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Abstract: Due to the large size and large span of heavy-duty machine tools, the structural deformation
errors caused by gravity account for a large proportion of the static errors, and the influence of
gravity deformation must thus be considered in the machine tool precision design. This paper
proposes a precision design method for heavy-duty vertical machining centers based on gravity
deformation error modelling. By abstracting the machine tool into a multibody system topology,
the static error model of the machine tool is established based on the multibody system theory and
a homogeneous coordinate transformation. Assuming that the static error of each motion axis is
composed of two parts, i.e., the manufacturing-induced geometric error and the gravity deformation
error, the machine tool stiffness model of the relationship between gravity and deformation error is
developed using the spatial beam elements. In the modelling process, the stiffness coefficients and
volume coefficients of the components are introduced to fully consider the influences of structural
parameters on machine tool precision. Taking the machine tool static precision, the component
stiffness coefficients and the volume coefficients as the design variables, based on the use of the
worst condition method, error sensitivity analysis and global optimization algorithm, the optimal
allocation of the static error budget of the machine tool and the structural design requirements of
each component are determined, providing a valuable guide for the detailed structure design and
manufacture processing of the machine tool components.

Keywords: heavy-duty vertical machining center; static precision design; error modelling; gravity
deformation

1. Introduction

Heavy-duty computer numerical control (CNC) machine tools are widely used in
national defense, aerospace, energy and other key fields for machining large workpieces.
The level of machining precision is one of the most important indicators of the performance
of heavy-duty CNC machine tools. The factors that affect the machining precision of
CNC machine tools include geometric errors, thermal errors, cutting force errors, servo
control errors, etc. Amongst them, geometric errors and thermal errors account for 60% of
the total machining errors [1]. However, heavy-duty CNC machine tools have structural
characteristics such as a large size and large span. The influence of gravity-induced
deformation error on machining precision is more prominent and significant than for
common CNC machine tools, occupying a larger proportion of the static errors [2]. How to
address the effects of the gravity and quantitatively analyze the influences of structural
deformation errors on the precision is a problem that needs to be solved in the precision
design of heavy-duty CNC machine tools.

Processes 2022, 10, 1930. https://doi.org/10.3390/pr10101930 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10101930
https://doi.org/10.3390/pr10101930
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-1888-7143
https://doi.org/10.3390/pr10101930
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10101930?type=check_update&version=2


Processes 2022, 10, 1930 2 of 20

Error modelling is a key step in the static precision design of machine tools. By analyz-
ing the causes and mechanisms of each error, a model mapping each error to the volumetric
error of the tool center point (TCP) is established, which allows the prediction of the ma-
chining error of the machine tool to be realized and provides a theoretical basis for rational
error budgeting. The multibody system (MBS) theory and the homogeneous transformation
matrix (HTM) method are widely applied to model the volumetric errors of the multiaxis
machine tool for error prediction and compensation [3–6]. Fu et al. proposed an optimal
compensation method based on the rigid body geometric error model to improve the
precision of a five-axis machine tool and identified the critical motion axes that affected the
machine tool precision through a sensitivity analysis [7,8]. Wu et al. established a geometric
error model for nonorthogonal five-axis machine tools and constructed the mapping rela-
tionship between the tool path and NC commands under the influence of geometric errors
during the machining process [9]. Breitzke et al. proposed a method to quickly identify
geometric errors of three-axis machine tools using on-machine measurement samples [10].
Gu et al. proposed a method for improving machine tool precision based on a global offset,
utilizing sample inspection data to determine specific compensation parameters used in the
machine tool controller to minimize machine tool errors [11]. Iñigo et al. proposed a digital
twin-based machine tool accuracy calibration simulation method, its expected error range
and parameters such as workpiece geometry on the uncertainty of error mapping [12]. The
above research works show that deriving the volumetric error of the TCP by HTM and
MBS is still the main idea of machine tool error modelling.

Although the current research studies are mostly focused on the error compensation,
in fact, the establishment of the above error models have provided a research basis for
precision design research. Chen established a five-axis ultraprecision machine tool preci-
sion model by using MBS and HTM and proposed static and dynamic precision design
methods [13,14]. Based on the relationship between the guideway surface tolerance and the
surface geometry and the geometric errors of the motion axes, Fan et al. further discussed
a method for predicting the geometric errors of the machine tool motion axes to guide
the precision allocation of the machine tool [15,16]. Xu et al. performed the precision
design for a six-axis CNC spiral bevel gear milling machine according to the workpiece
precision requirements [17]. Li and Liu analyzed the sensitivity of each error source of the
machine tool by the proposed generalized sensitivity index [18]. Li et al. used a heuristic
algorithm to allocate the errors of the five-axis machine tool [19]. Zhang et al. proposed a
precision design method considering manufacturing cost and reliability [20]. The response
surface and artificial neural network was also used to predict the performance of machine
tool, helping to design the parameters of interest through optimization [21]. In the above
research, the static precision design/allocation problem of machine tool is equivalent to
a nonlinear optimization problem combining the influences of various error factors, and
the design output is the optimal precision requirement after the machine tool is assembled,
guiding the assembly and testing of machine tools. However, for heavy-duty machine tools,
the effects of the gravity make this precision requirement not optimal anymore. According
to the precision requirement optimized without the consideration of the gravity-induced
deformation error, it will be costly if the assurance of the machine tool precision only
occurs at the assembly stage. Therefore, to eliminate the status quo of over-reliance on
the assembly stage for heavy-duty machine tools is an urgent problem to solve in the
precision design.

Due to the large size and large span of a heavy-duty machine tool, the error modelling
process of the heavy-duty machine tool should consider the gravity deformation error
under static conditions and its influence on the volumetric error of the machine tool’s TCP.
Yan et al. proposed a semianalytical method based on the closed-loop stiffness model of
a multiaxis system to describe the comprehensive stiffness characteristics of the machine
tool system [22]. Portman et al. developed the stiffness model of multiaxis machine tools
through the form-shaping function [23]. Based on the principle of six-point positioning,
Ma et al. proposed a linear axis assembly error model of CNC machine tools to analyze
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the influences of processing errors and deformation to guide the precision design of the
machine tool [24]. Shi et al. used static loading to simulate the cutting force under different
milling conditions and combined this with the HTM error model to develop a three-axis
machine tool error compensation method based on equivalent cutting force [25]. Shi et al.
proposed a top-down stiffness design of the machine tool by using stiffness coefficients
to characterize the stiffness of structural components and functional units [26]. However,
the above research studies are all oriented to machine tools with definite structures, and
their stiffness modelling methods are highly specific to the already designed structures and
cannot thus provide a theoretical guidance for the precision design and structural design of
machine tools at the design stage.

