9 and 5.8 are tied together: layers are

prioritised during pruning based on γ applied to them. Overall, the penalties have a decreasing

tendency, with some drastically rising when a larger global λ is used. Most layers plateau in



5.7. Gradient-aided regularisation 134

0

20

40

60

80

100

λ
=

0
.0
3

FFN W1

Dec. L1
Enc. L1
Enc. L2
Enc. L3
Enc. L4
Enc. L5
Enc. L6
Enc. L7
Enc. L8
Enc. L9
Enc. L10
Enc. L11
Enc. L12

0

20

40

60

80

100

λ
=

0
.0
5

0

20

40

60

80

100

λ
=

0
.1

0

20

40

60

80

100

100k 200k

λ
=

0
.3

Training batches

Att. Wk

100k 200k
Training batches

Att. Wv

100k 200k
Training batches

Figure 5.8: The progress of coefficient-wise sparsity in layers for λ ∈ {0.03,0.05,0.1,0.3}
using gradient-aided regularisation. y-axis represents the percentage of pruned parameters.



5.7. Gradient-aided regularisation 135

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 100k

G
am

m
a

sc
al

ar
s

λ = 0.03

Dec. L1
Enc. L12
Enc. L11
Enc. L10
Enc. L9
Enc. L8
Enc. L7
Enc. L6
Enc. L5
Enc. L4
Enc. L3
Enc. L2
Enc. L1

0 100k
Training batches

λ = 0.05

0 100k

λ = 0.1

0 100k

λ = 0.3

Figure 5.9: The progress of γ scalars for feedforward layers during training with λ ∈
{0.03,0.05,0.1,0.3}.

the later stages of training, getting reduced from the start value. This pattern can be attributed

to gradients, in general, getting progressively larger until they finally stabilise. Those actively

pruned layers stop getting updated at some point; thus, their γ rapidly increases. The reverse

is true as well: the single decoder layer, which is a known bottleneck, is assigned the lowest

γ . It reduces steadily and pulls the pressure off the decoder’s penalty. This reduction may

have an interesting impact on quality down the line, with negative side-effects of the bottleneck

diminished. Instead of forcing all layers to be equally penalised, gradient-aided regularisation

scales them, with the previously mentioned middle layers being the main focus of the pruning.

5.7.5 Experiment: Convergence

Now I proceed with slicing and converging the models regularised in the previous section. A

neural connection is considered inactive if it sums up to less than 1e−4. Similarly, an attention

head is sliced out if at least half of its connections are dead. The evaluation of the converged

architectures is presented in Tab. 5.1. I re-evaluate the inference speed of the baseline model

since there have been many new code optimisations done on the toolkit since the efficiency

shared task. It translates about 2111 words per second, which slightly improves the previous

1930.
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Reg. λ −→ Base 0.03 0.05 0.1 0.3
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 1536 8 1536 7 1494 7 194 4
Enc. L2 1536 8 1536 8 1536 6 1534 3 502 1
Enc. L3 1536 8 1536 8 1536 8 683 4 145 0
Enc. L4 1536 8 1536 8 1536 8 369 7 62 1
Enc. L5 1536 8 1536 8 1536 8 257 5 31 0
Enc. L6 1536 8 1536 8 1536 8 168 2 27 0
Enc. L7 1536 8 1536 8 1536 2 71 2 5 0
Enc. L8 1536 8 1536 1 1536 0 41 0 1 0
Enc. L9 1536 8 1536 0 1536 0 41 0 5 0
Enc. L10 1536 8 1536 1 1536 1 187 0 15 0
Enc. L11 1536 8 1536 2 1536 2 1536 0 177 0
Enc. L12 1536 8 1536 8 1536 8 1236 4 235 2
Dec. L1 1536 8 1536 8 1536 8 1536 8 1536 8
BLEU 38.2 38.8 38.7 37.8 34.9
∆ — 0.6 0.5 -0.4 -3.3
chrF 63.9 64.0 64.2 63.4 61.5Q

ua
lit

y

COMET 49.5 51.2 51.2 47.4 37.8
Att. sparsity 0% 27% 37% 60% 85%
FFN sparsity 0% 0% 0% 54% 85%
WPS 2111 2463 2506 3490 4885

E
ffi

ci
en

cy

Speed-up 1.00 1.17 1.19 1.65 2.31

Table 5.1: The results of “12–1” transformer models for English→German regularised with
gradient-aided approach on a neuron-level in both encoder and decoder. The layers were
subsequently sliced and the models converged. Averaged over WMT16–19 testsets.

In contrast to Fig. 5.8, slicing is more lenient than just counting the percentage of small-valued

parameters. For that reason, the feedforward layers do not get pruned until a larger λ is

used. The opposite is true for the attention mechanism: many layers are almost completely

obliterated. As noted before, layers from about 7 to 11 seem to be the main pruning target.

This pattern creates an hourglass shape in the encoder. As expected, the only decoder layer

was left completely intact.

In terms of translation quality, there is a slight BLEU improvement for the lesser pruned models,

which offer up to 1.19× speed-up. Pruning about half of the attention heads and 60% of

feedforward connections results in 1.65× faster inference at the cost of −0.4 BLEU point.

The most aggressive 85% sparsity in both parameters makes this model 2.31× faster at the

significant −3.3 BLEU loss.
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To fully understand the impact of this pruning on quality, I additionally score the models with

chrF and COMET in Tab. 5.1. Less sparse models either maintain or surpass the baseline,

further proving that a few selected attention layers can be completely removed without affecting

the quality. For example, removing almost 5 attention layers completely makes one of the

models 1.19× faster with slightly better translation quality. Past that point, speed gains are

more significant. The model that is 1.65× faster loses −0.5 chrF and −2.1 COMET points,

alongside −0.4 in BLEU.

The results are quite promising, especially given that many layers are (almost) fully pruned

in comparison to a typical group lasso regularisation. The past experiments emphasised

addressing the bottleneck effect by either omitting the shallow decoder in the regularisation

scheme or reducing its force towards the decoder somehow. Therefore, I proceed with the

investigation by only applying gradient-aided regularisation to the encoder.

