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A B S T R A C T   

Previous European land-use regression (LUR) models assumed fixed linear relationships between air pollution 
concentrations and predictors such as traffic and land use. We evaluated whether including spatially-varying 
relationships could improve European LUR models by using geographically weighted regression (GWR) and 
random forest (RF). We built separate LUR models for each year from 2000 to 2019 for NO2, O3, PM2.5 and PM10 
using annual average monitoring observations across Europe. Potential predictors included satellite retrievals, 
chemical transport model estimates and land-use variables. Supervised linear regression (SLR) was used to select 
predictors, and then GWR estimated the potentially spatially-varying coefficients. We developed multi-year 
models using geographically and temporally weighted regression (GTWR). Five-fold cross-validation per year 
showed that GWR and GTWR explained similar spatial variations in annual average concentrations (average R2 

= NO2: 0.66; O3: 0.58; PM10: 0.62; PM2.5: 0.77), which are better than SLR (average R2 = NO2: 0.61; O3: 0.46; 
PM10: 0.51; PM2.5: 0.75) and RF (average R2 = NO2: 0.64; O3: 0.53; PM10: 0.56; PM2.5: 0.67). The GTWR pre-
dictions and a previously-used method of back-extrapolating 2010 model predictions using CTM were overall 
highly correlated (R2 

> 0.8) for all pollutants. Including spatially-varying relationships using GWR modestly 
improved European air pollution annual LUR models, allowing time-varying exposure-health risk models.   

1. Introduction 

Ambient air pollution contributes to around 7 million deaths mainly 
from non-communicable diseases (World Health Organization, 2021). 
To better understand the health effects of air pollution exposure, cohort 
studies are increasingly conducted in large study areas (Brauer et al., 
2019; Di et al., 2017; Stafoggia et al., 2022). These cohort studies had 
follow-up periods of 10–20 years, with recruitment dating back to mid 
1990s. To allow time-varying exposure analyses, these studies require 
annual exposure estimates harmonized for the study area during the 
follow-up period. 

For the ELAPSE project (Effects of Low-Level Air Pollution: A Study 

in Europe) (de Hoogh et al., 2018a), we developed Europe-wide land use 
regression (LUR) models for nitrogen dioxide (NO2), ozone (O3), par-
ticulate matter less than 2.5 µm (PM2.5), and black carbon for a single 
year (2010) using supervised linear regression (SLR). Chemical trans-
port model (CTM) estimates at a large spatial resolution (50 km × 50 
km) for multiple years were used to back- and forward-extrapolate es-
timates from the LUR model built for the year 2010 to earlier and later 
years where LUR models were unavailable. 

An important assumption, in the Europe-wide model (de Hoogh 
et al., 2018a) and other large-scale models (Bechle et al., 2015; Chen 
et al., 2019; Knibbs et al., 2014; Larkin et al., 2017; Lu et al., 2020), is 
that the relationship between air pollution and predictors such as traffic, 
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population density, and meteorology can be modeled with fixed co-
efficients. However, the relationships between air pollution concentra-
tions and predictors could differ across countries. For example, the same 
road density might be associated with higher NO2 concentrations in 
southern Europe than in northern Europe, because the road density only 
serves as a proxy for traffic intensity and/or traffic-related emission 
sources, which can be varying across countries/regions. Geographically 
Weighted Regression (GWR) is a technique that allows for spatially- 
varying relationships between the predictors and air pollution concen-
trations. In previous work in North America (Van Donkelaar et al., 2015) 
and the globe (Hammer et al., 2020), GWR was used to adjust for spatial 
heterogeneity in the bias between surface concentrations calculated 
from satellite-derived observations and a large-scale chemical transport 
model (geophysical PM2.5 estimate) and ground-based PM2.5 observa-
tions. These studies have shown that GWR greatly improved the five-fold 
cross-validation (CV) accuracy compared to unadjusted predictions. 
Building on these studies, we evaluate whether it would improve air 
pollution predictions by incorporating spatial heterogeneity directly in 
the relationship between ground-based observations and several spatial 
variables in Europe. 

Air pollution concentrations have generally been reduced in the past 
decades in Europe (Ortiz and Guerreiro, 2020). To obtain air pollution 
predictions for multiple years, explicit models for these years would 
likely improve upon back-extrapolating a single-year model with 
modeled spatio-temporal trends. It is however not clear whether 
developing specific models for every single year (single-year model) or 
developing models for groups of multiple years (multi-year model) is the 
most effective approach. We explored the application of geographically 
and temporally weighted regression (GTWR) (Fotheringham et al., 
2015; Huang et al., 2010; Wu et al., 2014) to develop models for mul-
tiple years. GTWR is an extension of GWR, allowing both spatially- and 
temporally-varying relationships between air pollution and predictors. 
Incorporating temporally-varying relationships is important as we 
would avoid assuming that the quantitative relationship between a 
predictor and air pollution concentrations remains fixed over decades. 
Previously, GTWR was used at a regional scale in China to estimate 
ground-level daily PM2.5 concentrations using satellite-derived aerosol 
optical depth (AOD) values and other spatial variables (Bai et al., 2016; 
He and Huang, 2018). They showed that GTWR performed better than 
GWR at a daily scale. Building on these studies, we evaluate whether 
model performance is also improved in modeling annual average con-
centrations for a long (20-year) time period at the continental (Euro-
pean) scale. 

Recently, machine-learning methods, including random forest (RF), 
have been applied in developing LUR models (Chen et al., 2019; Ker-
ckhoffs et al., 2019; Lu et al., 2020). RF models relax the linear 
assumption in linear regression methods and allow interactions between 
variables. Potentially, RF could therefore also include spatial heteroge-
neity, e.g. by using kriging to explain its residuals (Zhan et al., 2018) or 
by including climate zones or geographical coordinates as a predictor 
(Hengl et al., 2018). 