In order to solve the above-mentioned problems, this paper comprehensively considers
the sources and interrelations of various error factors, determines the optimal precision
requirements in the design and manufacturing stages, and develops a method for the
precision design of a heavy-duty machine tool based on the gravity error modelling, with
the implementation process of the design method explained using a heavy-duty vertical
machining center (HDVMC) as an example. This paper is organized as follows. Section 2
analyzes the design process step by step and clarifies the methods and processes. Section 3
abstracts the machine tool as an MBS topology and establishes the static precision model
of the machine tool based on the MBS theory and HTM method. Section 4 considers the
influence of the gravity deformation on the precision of the heavy-duty machine tool.
Assuming that the static error is composed of the manufacturing-induced geometric error
and the gravity deformation error, the stiffness coefficient and the volume fraction are
introduced, and the spatial beam element is used to establish a machine tool stiffness
model describing the relationship between gravity deformation error and static error.
Section 5 takes the machine tool static precision, the component stiffness coefficient and the
volume fraction as the design variables, and combines the worst-condition method, an error
sensitivity analysis and a global optimization algorithm to formulate a mathematical model
of static precision design. Section 6 completes the optimal design of the key parameters
of the structural design of each component, matches the manufacturing and processing
tolerances of key components, clarifies the design process and method and compares it
with the existing design methods for verification.

2. Precision Design Method of Heavy-Duty Machine Tool Based on Gravity
Deformation Error Modelling

This paper proposes a static precision design method for HDVMCs based on gravity
deformation error modelling. The main feature of the method is that the 37 static errors of
the heavy-duty machine tool and the structural parameters of each machine component are
allocated by a coupling calculation, and the static precision is guaranteed on the basis of
satisfying the structural design requirements of each component of the heavy-duty machine
tool and its deformation. The flowchart is shown in Figure 1.

In this precision design method, the geometric error model and the gravity defor-
mation error model of the machine tool are first established, and the objective function
and constraint conditions of the precision design problem are analyzed and computed in
combination with the error sensitivity. After the optimization, the sensitivity analysis of
the errors is performed again to determine the important errors, providing a guide for the
design and manufacture of machine tool components. If necessary, after each optimal allo-
cation, a partial adjustment of some errors can also be carried out based on the engineering
experience. The sensitivity analysis is used as the reference for the error adjustment, and
finally the rational error budgeting is realized through multiple allocations. If a feasible
solution cannot be obtained with this displacement constraint, it means that the error
caused by the gravity deformation in the design scheme is too large, and the static precision
required by the precision design cannot be achieved. It is necessary to modify the value
range of the structural parameters in the design variables, or to carry out process measures,
such as reverse deformation processing of the bearing surface and balance weight for the
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components with large deformation, to correct the errors caused by gravity deformation,
and continue to optimize.
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Figure 1. Flowchart of the heavy-duty machine tool precision design method based on gravity
deformation modelling.

3. Modelling of Machine Tool Static Error Based on Multibody System

The MBS model is directly related to the specific kinematics of the machine tool. In
this paper, a HDVMC was used as an example to establish a multibody kinematics model.
The machine tool had four linear motion axes and one rotary motion axis, and its three-
dimensional model is shown in Figure 2. The movement strokes of X-, Y-, Z- and W-axes
were 3700 mm, 2200 mm, 1000 mm and 1000 mm, respectively, the maximum machining
diameter could reach 1600 mm, and the maximum weight of workpiece could reach 8 t.
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3.1. Machine Tool Topology and Coordinate System

According to the machine tool structure in Figure 2, the MBS topology is abstracted
from the relationship between the moving parts in the kinematic chain. As shown in
Figure 3, the MBS consists of multiple bodies Bj (j = 1, 2, . . . , 9) and hinges hi (i = 1, 2,
. . . , 9), each hinge has only two bodies connected, and the fixed part is the bed of the
machine tool, which is represented by B1. There are two kinematic chains in the machine
tool, namely the bed-workpiece chain (B1, B7~B9) and the bed-tool chain (B1~B6). The
endpoints of the two kinematic chains are the tool processing point and the workpiece
point being processed. The volumetric error of the system is the difference between the
actual and theoretical processing points of the tool.
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Figure 3. The topological structure of the HDVMC.

To clearly explain the kinematic relationship of the MBS, the inertial reference system
and body-fixed coordinate systems need to be established. The origin O0 of the inertial
reference system O0–X0Y0Z0 is located at the connection between the earth and the machine
bed, and its coordinate axes are parallel to the nominal directions of the X-, Y-, and Z-axes
of the machine tool, conforming to the right-hand rule. It is a set of Cartesian coordinate
systems fixed to an immovable reference object. The coordinate origin Oj of the body-fixed
coordinate system Oj–XjYjZj on the body Bj is set on the inscribed hinge hj of the body Bj,
which is also a Cartesian coordinate system, and the coordinate axes are also parallel to the
nominal directions X, Y, Z of the machine tool axes, following the right-hand rule.
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3.2. Static Error Analysis of Heavy-Duty Vertical Machining Center

When the machine tool translates along or rotates around a motion axis, six errors will
occur, including three linear errors and three angular errors. The errors vary as a function
of the movement position of the part. Table 1 lists the errors of each motion axis of the
HDVMC, where δx, δy and δz represent the linear errors, and the subscripts represent the
direction of the linear errors; εx, εy and εz represent the angular errors, and the subscripts
represent the rotation axes of the angular errors. The x, y, z and w in parentheses represent
the movement positions of the X-, Y-, Z- and W-axes, respectively, and γ represents the
movement angle of the C axis. For example, δx(x) represents the positioning error of the
X-axis at the x movement position, δy(x) represents the straightness error of the X-axis along
the Y-direction at the x movement position and εx(γ) represents the tilt error of the C-axis
around the X-direction at the γ movement angle.

Table 1. Errors of each motion axis.