Reg. λ −→ Base 0.03 0.05 0.1 0.3
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 1536 8 1536 7 1501 7 192 4
Enc. L2 1536 8 1536 8 1536 6 1536 3 494 1
Enc. L3 1536 8 1536 8 1536 8 649 4 146 0
Enc. L4 1536 8 1536 8 1536 8 367 7 58 1
Enc. L5 1536 8 1536 8 1536 8 256 5 29 0
Enc. L6 1536 8 1536 8 1536 8 161 2 31 0
Enc. L7 1536 8 1536 8 1535 2 64 2 4 0
Enc. L8 1536 8 1536 1 1536 0 38 0 1 0
Enc. L9 1536 8 1536 0 1536 0 44 0 5 0
Enc. L10 1536 8 1536 1 1536 1 182 0 13 0
Enc. L11 1536 8 1536 3 1536 2 1532 0 175 0
Enc. L12 1536 8 1536 8 1536 8 1536 4 277 2
Dec. L1 1536 8 1536 8 1536 8 1536 8 1536 8
BLEU 38.2 38.9 38.8 37.8 35.0
∆ — 0.7 0.6 -0.4 -3.2
chrF 63.9 64.2 64.1 63.4 61.5Q

ua
lit

y

COMET 49.5 51.5 51.4 48.3 38.1
Att. sparsity 0% 26% 37% 60% 85%
FFN sparsity 0% 0% 0% 53% 85%
WPS 2111 2476 2506 3501 4955

E
ffi

ci
en

cy

Speed-up 1.00 1.17 1.19 1.66 2.35

Table 5.2: The results of “12–1” transformer models for English→German regularised with
gradient-aided approach on a neuron-level in encoder only. The bottleneck effect is minimal in
contrast to previous regularisation methods.
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5.7.6 Experiment: Decoder bottleneck

I repeat the experiment from the previous section, but I omit the decoder in regularisation this

time. The models are sliced after 200k regularised batches with λ ∈ {0.03,0.05,0.1,0.3} and

then trained until convergence. The results are presented in Tab. 5.2.

The sparsity patterns and the quality are close to those wholly regularised models. Direct

comparison between Tab. 5.1 and 5.2 shows that the bottleneck effect does not impact the

quality in this regularisation scheme, with the difference between the two approaches being

±0.1 BLEU point. However more extensive quality evaluation using chrF and COMET in

Tab. 5.2 shows that this is not entirely true.

Despite the λ = 0.1 model scoring the same BLEU and chrF in both cases of regularising the

decoder or not (Tab. 5.1 vs 5.2), the COMET score is worse by −0.9 when regularisation over

decoder is enforced, which is the largest difference in COMET quality between those tables.

Nonetheless, this gap in quality is much smaller than the one exhibited by the standard group

lasso. The “6–2 tied” architecture lost at most −1.8 COMET points when forced to prune the

decoder on top of the encoder. The larger loss can be contributed to a major sparsification

of the bottleneck decoder layer as λ increased. This loss is twice as large as the current

regularisation method.

On the other hand, the visualisation in Fig. 5.9 shows γ assigned to the decoder layer either

being kept constant or decreasing throughout the training. Progressively decreasing γ alleviates

the pressure off the decoder and reduces the negative impact of the bottleneck. While not

regularising a shallow decoder is still the best option, scaling the penalties through aided

regularisation improves the results on this front.

Reg. λ −→ Base 0.03 0.05 0.1 0.3
Pruned 38.2 38.9 38.8 37.8 35.0

BLEU
Reinit — 38.0 38.1 37.0 33.6
Pruned 63.9 64.2 64.1 63.4 61.5

chrF
Reinit — 63.8 63.6 62.7 60.8
Pruned 49.5 51.5 51.4 48.3 38.1

COMET
Reinit — 48.5 48.3 44.2 33.6

Table 5.3: The evaluation of English→German “12–1” students with pruned encoder (Pruned)
using gradient-aided regularisation, compared to the same architecture trained from scratch
(Reinit).
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5.7.7 Experiment: Training from scratch

As usual, the question is whether the gradient-aided regularisation leads to a better translation

quality or if it serves more as an architecture search with the same models achieving similar

performance when trained from scratch. To test this hypothesis, I take the converged models

pruned with gradient-aided regularisation, reinitialise their parameters and retrain the archi-

tectures. I choose models with a pruned encoder only from Tab. 5.2 as they have proven to

perform the best quality-wise. The direct comparison of pruned and reinitialised experiments is

presented in Tab. 5.3.

Even though the first two models (λ ∈ {0.03,0.05}) lose only 0.1–0.3 in BLEU and chrF when

trained from scratch relative to the baseline, the quality significantly drops in COMET. Across

the experiments, the reinitialised models lose between 3.0 to 4.5 COMET points in comparison

to their pruned counterparts. Again, this proves that careful structural pruning, this time through

aided regularisation, results in superior translation quality, clearly outperforming models trained

with the same architecture from the beginning.

5.7.8 Experiment: Tensor suppression

Slicing an architecture only after a model finishes a regularisation regime means that para-

meters have the opportunity to reactivate and possibly be pruned again during training. As I

previously mentioned, it may even improve the quality of a model. On the other hand, a model

needs to actively keep parameters subdued if it decides to prune them, which may necessitate

the usage of a larger λ to achieve satisfying sparsity levels. In turn, larger λ damages the

quality to a certain extent. If we care about inference speed, we may favour a more stern model

in its pruning decisions.

In the following experiment, besides the usual regularisation, I also access parameter tensors

and zero-out coefficients that are smaller than 1e−6. There is no separate masking mechanism

in the calculation graph; tensors are accessed directly instead. These parameters are not

involved in training calculations and get repressed permanently. I re-run the experiments with

the gradient-aided regularisation applied to both encoder and decoder for 200k batches after

25k updates of pretraining. Every 10k batches thresholded coefficients are zeroed-out and

disabled from the gradient descent. Similarly to Fig. 5.8, I visualise the sparsity progression for

gradient-aided regularisation with tensor masking in Fig. 5.10.