Axis Errors

X δx(x), δy(x), δz(x), εx(x), εy(x), εz(x)
Y δx(y), δy(y), δz(y), εx(y), εy(y), εz(y)
Z δx(z), δy(z), δz(z), εx(z), εy(z), εz(z)
W δx(w), δy(w), δz(w), εx(w), εy(w), εz(w)
C δx(γ), δy(γ), δz(γ), εx(γ), εy(γ), εz(γ)

At the same time, there is a deviation between the nominal and actual positions of
each motion axis due to the manufacturing and assembly processes. This type of deviation
is a constant error independent of the movement position of the machine tool. Specifically,
for the HDVMC shown in Figure 2, the ideal motion direction of the X-axis is selected as
the reference direction of the corresponding axis of each coordinate system, and the plane
formed by the X-axis and the Y-axis is selected as the reference plane., Then, there are three
squareness errors (Sxy, Sxz and Syz) between the X-, Y- and Z-axes. The X-, Y- and W-axes
have two squareness errors Sxw and Syw, and the C-axis has two squareness errors Sxc and
Syc. Therefore, the machine tool motion axes have a total of 37 static geometric errors.

When the machine tool is not loaded, ignoring the errors caused by cutting force,
thermal deformation and other factors in the actual machining, the 37 static errors are
mainly composed of geometric errors caused by manufacturing and structural gravity
deformation errors. Taking the straightness of the X-axis in the Z-direction as an example,
it can be expressed by Equation (1) as follows:

δz(x) = δz(x)M + δz(x)F (1)

where:
δz(x)M—the geometric error caused by manufacturing;
δz(x)F—the structural gravity deformation error.

3.3. Static Error Modelling of Heavy-Duty Vertical Machining Center

The geometric features between adjacent components Bi and Bj in the MBS with errors
are shown in Figure 4. It can be clearly seen from Figure 4 that under the ideal conditions
the final pose (position and orientation) of part Bj can be obtained by setting an ideal fixed
pose, namely the initial pose, of part Bi, and then setting the ideal motion on this basis. The
final pose of the component Bj with error can be obtained by the component Bi through the
following process: first, an initial ideal static pose of Bj relative to Bi is set, and an inter-body
static error is set on this basis to obtain the initial actual static pose of Bj; then, considering
the motion error, the ideal motion and the pose change caused by the interbody motion
error are set on the basis of the initial actual static pose of Bj, so as to obtain the actual pose
of Bj including the position errors and motion errors. Based on the geometric characteristics
of the system and the homogeneous coordinate transformation characteristics, the pose
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transformation process under the ideal and actual error conditions can be expressed by
Equations (2) and (3).

Tij = TijpTijs (2)

T’
ij = Tijp∆TijpTijs∆Tijs (3)

where Tij represents the ideal HTM of position and orientation of Bj with respect to Bi.
The subscripts s and p represent the HTMs that come from static state and motion state,
respectively. T′ij represents the actual HTM of position and orientation of Bj with respect
to Bi under error conditions. ∆Tij represents the HTMs with the parameters of the static
error components.

Suppose the position coordinates of the TCP in the X-, Y-, Z-directions of the tool
coordinate system (O6–X6Y6Z6) are ptx, pty, ptz (mm), then the position coordinate vector Pt
of the TCP in this coordinate system is:

Pt = [ptx, pty, ptz, 1]T (4)
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The difference between the actual position coordinate Pactual of the TCP and the ideal
position coordinate Pideal is the volumetric error Ev of the theoretical forming point of the
actual machine tool. According to the coordinate system transformation matrix introduced
above, the volumetric error of TCP can be obtained from Equation (5).

Ev = (Evx, Evy, Evz, 1)T = Pactual − Pideal (5)

where:
Evx—the component of the volumetric error in the X-direction (mm);
Evy—the component of the volumetric error in the Y-direction (mm);
Evz—the component of the volumetric error in the Z-direction (mm).
The static error model of the HDVMC has now been established. From this error

model, it can be known that by inputting the parameters of all homogeneous coordinate
transformation matrices, the motion coordinates, the error of each motion axis and the
volumetric error of the TCP can be solved, and the precision of the actual machine tool can
then be obtained. At the same time, it also provides a theoretical basis for the subsequent
static precision design.

4. Structural Stiffness Model of Machine Tool Based on Spatial Beam Element

The HDVMC shown in Figure 1 is mainly composed of a crossbeam, a gantry (two
columns and a connecting beam), a tool holder system (slide seat, ram and tool), a transla-
tion table and a rotary table. The bed connected to the entire foundation through anchor
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bolts has a high rigidity and consistent deformation. The deformation of the translation
table and rotary table directly loaded on it under gravity can be ignored. The mechanical
structure of the bed–tool kinematic chain of the common HDVMC can be regarded as a
spatial frame, and its gravity deformation is relatively large. This part of the structure
needs a special analysis and stiffness modelling.

4.1. Spatial Beam Element Model

The mechanical structure of the bed–tool kinematic chain was discretized into a spatial-
beam-element-based model with 11 nodes and 11 elements, as shown in Figure 5. In the
figure O− XYZ is the global coordinate system of the spatial beam element model, and
the directions of the coordinate axes are the same as those of the machine tool reference
coordinate system; Oe

i–Xe
iYe

iZe
i (i = 1, 2, . . . , 11) are the local coordinate systems of each

spatial beam element. Corresponding to the element whose neutral axis is parallel to the X-,
Y-, and Z-axes of the machine tool, the origin of the coordinate system Oe

i is located at the
left node (i = 1, 8, 9), the rear node (i = 6, 7, 10) and the lower nodes (i = 2~5, 11). The axis
directions of some local coordinate systems are shown in Figure 5a. Using the established
spatial beam element model, the gravity deformation error of the machine tool at different
movement positions can be solved and analyzed by adjusting the nodes 3, 4, 9 and 11 in
the global coordinate system according to the movement positions x, z and w of each axis,
changing the length of adjacent elements, and simulating the movement of machine tool
beams, beam slides, rams and other components.

Since the spatial beam element replaces the solid element to establish the spatial beam
element model of the machine tool, the external dimensions and spatial assembly relation-
ship of each component must be considered. The spatial beam elements of some simulated
components, such as the crossbeam-column, need to be rigidly connected (element E6, E7
and E10) to ensure the equivalence of the simulation model to the actual machine tool
and the rationality of solving the gravity deformation error. The rigid connection was
realized by adjusting the elastic modulus E of the connecting element to amplify its value
by 1000 times, so that the change in force and deformation of the element was less than
10−3 mm.
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(a) (b) 

Figure 5. Model of HDVMC based on spatial beam element. (a) Element node information and
coordinate system definition. (b) Force analysis under gravity.