Model checkpoints happening every 5k with tensor masking done every 10k create the staircase

effect in the plot. In contrast to Fig. 5.8, the progress of sparsity levels is much smoother. Notably,

Wv (and in turn Wo as well) in the attention mechanism are the least eager to be pruned. Only

a few selected layers aim for 100% sparsity, namely layers 8 to 11. The decoder remains

unaffected as usual. The γ scalars behave similarly to the patterns presented in Fig. 5.9, so I

skipped this analysis due to redundancy.
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Figure 5.10: The progress of coefficient-wise sparsity in layers for λ ∈ {0.03,0.05,0.1,0.3}
using gradient-aided regularisation with tensor masking.
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Reg. λ −→ Base 0.03 0.05 0.1 0.3
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 1495 7 1372 7 930 7 160 4
Enc. L2 1536 8 1458 8 1386 6 1222 3 488 1
Enc. L3 1536 8 1371 8 1123 8 561 4 125 0
Enc. L4 1536 8 1283 8 869 8 325 7 48 1
Enc. L5 1536 8 1298 8 723 8 221 5 23 0
Enc. L6 1536 8 1280 8 619 8 150 2 19 0
Enc. L7 1536 8 1214 8 413 2 37 2 3 0
Enc. L8 1536 8 1142 1 381 0 22 0 1 0
Enc. L9 1536 8 1187 0 429 0 25 0 3 0
Enc. L10 1536 8 1294 1 616 1 145 0 8 0
Enc. L11 1536 8 1488 2 1196 2 576 0 172 0
Enc. L12 1536 8 1511 8 1415 8 920 4 196 2
Dec. L1 1536 8 1536 8 1536 8 1536 8 1536 8
BLEU 38.2 38.9 38.6 37.7 34.7
∆ — 0.7 0.4 -0.5 -3.5
chrF 63.9 64.2 64.0 63.3 61.6Q

ua
lit

y

COMET 49.5 52.4 50.6 47.7 37.7
Att. sparsity 0% 28% 37% 60% 85%
FFN sparsity 0% 12% 40% 67% 86%
WPS 2111 2511 2938 3761 5177

E
ffi

ci
en

cy

Speed-up 1.00 1.19 1.39 1.78 2.45

Table 5.4: The results of “12–1” transformer models for English→German regularised with
gradient-aided approach on a neuron-level in both encoder and decoder. Any coefficients
smaller than 1e−6 are replaced with zeroes and surpressed during training.

Next, the models are sliced just like before and trained until convergence. The results are shown

in Tab. 5.4. This regularisation is more aggressive in its structural pruning as suppressing

individual coefficients further incentivises a model to remove other parameters from within

the same connections. With a slight improvement in BLEU, a model gains about 1.39× faster

inference while removing about 40% of parameters across feedforward and attention layers.

Pruning about two-thirds of the parameters leads to 1.78× faster translation at the expense of

half a BLEU point. It is an excellent example of a really good Pareto quality-speed trade-off

we will see in Sect. 5.10. Finally, I confront these pruned architectures with a more extensive

quality evaluation with chrF and COMET in Tab. 5.4.

The model mentioned above with 1.39× faster inference also maintains or surpasses its quality

performance in both chrF and COMET, just like BLEU. In conclusion, tensor masking guides

a model towards sparser and faster architectures while still achieving comparable translation

quality to the baseline.
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5.8 Parameter-aided regularisation

In the research around aided regularisation, I concentrated the efforts on gradient-based

penalty scaling. Despite using regularised gradients as an approximation of pure derivatives, I

have empirically shown that gradient-aided regularisation produces good quality models with

significantly faster inference. To explore the topic further, I decided to simplify a solution to this

optimisation problem and shift focus towards parameter-based γ scaling.

5.8.1 Methodology

The intuition is quite simple: pruning should accelerate as a layer gets sparser. In other

words, the more parameters are removed from a layer, the larger its γ scalar should become.

Parameter-aided regularisation, as the name suggests, uses the magnitude of parameters

(instead of gradients) to scale individual layers.

Continuing a log-based approach, I define the parameter-aided γ function as:

γi = log(‖Wi‖2) (5.5)

γi is then smoothed (Eq. 5.2) and applied to the cost function (Eq. 5.1) as defined by the aided

regularisation approach.

All the other hyperparameters and settings are unchanged for this method.

5.8.2 Analysis: γ scalars

Let us examine the above-defined γ function. I proceed with regularising the “12–1” architecture

across both encoder and decoder using the parameter-aided method. I visualise the progress

of γ for feedforward layers in Fig. 5.11.

As evident from the plots, this is a monotonically increasing function. This monotonicity is

only natural as there is no opportunity for the function to decrease: parameters are penalised

towards zero, unlike gradients that go up and down. It is worth noting that the layers are in

a similar order to that in Fig. 5.9, with the further middle layers being prioritised the most

again. The γ range is much wider, scaling even up to 9×. This is because the magnitude of

parameters is not divided by any scalar or variable with possible future improvement in this

aspect. Potentially, it could be averaged over, for example, one of the dimensions or even

entirely replaced by a completely novel function.
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Figure 5.11: The progress of γ scalars in parameter-aided regularisation for feedforward layers
during training with λ ∈ {0.03,0.05,0.1,0.3}.

In contrast to the gradient-based method shown in Fig. 5.9, this is the first time where the single

decoder layer gets gradually more penalised as training continues. As will be evident in the next

experiment, this does not cause the decoder to be pruned in the end since other layers are still

assigned proportionally larger γ . Compared to the previously tested gradient approach, this

mirror-like behaviour should broaden our general understanding of which research direction is

better and the performance difference between those two.

5.8.3 Experiment: Convergence

Now I proceed with slicing and converging the models regularised in the previous section,

similarly how I did in Sect. 5.7.5. Since omitting the decoder during regularisation produces the

best quality results, I proceed with regularising the encoder only in the following experiment. I

repeat the usual pruning setup: applying the parameter-aided regulariser for 200k updates on a

model pretrained for 25k, then slicing an architecture. Finally, a model trains until convergence.

The results are presented in Tab. 5.5.
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Reg. λ −→ Base 0.03 0.05 0.1 0.3
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 1495 7 1372 7 930 7 160 4
Enc. L1 1536 8 1536 8 702 7 158 7 23 4
Enc. L2 1536 8 1536 8 943 7 363 3 54 1
Enc. L3 1536 8 1536 8 523 8 171 7 32 1
Enc. L4 1536 8 1536 8 335 8 108 8 13 1
Enc. L5 1536 8 1494 8 331 8 80 8 5 0
Enc. L6 1536 8 1536 8 272 8 63 8 7 1
Enc. L7 1536 8 1536 8 244 8 36 4 4 0
Enc. L8 1536 8 1536 7 181 2 23 0 1 0
Enc. L9 1536 8 1536 6 223 0 33 0 4 0
Enc. L10 1536 8 1536 3 259 2 74 0 10 0
Enc. L11 1536 8 1536 7 1237 2 184 2 38 0
Enc. L12 1536 8 1536 8 1442 8 190 4 14 3
Dec. L1 1536 8 1536 8 1536 8 1536 8 1536 8
BLEU 38.2 38.9 38.0 37.1 33.5
∆ — 0.7 -0.2 -1.1 -4.7
chrF 63.9 64.1 63.7 62.8 60.6Q

ua
lit

y

COMET 49.5 52.0 51.0 45.3 33.0
Att. sparsity 0% 9% 27% 43% 82%
FFN sparsity 0% 0% 59% 85% 91%
WPS 2111 2358 3193 4074 5258

E
ffi

ci
en

cy

Speed-up 1.00 1.12 1.51 1.93 2.49

Table 5.5: The results of “12–1” transformer models for English→German pruned with
feedforward connections and attention heads using parameter-aided regularisation. Averaged
over the WMT16–19 testsets.

The parameter distribution of unpruned structures is generally flatter. Feedforward connections

get prioritised during pruning, with attention following the lead. Again, the sparse architectures

exhibit hourglass shapes, a little bit slimmer on the feedforward side in comparison to the

gradient-aided regularisation. Among the representative trade-offs is a model that is 1.51×
faster at the cost of 0.2 BLEU point after pruning about 30% of attention and 60% of feedforward

layers. Removing more than that leads to at least 1.93× speed-up for a minimum of 1.1 BLEU

in damage.

Going ahead with the quality analysis in Tab. 5.5, the previously mentioned model that is

one and a half times faster than the baseline loses 0.2 point in both BLEU and chrF while

outperforming the COMET score by 1.5 points. Like gradient-aided regularisation, using

the magnitude of parameters to scale penalties has also proven to train smaller models of

comparable quality and actually faster inference.
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Reg. λ −→ Base 0.03 0.05 0.1 0.3
Pruned 38.2 38.9 38.0 37.1 33.5

BLEU
Reinit — 38.2 37.4 36.1 33.0
Pruned 63.9 64.1 63.7 62.8 60.6

chrF
Reinit — 63.8 63.1 62.4 60.4
Pruned 49.5 52.0 51.0 45.3 33.0

COMET
Reinit — 49.8 45.7 43.1 30.1

Table 5.6: The evaluation of English→German “12–1” students with pruned encoder (Pruned),
compared to the same architecture trained from scratch (Reinit).

5.8.4 Experiment: Training from scratch

Last but not least, Tab. 5.6 confirms that the same architectures produced by this regularisation

method translate significantly worse quality-wise when trained from scratch. The difference in

COMET is from 2 up to 5.3 points, the latter corresponding to a 0.8 loss in BLEU. These results

suggest that human-perceived quality is much worse in smaller models trained straightforwardly.

5.9 Layerwise pruning by snipping and rejuvenating parameters

Interestingly, there seems to be a sort of a connection between gradient flow and a model’s

preference for which layers to prune mainly. In the gradient-aided regulariser, layers constantly

updated with decreasingly smaller gradients get pruned first and foremost. The parameter-

based regularisation accelerates the sparsification of those layers that get subsequently pruned

due to the penalty itself. They are the same groups of parameters in both cases: across all 12

encoder layers, the regularisers select layers roughly between 7 to 11. The experiments to this

point have shown that the layers can be successfully reduced or even entirely removed.

Until now, models kept at least a small portion of connections per feedforward layer, and I

avoided forcefully removing them, believing that maybe these scarce neurons are crucial for a

model’s performance. A transformer may aim to slim its middle layers while preferring to keep

the depth of a model intact, while it may not require as many parameters in the middle layers

compared to those on the edges. On the other hand, it is also highly possible that structural

regularisation pursues depth reduction, and those few leftover parameters are obsolete.

Continuing the line of thought that rejuvenating diminished parameters improves the quality,

the hourglass shape of a pruned architecture may serve as a gradual adaptation for layerwise

pruning. After removing the heavily sparsified layers, the rest of the parameters can reactivate

to recover as much quality as possible. This method could be an ideal solution for those who

look for more shallow architectures while still preferring quality over speed.

In this section, the goal is to answer two questions:
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Can the feedforward layers with few connections just be skipped, or are those
crucial to the quality?

and

After removing selected layers, can the rest of the parameters be rejuvenated to
recover quality while the overall depth of a model is reduced?

5.9.1 Experiment: Gradient-aided regularisation

Let us start with gradient-aided regularisation. As presented in Tab. 5.7, I select the experiment

regularised with λ = 0.1, is 1.66× faster at the cost of −0.4 BLEU point in comparison to

the baseline. I highlight the attention layers that have already been removed and potential

candidates for pruning in feedforward layers that have less than 200 neurons left in them, which

corresponds to layers 6 to 10.

To answer the question of whether those few neurons are necessary or obsolete to the model, I

slice this architecture further after it finished the regularisation phase by snipping the highlighted

feedforward parameters out. Now, there are 5 feedforward and 4 attention layers, with 3 full

layers in the model having both types of parameters removed simultaneously. In Tab. 5.7, this

experiment is described as 0.1+S as it is the λ = 0.1 experiment with additional snipping (S).

Reg. λ −→ Base 0.1 0.1 + S 0.1 + S&R
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 1501 7 1501 7 1536 8
Enc. L2 1536 8 1536 3 1536 3 1536 8
Enc. L3 1536 8 649 4 649 4 1536 8
Enc. L4 1536 8 367 7 367 7 1536 8
Enc. L5 1536 8 256 5 256 5 1536 8
Enc. L6 1536 8 161 2 0 2 0 8
Enc. L7 1536 8 64 2 0 2 0 0
Enc. L8 1536 8 38 0 0 0 0 0
Enc. L9 1536 8 44 0 0 0 0 0
Enc. L10 1536 8 182 0 0 0 0 0
Enc. L11 1536 8 1532 0 1532 0 1536 0
Enc. L12 1536 8 1536 4 1536 4 1536 8
Dec. L1 1536 8 1536 8 1536 8 1536 8
WMT16–19 38.2 37.8 37.8 38.3

B
LE

U

∆ — -0.4 -0.4 0.1
Att. sparsity 0% 60% 60% 38%
FFN sparsity 0% 53% 63% 54%
WPS 2111 3501 3605 3052

E
ffi

ci
en

cy

Speed-up 1.00 1.66 1.71 1.45

Table 5.7: The results of “12–1” transformer models for English→German pruned with gradient-
aided regularisation using λ = 0.1 compared to it having its layer snipped (S) as well as layers
snipped and the rest rejuvenated (S&R).
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Quality-wise, the snipped model performs on par with the few removed parameters. It supports

the notion that a model regularised structurally strives to reduce its architectural depth and that

middle layers become obsolete as training continues.