Figure 6 shows a 2-node 12-DOF space beam element i (i = 1, 2, . . . , 11) in a local
coordinate system, the element length is li, the elastic modulus is Ei, and the moment



Processes 2022, 10, 1930 9 of 20

of inertia of the cross section is Izi (around the neutral axis parallel to the z axis) and Iyi
(around the neutral axis parallel to the y axis), the torsional moment of inertia of the cross
section is Ji, the nodal displacement vector is qe

i and the nodal load vector is Pe
i in its local

coordinate system, as shown in Equations (6) and (7).
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where:
u(i), v(i), w(i), θx

(i), θy
(i), θz

(i)
x—the deflection and rotation angle of each node in the X-,

Y-, Z-directions;
Pi

(i) (i = u, v, w)—the nodal force of each node along the X-, Y-, Z-directions;
Mj

(i) (j = x, y, z)—the nodal moment of each node around the X-, Y-, Z-axes.
The nodal displacement vector and nodal force vector of element i satisfy the stiffness

Equation (8):
Ke

i qe
i = Pe

i (8)

where Ke
i is the stiffness matrix of the spatial beam element in the local coordinate system,

which corresponds to the order of the nodal displacement in qe
i. The specific form is shown

in (9):
Ke

i = Ke
i
(
li, Ai, Iyi, Izi, Ji

)
(9)

where Ai is the cross-sectional area of the spatial beam element i.
From the relationship between the element local coordinate system Oe

i–Xe
iYe

iZe
i and

the global coordinate system O− XYZ, the stiffness Equation (10) of each spatial beam
element in the global coordinate system can be obtained:

¯
K

e

i
¯
q

e

i =
¯
P

e

i (10)

where
¯
K

e

i = Te
i
TKe

i Te
i (11)

¯
P

e

i = Te
i
TPe

i (12)

Te
i is the transformation matrix of the element i from the local coordinate system to

the global coordinate system.
After obtaining the element stiffness matrix Ke

i of each spatial beam element in the
global coordinate system, the stiffness matrices of individual elements are assembled
according to the node number in the overall structure, and the overall stiffness equation of
the HDVMC can be formed, as shown in Equation (14).

Kq = P (13)

where:
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K—the overall stiffness matrix of the structure, obtained by assembling the element
stiffness matrices according to Equation (14);

i—spatial beam element number;
n—number of elements;
P—the overall nodal load vector, which is composed of the external load vector F and

the support reaction force vector R;
q—the displacement vector of the structural node.

K =
n

∑
i=1

¯
K

e(i)

(14)

4.2. Equivalent Nodal Load of Gravity

The gravity deformation of the HDVMC includes the self-weight deformation caused
by the gravity of the component itself and the forced deformation caused by the gravity
of other related components, as shown in Figure 5b. When modelling with spatial beam
elements, it is necessary to convert continuous uniform loads into corresponding equivalent
external nodal loads. The equivalent external nodal load of each component is given by
Equation (15).

Fz1 = − 1
2 mE1g− (mE2 + mE4)g, My1 = − 1

12 mE1gLE1

Fz2 = − 1
2 mE1g− (mE3 + mE5)g, My2 = 1

12 mE1gLE1

Fz5 = − 1
2
(mE8+mE9)gLE8

LE8+LE9
, My5 = − 1

12
(mE8+mE9)gL2

E8
LE8+LE9

Fz6 = − 1
2
(mE8+mE9)gLE9

LE8+LE9
, My6 = 1

12
(mE8+mE9)gL2

E9
LE8+LE9

Fz9 = − 1
2 (mE8 + mE9)g, My9 = 1

12 (mE8 + mE9)g (LE8 − LE9)

Fz10 = −mE10g, Fz11 = −mE11g

(15)

where:
Fzi—the external force along the Z-axis direction received by the ith node in the global

coordinate system;
Myi—the external moment of the ith node around the Y-axis in the global coordi-

nate system;
mEj, LEj (j = 1~5, 8~11)—the mass and element length of the machine tool component

represented by the jth element;
g—the acceleration of gravity.
The external load vector F of the HDVMC can be obtained by arranging the external

force and external moment obtained by the above calculation. According to the actual
assembly of the HDVMC, the frame structure of the bed–tool kinematic chain is fastened
to the foundation by the anchor bolts at the bottom of the column, and the DOFs at the
joint surface are restricted. Corresponding to the boundary conditions of the spatial beam
element model, it can be considered that the nodal displacements at nodes 7 and 8 are all
zeros. There are support reaction forces Rui, Rvi and Rwi along the X-, Y- and Z-directions,
and support reaction moments Rxi, Ryi and Rzi (i = 7, 8) around the X-, Y-, Z-directions. The
external load vector R of the HDVMC can be obtained by arranging the support reaction
force and support reaction moment according to the nodal displacement. From this, the
overall nodal load vector P of the structure can be obtained:

P = F + R (16)

The joint load vector Equation (15) and the overall stiffness Equation (13) of the
machine tool can be used to solve the displacement vector q of the overall structure of the
machine tool.

The stiffness model of HDVMC based on the spatial beam element has now been
established, and the relationship between gravitational load and structural deformation
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error has been determined. By setting different boundary conditions and external loads, this
modelling method can be used to analyze the gravitational deformation of local systems
(such as a tool holder system, a beam-tool holder system). This can separately obtain the
deformation value of each component in the bed–tool series system under gravity, that is,
the part of each motion axis error caused by gravity deformation in static error modelling
δi(j)F and εi(j)F (i = x, y, z; j = x, z, w). The analysis of the influence law of the structural
parameters on the precision of the whole machine under gravity and the solution of the
actual machine tool TCP provide a theoretical basis for the subsequent static precision
design of the machine tool and the detailed design of the component structure.

5. Design Optimization of Geometric Parameters and Structural Parameters
5.1. Design Variables

There were a total of 37 static errors of the MBS to be allocated by the machine tool. For
the problem of machine tool error budgeting, each design variable has a certain value range.
According to the current practical manufacturing process level of heavy-duty machine tools,
the value ranges of design variables were determined as shown in Table 2. The units of
linear error and angular error (including squareness error) are mm and mrad, respectively.
Each error in the table corresponds to a design variable xi (i = 1, 2, . . . , 37).

Table 2. Value ranges of design variables of static errors.