In order to confirm it further, as well as to see if rejuvenating the remaining parameters helps a

model recover its lost quality, I run another experiment with snipping and rejuvenating (S&R). I

additionally prune 7th attention layer to have 5 full layers removed in total. This way, the “12–1”

architecture becomes “7–1”, which significantly reduces the depth. The other layers rejuvenate

after being penalised towards zero by the regulariser, resulting in 1536 dimensions across the

active feedforward layer and 8 heads per attention layer. Reactivating parameters means that

this model is slightly slower as it is less sparse. However, reducing the encoder depth from 12

to 7 results in 45% inference speed-up while at the same time maintaining the quality in BLEU

when compared to the baseline.

These results are exciting as they show the possibility of training really deep models but ending

up with more shallow and compact architectures that perform at the level of the deep model

quality-wise.

Reg. λ −→ Base 0.1 0.1 + S 0.1 + S&R
BLEU 38.2 37.8 37.8 38.3
chrF 63.9 63.4 63.4 63.9
COMET 49.5 48.3 48.1 50.2

Table 5.8: The evaluation of English→German “12–1” students with pruned encoder using the
gradient-aided regularisation.

I continue the analysis on quality in Tab. 5.8, where you can see that the “7–1” architecture

keeps the baseline performance in chrF as well and slightly outperforms it in COMET (+0.7

point).

5.9.2 Experiment: Parameter-aided regularisation

I repeat the same experimental setup described in the previous section, but this time with the

parameter-aided regularisation. Again, I select the model penalised with λ = 0.1. In this case,

the nature of this regularisation method resulted in a much sparser architecture. There are

3 attention layers already removed, and I also highlight 6 feedforward layers with less than

100 active neurons. While this pruned model is almost twice as fast as the baseline, it is so at

the cost of 1.1 BLEU points. However, snipping the selected feedforward layers only causes

a loss of an additional 0.1 BLEU (−1.2 in total). This outcome again confirms that structural

regularisation can lead to reducing architectural depth.
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Reg. λ −→ Base 0.1 0.1 + S 0.1 + S&R
Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads

D
im

en
si

on
/H

ea
ds

Enc. L1 1536 8 158 7 158 7 1536 8
Enc. L2 1536 8 363 3 363 3 1536 8
Enc. L3 1536 8 171 7 171 7 1536 8
Enc. L4 1536 8 108 8 108 8 1536 8
Enc. L5 1536 8 80 8 0 8 0 8
Enc. L6 1536 8 63 8 0 8 0 8
Enc. L7 1536 8 36 4 0 4 0 8
Enc. L8 1536 8 23 0 0 0 0 0
Enc. L9 1536 8 33 0 0 0 0 0
Enc. L10 1536 8 74 0 0 0 0 0
Enc. L11 1536 8 184 2 184 2 1536 8
Enc. L12 1536 8 190 4 190 4 1536 8
Dec. L1 1536 8 1536 8 1536 8 1536 8
WMT16–19 38.2 37.1 37.0 38.0

B
LE

U

∆ — -1.1 -1.2 -0.2
Att. sparsity 0% 43% 43% 23%
FFN sparsity 0% 85% 94% 62%
WPS 2111 4074 4152 3046

E
ffi

ci
en

cy

Speed-up 1.00 1.93 1.97 1.44

Table 5.9: The results of “12–1” transformer models for English→German pruned with
parameter-aided regularisation using λ = 0.1 compared to it having its layer snipped (S)
as well as layers snipped and the rest rejuvenated (S&R).

I proceed with the experiment where the remaining parameters are rejuvenated. I omit forcefully

removing layers 5 to 7 in attention to avoid too aggressive snipping since those are almost

entirely intact. There are 3 fully skipped layers and further 3 feedforward layers removed as

well. While much less fast than the other models, the rejuvenation recovers most of the quality

lost through sparsification. It is only −0.2 BLEU worse than the baseline model with 1.44×
faster translation.

Reg. λ −→ Base 0.1 0.1 + S 0.1 + S&R
BLEU 38.2 37.1 37.0 38.0
chrF 63.9 62.8 62.9 63.9
COMET 49.5 45.3 45.5 50.2

Table 5.10: The evaluation of English→German “12–1” students with pruned encoder using
the parameter-aided regularisation.

As usual, I go ahead with the extended quality evaluation in Tab. 5.10. Like the previous

experiments, snipping layers and rejuvenating parameters maintain the baseline’s quality and

slightly surpass its COMET score.
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Given that the final speed vs quality trade-off between snipped and rejuvenated (S&R) models

in Tab. 5.8 and 5.10 is similar, a model may not need this aggressive level of regularisation to

decide to snip specific layers out from the architecture.

5.10 Analysis: Pareto trade-off

Last but not least, I conclude this chapter with the analysis of the Pareto trade-off, including all

models trained in this chapter and more. Since I used an improved code base of the Marian

toolkit, the models are faster, and the current numbers cannot be directly compared to those

from the previous chapter. Thus, I re-evaluate the speed of the “12–1” experiments from

Tab. 4.21, pruned with the standard group lasso, and I take them into account in this Pareto

analysis.

When it comes to the baselines, I train models with feedforward layers and attention heads

linearly reduced in the encoder. To be precise, the dimensions and the numbers of heads in all

baseline models are as follows: {1536,8}, {768,4}, {384,2} and {196,1}. The evaluation of

these baseline models is presented in Tab. 5.11. Even though halving all layer parameters in

the encoder gains 68% speed-up, it damages quality by −1.5 BLEU points. Training smaller

models produce progressively worse quality at the expanse of inference efficiency.

In order to offer a more nuanced perspective, I visualise Pareto trade-offs with both BLEU

and COMET against the speed expressed in words per second. The plots are presented in

Fig. 5.12. Here I compare various regularisation techniques and the aforementioned baselines

with each other. On one side, there are new regularisation methods described in this chapter

categorised as “Gradient-aided” and “Parameter-aided” and their variants, including parameter

suppression and layer snipping with or without parameter rejuvenation.