Design Variable Value Range Design Variable Value Range Design Variable Value Range

δx(x), (x1) [0.006, 0.025] mm δy(x), (x2) [0.006, 0.03] mm δz(x), (x3) [0.006, 0.03] mm
εx(x), (x4) [0.01, 0.04] mrad εy(x), (x5) [0.01, 0.04] mrad εz(x), (x6) [0.01, 0.04] mrad
δx(y), (x7) [0.006, 0.03] mm δy(y), (x8) [0.006, 0.025] mm δz(y), (x9) [0.006, 0.03] mm
εx(y), (x10) [0.01, 0.04] mrad εy(y), (x11) [0.01, 0.04] mrad εz(y), (x12) [0.01, 0.04] mrad
δx(z), (x13) [0.006, 0.03] mm δy(z), (x14) [0.006, 0.03] mm δz(z), (x15) [0.006, 0.025] mm
εx(z), (x16) [0.01, 0.04] mrad εy(z), (x17) [0.01, 0.04] mrad εz(z), (x18) [0.01, 0.04] mrad
δx(w), (x19) [0.01, 0.03] mm δy(w), (x20) [0.01, 0.03] mm δz(w), (x21) [0.01, 0.025] mm
εx(w), (x22) [0.01, 0.04] mrad εy(w), (x23) [0.01, 0.04] mrad εz(w), (x24) [0.01, 0.04] mrad
δx(γ), (x25) [0.003, 0.01] mm δy(γ), (x26) [0.003, 0.01] mm δz(γ), (x27) [0.003, 0.01] mm
εx(γ), (x28) [0.01, 0.04] mrad εy(γ), (x29) [0.01, 0.04] mrad εz(γ), (x30) [0.01, 0.04] mrad
Sxw, (x31) [0.01, 0.04] mrad Syw, (x32) [0.01, 0.04] mrad Sxy, (x33) [0.01, 0.03] mrad
Sxz, (x34) [0.01, 0.06] mrad Syz, (x35) [0.01, 0.06] mrad Sxc, (x36) [0.01, 0.02] mrad
Syc, (x37) [0.01, 0.02] mrad

In the structural stiffness model of the machine tool spatial beam element (Equation (9)),
the structural parameters of the component include the component’s dimensions, volume
fractions and the torsional and bending stiffness coefficients of the beam element. In the
early stage of the overall design of the machine tool, the design specification, such as the
maximum cutting height, the maximum cutting diameter, etc., can determine the main
parameters of the machine tool and the longitudinal dimensions of the components. The
component size parameter in the design is the external dimension of the component sec-
tion. The torsional and bending stiffness coefficients are used to calculate the structural
parameters of the optimized beam element, and the volume fraction is used to calculate the
mass of the optimized components. The calculations are given in Equation (17).

I′yi = kyi Iyi, I′zi = kzi Izi, J′ i = kxi Ji, m′Ei = v f imEi (17)

where:
I′yi, I′zi, J′i—the moment of inertia and torsional moment of inertia of the cross section

of the optimized spatial beam element i (i = 1, 2, . . . , 11);
kji (j = x, y, z)—stiffness coefficient of the spatial beam element;
m′Ei—the mass of machine tool components represented by the optimized element i;
vfi—the optimized volume fraction of the ith element.
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The design variables xi (i = 38, 39, . . . , 55) related to the machine tool structure design
and their value ranges are shown in Table 3. In order to make the physical meaning clear
and easy to understand, the direction of the stiffness coefficient of each component in the
design variables is all represented by the axis direction of the global coordinate system.

Table 3. Value range of structural design variables.

Design
Variable Variable Meaning Value Range Design

Variable Variable Meaning Value Range

x38
Section width of
connecting beam [0.7, 1] m x47

X-directional stiffness
coefficient of column [0.2, 1]

x39
Section height of
connecting beam [0.9, 1.2] m x48

Y-directional stiffness
coefficient of column [0.2, 1]

x40
Volume factor of
connecting beam [0.25, 1] x49

Z-directional stiffness
coefficient of column [0.2, 1]

x41

Z-directional stiffness
coefficient of

connecting beam
[0.2, 1] x50

Section width
of crossbeam [0.67, 0.8] m

x42

Y-directional stiffness
coefficient of

connecting beam
[0.2, 1] x51

Section height
of crossbeam [1, 1.2] m

x43

X-directional stiffness
coefficient of

connecting beam
[0.2, 1] x52

Volume factor
of crossbeam [0.45, 1]

x44 Section width of column [0.6, 0.8] m x53
X-directional stiffness

coefficient of crossbeam [0.2, 1]

x45 Section height of column [1, 1.25] m x54
Y-directional stiffness

coefficient of crossbeam [0.2, 1]

x46 Volume factor of column [0.25, 1] x55
Z-directional stiffness

coefficient of crossbeam [0.2, 1]

5.2. Constraints

In addition to satisfying the value range constraints, the design variables also need to
meet the requirements of the volumetric error of the TCP, that is, the volumetric in the three
directions of X, Y, and Z cannot exceed the permissible value, as shown in Equation (18).

|Evx| ≤ [Evx]∣∣Evy
∣∣ ≤ [Evy

]
|Evz| ≤ [Evz]

(18)

The constraint shown in Equation (18) is a complex and mostly nonlinear constraint.
This constraint was derived from the previous modelling of static errors. According to the
relevant standards of heavy-duty machine tools, the volumetric error requirements in the
X, Y, and Z directions were all set at 0.04 mm. When calculating the nonlinear constraint
condition in this paper, the motion positions of each axis (X, Y, Z, W, C) of the machine tool
in Equation (5) were −1582.5 mm, −1400 mm, 1000 mm, 2500 mm and 0◦, respectively.

The upper limit of the gravity deformation error of the relevant components de-
termined by the static precision assignment of each motion axis can be expressed by
Equation (19). ∣∣xF

i

∣∣ ≤ xi i = 1, 2, . . . , 37 (19)

where xi
F is the part of the structural gravity deformation error in the static error design

variable xi, and its value is obtained from the previous δi(j) and εi(j) (i = x, y, z; j = x, z, w).

5.3. Objective Function

The manufacture of machine tools generally follows the basic rule that the larger
the manufacturing tolerance (the lower the precision requirement), the lower the relative
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cost. Therefore, this paper used the permissible values, or tolerances, of geometry errors
to characterize the relative cost of heavy-duty machine tool manufacturing, in order to
maximize the machine tool error to optimize the manufacturing cost.