Reg. λ −→ Base Base 1/2 Base 1/4 Base 1/8

Layer type −→ FFN Heads FFN Heads FFN Heads FFN Heads
Enc. L1–12 1536 8 768 4 384 2 192 1
Dec. L1 1536 8 1536 8 1536 8 1536 8

BLEU 38.2 36.7 36.3 35.0
∆ — -1.5 -1.9 -3.2
chrF 63.9 63.0 62.4 61.6Q

ua
lit

y

COMET 49.5 48.3 42.9 38.8
Att. sparsity 0% 46% 69% 81%
FFN sparsity 0% 46% 69% 81%
WPS 2111 3550 3974 4690

E
ffi

ci
en

cy

Speed-up 1.00 1.68 1.88 2.22

Table 5.11: The results of “12–1” transformer baseline models for English→German with
simply reduced dimensions in the encoder.
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Figure 5.12: Pareto trade-off for English→German students with “12–1” architecture pruned
with aided regularisation methods compared to the baselines, models trained from scratch and
those regularised with the standard group lasso.
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Due to how sharply γ functions scale penalties up, it is tricky to cover the frontier evenly. Still,

the results are positive. There is a notable gap between the pruned and the smaller models

trained from scratch. Many pruned models within the proximity of about 2500 to 3000 WPS

outperform or maintain the baseline quality that oscillates around 2100 WPS. The pruned

models dominate the centre of the plots. The standard group lasso proves to be a reliable

method that leads the Pareto frontier, especially in COMET. Less sparsified attention in those

models (only up to 50%) is a possible explanation for that outcome. On the other hand, this

further solidifies the positive results of the previous research. The most pruned models are also

the fastest models on the frontier, such as those with suppressed parameters during training.

The smallest baseline model is competitive in this case as well.

5.11 Conclusion

In this chapter, I introduced a novel approach to regularisation, in which external information

aids its penalties by scaling them accordingly. Both variants that use the magnitude of gradients

and parameters amplify the sparsity patterns exhibited by a standard group lasso. When

sparsified, a transformer aims to reduce its architectural depth by focusing on pruning and

collapsing middle layers. Most importantly, the analysis of the aided regularisation methods

clearly shows that they result in a significant inference speed-up that pushes the state-of-the-art

highly optimised architectures forward. For example, a model can get 1.8× faster at the cost

of −0.5 BLEU point. Additional experiments on rejuvenating pruned parameters demonstrate

that it is possible to entirely remove 5 out of 12 encoder layers with no quality loss as the other

layers have an opportunity to reactivate without any penalties enforced.

The work in this chapter further supports regularisation as a valid pruning method incorporated

into a training scheme that does not prolong a total training time. Empirically speaking, it can

even shorten it as small architectures trained from scratch often take many more epochs to

converge in a knowledge-distilled setting. At the same time, it is shorter when a larger model

gets sparsified along the way. I strongly believe that the research outlined in this chapter lies a

solid foundation for pruning methods for efficient machine translation and sets the direction

beyond that for the future.



Chapter 6

Conclusions

Throughout this work, I pursued the goal of improving the inference speed of NMT models

with no complicated sparsity support needed. I achieved that by enforcing structural sparsity

patterns that easily allow for slicing and reducing the size of a model while still keeping it dense

and straightforward to use. Moreover, I closed the gap in the pruning research field of the

failure to build upon strong baselines, provide transparency on actual, not theoretical, speed

improvements, and make sparse models faster, not just smaller.

Each chapter of this thesis concluded with an extensive Pareto analysis, demonstrating that

their experiments actually advanced the frontier of the best state-of-the-art efficient models. I

explored various pruning methods such as the Lottery Ticket Hypothesis or many regularisation

techniques, and I improved them to suit my agenda to progress with speed efficiency. The

research presented in this thesis empirically proves that it is possible to structurally prune small

high-end NMT models in ways that maintain their translation quality while at the same time

making them considerably faster with no compromise on deployment time.

This project challenged the lack of proper speed analysis perpetuated in the pruning field and

delivered a strong directive for current and future work. Such contributions are more important

than ever with the ever-growing size of deep neural networks and increased demand for small

and fast models deployed on CPUs in mobile or PC environments. There are many possible

directions to take my research forward as there is no end game for boosting speed or quality.

New, more sophisticated heuristics may exist that could take over the optimisation reins as

they better help a model maintain its quality with higher sparsity levels achieved.

There is still an open question for the best “starting point” architecture that suits pruning best.

Despite positive reports recommending shifting layers from a decoder to an encoder, extensive

analysis in quality casts doubt that it is the case. After all, using a deeper model and pruning it

better may be the way to go.

There is also a challenge of improving a ratio between perplexity and regularisation penalties

in dynamic batching, which is a prevalent approach in natural language processing. Refining

that balance would allow for a better training flow and possibly find better global minima during

gradient optimisation.
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Popović, M. (2017, September). chrF++: words helping character n-grams. In Proceedings of

the second conference on machine translation (pp. 612–618). Copenhagen, Denmark:

Association for Computational Linguistics. Retrieved from https://aclanthology

.org/W17-4770 doi: 10.18653/v1/W17-4770

Post, M. (2018, October). A call for clarity in reporting BLEU scores. In Proceedings of the third

conference on machine translation: Research papers (pp. 186–191). Brussels, Belgium:

Association for Computational Linguistics. Retrieved from https://aclanthology

.org/W18-6319 doi: 10.18653/v1/W18-6319

Press, O., & Wolf, L. (2017, April). Using the output embedding to improve language models.

In Proceedings of the 15th conference of the European chapter of the association

for computational linguistics: Volume 2, short papers (pp. 157–163). Valencia, Spain:

Association for Computational Linguistics. Retrieved from https://aclanthology

.org/E17-2025

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-Net: ImageNet

classification using binary convolutional neural networks. CoRR, abs/1603.05279.

Retrieved from http://arxiv.org/abs/1603.05279

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized evolution for image classifier

architecture search. In Proceedings of the aaai conference on artificial intelligence

(Vol. 33, pp. 4780–4789).