Equation (1) established the relationship between the static error of the machine tool
and the gravity deformation error, and the geometric error xi

M caused by the manufacturing
process in the static errors of the machine tool can be obtained by the worst condition
method, as shown in Equation (20).

xM
i = xi −

∣∣xF
i

∣∣, i = 1, 2, . . . , 37
(20)

Since the number of machine tool errors was large, and the units of linear and angular
errors were different, in order to avoid a possible distortion of the optimization results, the
errors corresponding to the design variables were normalized, that is, the absolute value of
the design variables was converted into a relative value in the interval [0, 1]. Assuming
that the value range of the design variable xM

i is [lbi, ubi], the normalized relative value xsi
is shown in Equation (21).

xsi =
xM

i − lbi

ubi − lbi
(21)

The relative cost function designed in this paper, represented by the permissible values
of machine tool manufacturing errors, is shown in Equation (22).

fg1 = max
37

∑
i=1

x2
si = min

(
−

37

∑
i=1

x2
si

)
(22)

While the machine tool error is relatively maximized, it is also necessary to ensure the
balance amongst the errors. In this paper, an equalization objective function for machine
tool static errors was designed as shown in Equation (23).

fg2 = min[max(xs1, xs2, . . . , xs37)−min(xs1, xs2, . . . , xs37)] (23)

In addition, as mentioned above, the optimal solution needs to have certain robustness,
that is, the uncertainty of the design variables has the least influence on the volumetric
error. From the static precision modelling, it can be known that the volumetric error is a
multivariate function with the machine tool errors as the independent variables. The robust
optimization objective function shown in Equation (24) was designed using the sensitivity
analysis based on the total differential of the multivariate function.

fg3 = min

∣∣∣∣∣ 37

∑
i=1

(
∂Ev

∂xi
∆xi

)∣∣∣∣∣ (24)

where:
Ev—the total volumetric error of the TCP, Ev =

√
E2

vx + E2
vy + E2

vz;
∆xi—the small change in the design variables.
In the optimization process of this paper, when the design variable xi represented the

linear error, the value of ∆xi was 0.0005 mm, and when the design variable xi represented
the angular error, the value of ∆xi was 0.001 mrad.

At the same time, in order to guide the structural design of the components in the
precision design stage, the objective function also needs to include the requirements on
the structural performance of the machine tool components. Therefore, the structural
compliance function and stiffness loss function were designed in this paper. According
to the existing literature, the structural stiffness performance of the machine tool can be
characterized by the compliance of the structure itself. The smaller the compliance, the
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better the rigidity of the components. The compliance objective function of the structure
can be expressed by Equation (25).

fd1 = minC = minPTU (25)

where:
P—the external force load vector of the whole structure, which corresponds to the

gravity vector of the machine tool;
U—the nodal displacement vector of the entire structure.
With the decrease of the part’s volume fraction, there is a corresponding loss in the

stiffness of the part. The model of the relationship between the stiffness and the volume of
the component is relatively complex, and it is difficult to obtain its specific mathematical
expression. Therefore, it is necessary to design the objective function of stiffness loss based
on general engineering practices. There was no corresponding relationship model between
the volume fraction and the stiffness coefficient in this paper. If the optimization is carried
out directly, the result under the constraint conditions will inevitably lead to the lower
bound of the volume fraction of each component with the lightest component mass, the
upper bound of the value range and the largest component stiffness, which is contrary to
the general law of stiffness loss and cannot thus guide the subsequent detailed structural
design of the components. Therefore, the stiffness loss function shown in Equation (26) was
designed in this paper, which can guide the detailed design of each component.

fd2 = min∑
i

x2
i i = 41, 42, 43, 47, 48, 49, 53, 54, 55 (26)

The above optimization problem is a multiobjective optimization problem. In the
actual optimization process, it is difficult to achieve the optimization of each objective at
the same time. In this paper, a new objective function was constructed by the weighting
method to convert the multiobjective optimization problem into a weighted single-objective
optimization problem. The objective function is shown in Equation (27).

f = ωg1 fg1 + ωg2 fg2 + ωg3 fg3 + ωd1 fd1 + ωd2 fd2 (27)

where ωg1, ωg2 and ωg3 are the weights of the objective functions fg1, fg2 and fg3 in the new
objective function; ωd1 and ωd2 are the weights of the objective functions fd1 and fd2 in the
new objective function, and ωg1 + ωg2 + ωg3 + ωd1 + ωd2 = 1. Considering the importance
of the cost optimization objectives and stiffness loss optimization objectives, ωg1, ωg2, ωg3,
ωd1 and ωd2 were set to 0.15, 0.3, 0.15, 0.3 and 0.1, respectively.

5.4. Optimization Results

Due to the large number of errors to be assigned for the machine tool, the optimization
problem belonged to a high-dimensional nonlinear global optimization problem. The
genetic algorithm toolbox function of MATLAB was used for optimization, and the popula-
tion size was set to 200, the crossover probability was set to 0.4 and the mutation probability
was set to 0.01. The optimization stopped if the absolute variation of the objective function
∆f was less than the threshold ε, which was set to 10−6. After optimization, the optimal
solutions were obtained as shown in Tables 4 and 5.
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Table 4. The optimal solution of precision distribution obtained by genetic algorithm optimization.

Design Variable Optimized Value Design Variable Optimized Value Design Variable Optimized Value

δx(x), (x1) 0.017 mm δy(x), (x2) 0.009 mm δz(x), (x3) 0.011 mm
εx(x), (x4) 0.028 mrad εy(x), (x5) 0.022 mrad εz(x), (x6) 0.016 mrad
δx(y), (x7) 0.013 mm δy(y), (x8) 0.018 mm δz(y), (x9) 0.027 mm
εx(y), (x10) 0.022 mrad εy(y), (x11) 0.012 mrad εz(y), (x12) 0.04 mrad
δx(z), (x13) 0.014 mm δy(z), (x14) 0.027 mm δz(z), (x15) 0.009 mm
εx(z), (x16) 0.038 mrad εy(z), (x17) 0.011 mrad εz(z), (x18) 0.04 mrad
δx(w), (x19) 0.029 mm δy(w), (x20) 0.03 mm δz(w), (x21) 0.014 mm
εx(w), (x22) 0.04 mrad εy(w), (x23) 0.027 mrad εz(w), (x24) 0.035 mrad
δx(γ), (x25) 0.013 mm δy(γ), (x26) 0.008 mm δz(γ), (x27) 0.017 mm
εx(γ), (x28) 0.017 mrad εy(γ), (x29) 0.017 mrad εz(γ), (x30) 0.024 mrad
Sxw, (x31) 0.026 mrad Syw, (x32) 0.039 mrad Sxy, (x33) 0.021 mrad
Sxz, (x34) 0.017 mrad Syz, (x35) 0.054 mrad Sxc, (x36) 0.012 mrad
Syc, (x37) 0.02 mrad

Table 5. The optimal solution of stiffness distribution obtained by genetic algorithm optimization.

Design Variable Optimized Value Design Variable Optimized Value

x38 0.75 m x47 0.32
x39 0.91 m x48 0.62
x40 0.26 x49 0.2
x41 0.2 x50 0.7 m
x42 0.2 x51 1.2 m
x43 0.21 x52 0.46
x44 0.78 m x53 0.57
x45 1.24 m x54 0.21
x46 0.27 x55 0.37

Table 5 gives the optimal solution of the structural parameters of the machine tool.
The optimized values of the cross-sectional dimension parameters of the components such
as x38 and x39 can be used as a reference for the determination of the overall dimensions of
the components in the overall design of the machine tool. The optimized volume fractions
and stiffness coefficients of the components such as x40 and x41 can determine the design
requirements for the detailed structural design of the components.

The cross-sectional dimensions of the machine tool’s crossbeam in the optimization
results were 1.2 m and 0.7 m, the volume fraction was 0.46 and the stiffness coefficients
were 0.57, 0.21 and 0.37, respectively. In order to optimize the performance of the machine
tool, the crossbeam needed to ensure that the volume reaches 46% of the volume of the
beam element with cross-sectional dimensions of 1.2 m and 0.7 m during the structural
design. At the same time, the bending stiffness in the Z- and Y-directions needed to reach
57% and 21% of the beam unit, and the torsional stiffness in the X-direction needed to
reach 37% of the beam element. With these as the constraint conditions, the layout of the
box-structured crossbeam can be designed based on one’s engineering design experience.

Comparing the stiffness coefficients of each component in the optimization results, it
can be seen that the Y-directional stiffness coefficient of the column x48 and the Z-directional
stiffness coefficient of the crossbeam x53 are relatively large, indicating that the Y-directional
stiffness of the column and Z-directional stiffness of the crossbeam under gravity have
a greater effect on the structural deformation of the machine tool. Therefore, higher
rigidity requirements were identified during the structural optimization, and the optimal
configuration of structural rigidity of machine tool components could be realized.

If the structural optimization results are unsatisfactory or difficult to achieve, an
iterative optimization can be performed by adjusting the boundary thresholds until it
is satisfactory.
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6. Comparative Analysis of Optimization Results and Existing Designs

In order to verify the rationality of the gravity-induced error-modelling-based static
precision design method (GEM-PDM) proposed in this paper, the static precision design
method (PDM) for the machine tool based on the MBS kinematics [13] was used to obtain
heavy-duty vertical precision results without considering the influence of the gravity
deformation errors. The static precision results of the machining center were compared
with the error budgeting results in this paper (Table 4), with the comparison results shown
in Figure 7 and Table 6. At the same time, according to the sensitivity coefficient calculation
method in [27], the influence of each error on the volumetric error Ev of the TCP was
analyzed, as shown in Figure 8.
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Table 6. Comparison of the error budgeting results by PDM and GEM-PDM.

Item GEM-PDM PDM

Evx (mm) −0.0054 −0.0337
Evx (mm) −0.0020 −0.0157
Evx (mm) 0.0396 0.040

Processes 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 8. Comparison of error sensitivity coefficient results for each precision allocation method. 

Combining Figure 7, Table 6 and Figure 8, it can be seen that due to the consideration 

of the influence of the structural deformation under gravity in the GEM-PDM, the errors 

of the X-, Z-, and W-axes in the precision allocation results of this paper were all larger 

than the gravity deformation of the structure itself. The difference provided a certain ref-

erence for the precision requirements of the manufacturing and machining of related com-

ponents. In the error budgeting results obtained by PDM, some of the error values were 

smaller than the gravity deformation of the structure, and it needed to be adjusted 

through the whole machine assembly to meet the precision requirements, which undoubt-

edly increased the difficulty of the assembly. The increase of assembly adjustment links 

was enough to cause the forced deformation of the machine tool and the increased assem-

bly stress, which was not conducive to the maintenance of the machine tool precision. 

Once the gravity deformation error was guaranteed by the error budget results, the geo-

metric error caused by manufacturing was controlled as small as possible, or the big val-

ues of the error could make the volumetric error exceed the precision requirement bound-

aries. That is the reason why the volumetric error results calculated by the PDM were 

−0.0337 mm, −0.0157 mm and 0.040 mm, close to the given boundaries, and the improve-

ments of the volumetric error by the GEM-PDM were 84.0%, 87.3% and 0.1%. 

At the same time, among the machine tool errors budgeted by the two precision de-

sign methods, the higher sensitivity coefficients were mainly the angular errors and the 

squareness errors, that is, the volumetric error of the machine tool was more sensitive to 

the changes of these two types of errors. It also showed that these two types of errors had 

a relatively large influence on the volumetric error of the machine tool, and their control-

lability was poor. On the other hand, the sensitivity coefficients corresponding to the po-

sitioning error and the straightness error were relatively small and were basically negligi-

ble compared with the angular errors and the squareness errors. The errors with higher 

sensitivity coefficients were also mainly concentrated on the angular error of the cross-

beam around the Y-direction and the three angular errors of the column, which was con-

sistent with the previous conclusion on the optimal configuration of component stiffness. 

It is noted that the stiffness coefficients and volume fraction of each component were 

selected as independent design variables. However, the structural stiffness should be cor-

related to the given volume fraction to some extent. To make the GEM-PDM more accu-

rate and realistic for budgeting the error components of heavy-duty machine tools, the 

Figure 8. Comparison of error sensitivity coefficient results for each precision allocation method.



Processes 2022, 10, 1930 17 of 20

Combining Figure 7, Table 6 and Figure 8, it can be seen that due to the consideration
of the influence of the structural deformation under gravity in the GEM-PDM, the errors of
the X-, Z-, and W-axes in the precision allocation results of this paper were all larger than
the gravity deformation of the structure itself. The difference provided a certain reference
for the precision requirements of the manufacturing and machining of related components.
In the error budgeting results obtained by PDM, some of the error values were smaller
than the gravity deformation of the structure, and it needed to be adjusted through the
whole machine assembly to meet the precision requirements, which undoubtedly increased
the difficulty of the assembly. The increase of assembly adjustment links was enough to
cause the forced deformation of the machine tool and the increased assembly stress, which
was not conducive to the maintenance of the machine tool precision. Once the gravity
deformation error was guaranteed by the error budget results, the geometric error caused
by manufacturing was controlled as small as possible, or the big values of the error could
make the volumetric error exceed the precision requirement boundaries. That is the reason
why the volumetric error results calculated by the PDM were −0.0337 mm, −0.0157 mm
and 0.040 mm, close to the given boundaries, and the improvements of the volumetric error
by the GEM-PDM were 84.0%, 87.3% and 0.1%.