Rei, R., Stewart, C., Farinha, A. C., & Lavie, A. (2020, November). COMET: A neural framework

for MT evaluation. In Proceedings of the 2020 conference on empirical methods in natural

language processing (emnlp) (pp. 2685–2702). Online: Association for Computational

Linguistics. Retrieved from https://aclanthology.org/2020.emnlp-main.213

doi: 10.18653/v1/2020.emnlp-main.213

Sajjad, H., Dalvi, F., Durrani, N., & Nakov, P. (2020). Poor man’s bert: Smaller and faster

transformer models.

Scardapane, S., Comminiello, D., Hussain, A., & Uncini, A. (2017, Jun). Group sparse

regularization for deep neural networks. Neurocomputing, 241, 81–89. Retrieved from

http://dx.doi.org/10.1016/j.neucom.2017.02.029 doi: 10.1016/j.neucom

.2017.02.029

Schwenk, H., R. Costa-jussà, M., & R. Fonollosa, J. A. (2007, June). Smooth bilingual n-gram

translation. In Proceedings of the 2007 joint conference on empirical methods in natural

language processing and computational natural language learning (EMNLP-CoNLL) (pp.

430–438). Prague, Czech Republic: Association for Computational Linguistics. Retrieved

from https://aclanthology.org/D07-1045

https://aclanthology.org/W17-4770
https://aclanthology.org/W17-4770
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/E17-2025
https://aclanthology.org/E17-2025
http://arxiv.org/abs/1603.05279
https://aclanthology.org/2020.emnlp-main.213
http://dx.doi.org/10.1016/j.neucom.2017.02.029
https://aclanthology.org/D07-1045


BIBLIOGRAPHY 164

See, A., Luong, M.-T., & Manning, C. D. (2016, August). Compression of neural machine

translation models via pruning. In Proceedings of the 20th SIGNLL conference on

computational natural language learning (pp. 291–301). Berlin, Germany: Association

for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/

K16-1029 doi: 10.18653/v1/K16-1029

Sennrich, R., Haddow, B., & Birch, A. (2016, August). Neural machine translation of rare words

with subword units. In Proceedings of the 54th annual meeting of the association for

computational linguistics (volume 1: Long papers) (pp. 1715–1725). Berlin, Germany:

Association for Computational Linguistics. Retrieved from https://www.aclweb.org/

anthology/P16-1162 doi: 10.18653/v1/P16-1162

Serrano, S., & Smith, N. A. (2019, July). Is attention interpretable? In Proceedings of the

57th annual meeting of the association for computational linguistics (pp. 2931–2951).

Florence, Italy: Association for Computational Linguistics. Retrieved from https://

www.aclweb.org/anthology/P19-1282 doi: 10.18653/v1/P19-1282

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017).

Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.

Simon, N., & Tibshirani, R. (2012). Standardization and the group lasso penalty. Statistica

Sinica, 22(3), 983.

Siswanto, A. E. (2021). Block sparsity and weight initialization in neural network pruning

(Thesis, Massachusetts Institute of Technology). Retrieved 2022-05-30, from https://

dspace.mit.edu/handle/1721.1/130708 (Accepted: 2021-05-24T19:52:33Z)

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhandari, S., Casper, J., . . . Catanzaro,

B. (2022). Using deepspeed and megatron to train megatron-turing NLG 530b, A large-

scale generative language model. CoRR, abs/2201.11990. Retrieved from https://

arxiv.org/abs/2201.11990

So, D. R., Liang, C., & Le, Q. V. (2019). The evolved transformer. arXiv. Retrieved from

https://arxiv.org/abs/1901.11117 doi: 10.48550/ARXIV.1901.11117

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society (Series B), 58, 267-288.

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A. N., Gouws, S., . . . Uszkoreit, J.

(2018). Tensor2tensor for neural machine translation. CoRR, abs/1803.07416. Retrieved

from http://arxiv.org/abs/1803.07416

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I.

(2017a). Attention is all you need. In Advances in neural information processing systems

(pp. 5998–6008).

https://www.aclweb.org/anthology/K16-1029
https://www.aclweb.org/anthology/K16-1029
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P19-1282
https://www.aclweb.org/anthology/P19-1282
https://dspace.mit.edu/handle/1721.1/130708
https://dspace.mit.edu/handle/1721.1/130708
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/1901.11117
http://arxiv.org/abs/1803.07416


BIBLIOGRAPHY 165

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Po-

losukhin, I. (2017b). Attention is all you need. In I. Guyon et al. (Eds.),

Advances in neural information processing systems (Vol. 30). Curran Associ-

ates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., & Titov, I. (2019, July). Analyzing multi-

head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In

Proceedings of the 57th annual meeting of the association for computational linguistics

(pp. 5797–5808). Florence, Italy: Association for Computational Linguistics. Retrieved

from https://www.aclweb.org/anthology/P19-1580

Wang, C., Hu, C., Mu, Y., Yan, Z., Wu, S., Hu, Y., . . . Zhu, J. (2021, November). The NiuTrans

system for the WMT 2021 efficiency task. In Proceedings of the sixth conference on

machine translation (pp. 787–794). Online: Association for Computational Linguistics.

Retrieved from https://aclanthology.org/2021.wmt-1.76

Wang, C., Zhang, G., & Grosse, R. (2020). Picking winning tickets before training by preserving

gradient flow.

Wang, Y., Wang, L., Li, V., & Tu, Z. (2020, November). On the sparsity of neural machine

translation models. In Proceedings of the 2020 conference on empirical methods

in natural language processing (emnlp) (pp. 1060–1066). Online: Association for

Computational Linguistics. Retrieved from https://aclanthology.org/2020.emnlp

-main.78 doi: 10.18653/v1/2020.emnlp-main.78

Wen, W., Wu, C., Wang, Y., Chen, Y., & Li, H. (2016). Learning structured sparsity in deep neural

networks. In Proceedings of the 30th international conference on neural information

processing systems (p. 2082–2090). Red Hook, NY, USA: Curran Associates Inc.

Wuebker, J., Simianer, P., & DeNero, J. (2018, October-November). Compact personalized

models for neural machine translation. In Proceedings of the 2018 conference on

empirical methods in natural language processing (pp. 881–886). Brussels, Belgium:

Association for Computational Linguistics. Retrieved from https://aclanthology

.org/D18-1104 doi: 10.18653/v1/D18-1104

Xiao, T., Li, Y., Zhu, J., Yu, Z., & Liu, T. (2019, 7). Sharing attention weights for fast transformer.