At the same time, among the machine tool errors budgeted by the two precision
design methods, the higher sensitivity coefficients were mainly the angular errors and the
squareness errors, that is, the volumetric error of the machine tool was more sensitive to
the changes of these two types of errors. It also showed that these two types of errors
had a relatively large influence on the volumetric error of the machine tool, and their
controllability was poor. On the other hand, the sensitivity coefficients corresponding to the
positioning error and the straightness error were relatively small and were basically negli-
gible compared with the angular errors and the squareness errors. The errors with higher
sensitivity coefficients were also mainly concentrated on the angular error of the crossbeam
around the Y-direction and the three angular errors of the column, which was consistent
with the previous conclusion on the optimal configuration of component stiffness.

It is noted that the stiffness coefficients and volume fraction of each component were
selected as independent design variables. However, the structural stiffness should be
correlated to the given volume fraction to some extent. To make the GEM-PDM more
accurate and realistic for budgeting the error components of heavy-duty machine tools, the
idea of topology optimization will be introduced to reveal the relationship between the
element stiffness and volume fraction in the future work.

7. Conclusions

Due to the large size and large span of heavy-duty machine tools, the structural
deformation error caused by gravity accounts for a large proportion of the static error,
and the influence of gravity deformation must be considered in the precision design. This
paper presented a precision design method for HDVMCs based on gravity deformation
error modelling. The results of the optimization solution showed that the precision design
method proposed in this paper could better provide reference values for the precision
requirements of the manufacturing and machining of the machine tool components. After
using the method proposed in this paper, the error design values of the X-, Z- and W-axes
in the case machine tool were all larger than the gravity deformation of the structure itself,
which was more suitable for the maintenance of the assembly and machine tool precision
than the existing method. The improvement of the volumetric error compared with those by
the PDM were 84.0%, 87.3% and 0.1%. Once the gravity deformation error was guaranteed
by the error budget results, the geometric error caused by manufacturing was controlled
as small as possible by the GEM-PDM to limit the volumetric error, meeting the precision
design requirements.
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Nomenclature
A The cross-sectional area of the spatial beam element.
B The body in the multibody system.
C The structural compliance.
E The elastic modulus.

Ev
The volumetric error of the theoretical forming point of the actual
machine tool.

Evx The component of the volumetric error in the X-direction (mm).
Evy The component of the volumetric error in the Y-direction (mm).
Evz The component of the volumetric error in the Z-direction (mm).
F The external load vector.

Fzi
The external force along the Z-axis direction received by the ith
node in the global coordinate system

f g1 The relative cost function.
f g2 The equalization objective function.
fg3 The robust optimization objective function.
fd1 The compliance objective function.
fd2 The stiffness loss function.
g The acceleration of gravity.
h The hinge in the multibody system.

Iy
The moment of inertia of the cross section around the neutral axis
parallel to the y-axis.

I′y
The moment of inertia of the cross-section of the optimized
spatial beam element.

Iz
The moment of inertia of the cross section around the neutral axis
parallel to the z-axis.

I′z
The torsional moment of inertia of the cross section of the
optimized spatial beam element.

J The torsional moment of inertia of the cross section.

J′
The torsional moment of inertia of the cross section of the
optimized spatial beam element.

K The overall stiffness matrix of the structure.

Ke The stiffness matrix of the spatial beam element in the local
coordinate system.

kji (j = x, y, z) The stiffness coefficient of the spatial beam element.

LEj (j = 1~5, 8~11)
The element length of the machine tool component represented
by the jth element.

l The element length.
Mj

(i) (j = x, y, z) The nodal moment of each node around the X-, Y-, Z-axes.

Myi
The external moment of the ith node around the Y-axis in the
global coordinate system.

mE
The mass of the machine tool component represented by
the element.

m′E
The mass of machine tool components represented by the
optimized element.

n The number of elements.
P The overall nodal load vector.
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Pactual The actual position coordinate of the TCP.

Pe The nodal load vector in the local coordinate system of
the element.

Pideal The actual position coordinate of the TCP.
Pi

(i) (I = u, v, w) The nodal force of each node along the X-, Y-, Z-directions.

Pt
The position coordinate vector Pt of the TCP in the tool
coordinate system.

ptx, pty, ptz
The position coordinates of the TCP in the X-, Y-, Z-directions of
the tool coordinate system.

q The displacement vector of the structural node.

qe The nodal displacement vector in the local coordinate system of
the element.

R The support reaction force vector.

Sxy, Sxz, Syz, Syz, Syz, Syz, Syz
The squareness error components between the axes denoted in
the corresponding subscript.

Te The transformation matrix of the element from the local
coordinate system to the global coordinate system.

Tij
The ideal HTMs of position and orientation of Bj with respect
to Bi.

Tijs
The ideal HTMs of position and orientation that come from
static state.

Tijp
The ideal HTMs of position and orientation that come from
motion state.

T′ ij
The actual HTMs of position and orientation of Bj with respect to
Bi under error conditions.

∆Tij The HTMs with parameters of static error components.
U The nodal displacement vector of the entire structure.
vfi The optimized volume fraction of the ith element.
xi (i = 1, 2, . . . , 37) The design variables in the precision design.

xi
F The part of the structural gravity deformation error in the static

error design variable xi.

xi
G The geometric error caused by the manufacturing process in the

static error design variable xi.
xsi The normalized relative value of the design variable xi.

δx(x), δy(x), δz(x)
The linear error components of the X-axis along the X-, Y- and
Z-directions.

δx(y), δy(y), δz(y)
The linear error components of the Y-axis along the X-, Y- and
Z-directions.

δx(z), δy(z), δz(z)
The linear error components of the Z-axis along the X-, Y- and
Z-directions.

δx(w), δy(w), δz(w)
The linear error components of the W-axis along the X-, Y- and
Z-directions.

δx(γ), δy(γ), δz(γ)
The linear error components of the C-axis along the X-, Y- and
Z-directions.

δz(x)M The geometric error caused by manufacturing.
δz(x)F The structural gravity deformation error.

εx(x), εy(x), εz(x)
The angular error components of the X-axis around the X-, Y- and
Z-directions.

εx(y), εy(y), εz(y)
The angular error components of the Y-axis around the X-, Y- and
Z-directions.

εx(z), εy(z), εz(z)
The angular error components of the Z-axis around the X-, Y- and
Z-directions.

εx(w), εy(w), εz(w)
The angular error components of the W-axis around the X-, Y-
and Z-z directions.

εx(γ), εy(γ), εz(γ)
The angular error components of the C-axis around the X-, Y- and
Z-directions.

ω1, ω2 and ω3 The weights of the objective functions.
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