In Proceedings of the twenty-eighth international joint conference on artificial intelligence,

IJCAI-19 (pp. 5292–5298). International Joint Conferences on Artificial Intelligence

Organization. Retrieved from https://doi.org/10.24963/ijcai.2019/735 doi:

10.24963/ijcai.2019/735

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/P19-1580
https://aclanthology.org/2021.wmt-1.76
https://aclanthology.org/2020.emnlp-main.78
https://aclanthology.org/2020.emnlp-main.78
https://aclanthology.org/D18-1104
https://aclanthology.org/D18-1104
https://doi.org/10.24963/ijcai.2019/735


BIBLIOGRAPHY 166

Yao, Z., Cao, S., Xiao, W., Zhang, C., & Nie, L. (2019, Jul). Balanced sparsity for efficient

dnn inference on gpu. Proceedings of the AAAI Conference on Artificial Intelligence, 33,

5676–5683. Retrieved from http://dx.doi.org/10.1609/aaai.v33i01.33015676

doi: 10.1609/aaai.v33i01.33015676

Yu, H., Edunov, S., Tian, Y., & Morcos, A. S. (2020). Playing the lottery with rewards and

multiple languages: lottery tickets in rl and nlp. In International conference on learning

representations. Retrieved from https://openreview.net/forum?id=S1xnXRVFwH

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society, Series B, 68, 49–67.

Zhang, B., Xiong, D., & Su, J. (2018, July). Accelerating neural transformer via an average

attention network. In Proceedings of the 56th annual meeting of the association

for computational linguistics. Melbourne, Australia: Association for Computational

Linguistics.

Zhu, M., & Gupta, S. (2017). To prune, or not to prune: exploring the efficacy of pruning for

model compression.

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning.

http://dx.doi.org/10.1609/aaai.v33i01.33015676
https://openreview.net/forum?id=S1xnXRVFwH

	Cover Sheet.pdf
	phd_maxi_final.pdf
	Abstract
	Lay Summary
	Acknowledgements
	Declaration
	Figures and Tables
	Introduction
	Thesis statement
	Thesis contributions
	Structural Lottery Ticket Hypothesis
	Structural Regularisation
	Aided Regularisation

	Thesis structure

	Background
	Knowledge distillation
	Architecture optimisation
	Tied embeddings
	Simplifying decoder attention
	Lexical shortlisting

	Quantisation
	Sparsity & pruning
	Approaches

	Regularisation
	L1 regularisation (LASSO)
	L2 regularisation (Ridge regression)
	L1 + L2 regularisation (Elastic Net)
	Non-convex and non-differentiable Lp regularisations
	Group Lasso
	Multi-loss aggregation

	Architecture search
	Mixture of Experts

	Structural Pruning of Transformer with the Lottery Ticket Hypothesis
	Motivation
	Attention mechanism as a Mixture-of-Experts
	Methodology
	Setup: a base transformer (EnglishGerman)
	Experiments
	Conclusions

	Reducing attention entropy to make it confident
	Methodology
	Experiments

	Structural pruning of attention heads using Lottery Ticket Hypothesis
	Background: Lottery Ticket Hypothesis
	Methodology
	Setup: a base transformer (EnglishGerman)
	Setup: a big transformer (TurkishEnglish)
	Setup: A knowledge-distilled tiny transformer (EnglishGerman)
	Related work
	Establishing baselines for attention pruning
	Experiments: Foreword
	Experiments: Pruning big and base transformer models
	Experiments: Pruning knowledge-distilled tiny transformer models
	Quality analysis: Is pruning worth it?
	Sparsity analysis: Attention distribution
	Speed analysis: Foreword
	Speed analysis: A non-optimised transformer
	Speed analysis: A highly-optimised transformer
	Speed analysis: The Efficiency Shared Task (WNGT2020)

	Exploring block-wise pruning outside of attention
	Methodology
	Setup
	Experiments: A one-off block-sparse pruning
	Experiments: A block-sparse feedforward pruning with a lottery ticket approach

	Conclusions

	Structural Pruning of Transformer for Speed Using Group Lasso
	Motivation
	Background: Group Lasso
	Research outline
	Methodology
	Model slicing
	Pruning scheme

	Related work
	Problems with existing sparse kernels
	Setup: knowledge-distilled tiny transformers
	Block-sparse regularisation of feedforward layers
	Setup
	Methodology
	Experiments: Preliminary
	Experiments: Reducing  halfway through training

	Optimising matrix multiplications with sparse kernels
	Analysis: Byte compression
	Analysis: Execution timing

	Slicing and collapsing sparse models for speed
	Experiment
	Efficiency of previous attention pruning and new results
	Speed evaluation of sliced matrices and sparse kernels

	Neuron-level regularisation of feedforward layers
	Methodology
	Experiments: Exploring pruning phases
	Experiments: Skipping a decoder to avoid a bottleneck
	Experiments: Pruning models with a deep decoder
	Analysis: Quality outside of BLEU
	Experiments: Pruning or architecture search?
	Experiments: Pruning in high-resource settings

	Neuron-level regularisation of both feedforward and attention layers
	Head-level regularisation of attention layers
	Analysis: Parameter distribution
	Analysis: Pareto trade-off
	Efficiency Shared Task (WMT2021)
	Setup
	Experiment: Building the baselines
	Experiment: Pruning and quantisation
	Analysis: Pareto frontier

	Analysis: Human evaluation
	Conclusions

	Improving Structural Pruning through Aided Regularisation
	Motivation
	Analysis: Execution time of pruned graph nodes
	Analysis: The effect of regularisation on knowledge-distilled models
	Analysis: Perplexity vs regularisation penalty
	Aided Regularisation: Introduction
	Setup
	Gradient-aided regularisation
	Establishing methodology & scaling variants
	Experiment: Training stability
	Analysis: Sparsity progression
	Analysis:  scalars
	Experiment: Convergence
	Experiment: Decoder bottleneck
	Experiment: Training from scratch
	Experiment: Tensor suppression

	Parameter-aided regularisation
	Methodology
	Analysis:  scalars
	Experiment: Convergence
	Experiment: Training from scratch

	Layerwise pruning by snipping and rejuvenating parameters
	Experiment: Gradient-aided regularisation
	Experiment: Parameter-aided regularisation

	Analysis: Pareto trade-off
	Conclusion

	Conclusions
	Bibliography