We built annual LUR models in Europe from 2000 to 2019 for four 
regulated air pollutants: NO2, O3, particulate matter < 10 µm (PM10), 
and PM2.5. Our first aim was to evaluate potential improvements by 
including spatially-varying relationships in Europe-wide LUR models. 
Our second aim was to compare single-year and multi-year modeling 
approaches. Our third aim was to compare our annual LUR models with 
our previous back-extrapolation methods (de Hoogh et al., 2018a; 
Gulliver et al., 2013). The novelty of our work is to evaluate model 
performance of GWR and GTWR in modeling relationships between 
ground-based observations and spatial predictors; to include multiple 
major pollutants with different spatio-temporal patterns; to compare 
with a machine-learning method; and the spatial resolution of 25 m at 
the continental European scale. 

2. Materials and methods 

Our models extended our previous Europe-wide models (de Hoogh 
et al., 2018a) by evaluating the spatial variations in the coefficients of 
the LUR model; by developing models for a large number of years; by 
improving spatial resolution from 100 m × 100 m to 25 m × 25 m; by 
extending the domain to include Eastern European countries; by incor-
porating time-varying predictors when available; and by incorporating 
more predictors such as meteorology. 

We collected routine-monitoring data of air pollution and spatio-
temporal predictors to estimate air pollution concentrations across 
Europe from 2000 to 2019. We developed models to estimate annual 
average air pollution exposure because we aimed to apply the model 
predictions in studying health effects of long-term air pollution expo-
sure. As the health studies started recruitment in the past, the most 
important objective was to develop models for current and historical 
long-term exposure at a fine spatial resolution. Some recent studies have 
developed daily air pollution models for multiple years with good per-
formance (de Hoogh et al., 2019, 2018b; Di et al., 2019; Liu et al., 2020; 
Requia et al., 2020; Shtein et al., 2018) at a spatial of 1 km × 1 km for the 
US studies and about 12 km × 12 km for the Chinese studies. As our 
objective was to develop long-term exposure at a fine spatial resolution 
and as we do not need daily maps, we did not develop daily models. 

The data served as input to LUR models built by four algorithms in 
two temporal settings: 1) SLR for single-year and multi-year, 2) GWR for 
single-year, GTWR for multi-year, and 3) RF for single-year and multi- 
year. We refer to single-year as training a single model per year using 
data from that specific year and refer to multi-year as training a single 
model for consecutive years using all data from 2000 to 2019. We also 
evaluated shorter multi-year periods, specifically 3-to-6-year periods. 
Model performance was evaluated by 5-fold cross-validation (CV) and 
by an external validation dataset obtained in the ESCAPE project (Eu-
ropean Study of Cohorts for Air pollution Effects) collected across 
Europe in 2010 (Cyrys et al., 2012; Eeftens et al., 2012). 

We built the models from 2000 to 2019, because of two reasons. 
Firstly, some potential predictors were only available after 2000 such as 
satellite-derived data. Secondly, the monitoring observations were 
highly clustered in specific countries and were limited in quantity before 
2000 especially for PM2.5 (with less than 10 observations) and PM10 
(with less than 450 observations), as shown in Figs. S1 & S2. 

2.1. Air pollution monitoring observations 

We collected routine monitoring data for NO2, O3, PM10, and PM2.5 
from the European Environmental Agency (EEA). We collected the ob-
servations before 2012 from the Airbase database v8 (European Envi-
ronmental Agency, 2020a) and after 2012 from the Air Quality e- 
Reporting database (European Environmental Agency, 2020b). 

For PM10 and PM2.5., we aggregated daily observations to yearly 
averages, because most observations for PM were only available at a 
daily scale (integrated filter-based methods or continuous methods with 
insufficient hourly precision). NO2 and O3 were measured with contin-
uous methods and available as hourly averages. For NO2, we aggregated 
hourly observations to annual averages. For O3, we calculated the daily 
maximum 8-hour mean for each day from hourly observations and then 
aggregated the daily values to annual averages. This statistic of daily 
maximum 8-hour mean was chosen because it is used in regulatory 
guidelines (WHO, 2021). All annual statistics were only used if more 
than 75% of the daily or hourly observations were valid as defined by 
the EEA. We did not train the single-year model if the annual average 
observations were available from less than 200 monitoring sites across 
Europe for that specific year. This only applied to the PM2.5 observations 
before 2006. From 2000 to 2019, the number of monitoring sites with 
more than 75% annual validity grows from 1533 to 3176 for NO2, from 
1243 to 1954 for O3, from 445 to 2937 for PM10, and from 11 to 1433 for 
PM2.5 (Table S2). PM monitoring in the earlier years was also limited to 
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specific countries such as Germany, the Netherlands, and UK (Figs. S1 & 
S2). After around 2010, monitoring sites were spread sufficiently and 
widely for all pollutants (Figs. S1 & S2). The observed air pollution 
concentrations have decreased substantially in the past decade 
(Table S2), except for O3. The decreasing trend in annual averages is not 
linear for PM, because the complex interactions between emission 
sources and meteorological conditions might affect the trend in annual 
averages across Europe. Especially for PM2.5 the trend could also be 
affected by the different set of monitors included in different years. 

2.2. Predictor variables 

We calculated several road, land-use, satellite retrievals, and chem-
ical transport model estimates to use them as predictors in the LUR 
models (Table S1). Predictors were similar to the ones used in the 
ELAPSE study (de Hoogh et al., 2018a), supplemented with extra time- 
varying spatial predictors such as meteorology chemical transport 
model estimates, and satellite retrievals. These time-varying spatial 
predictors could help capturing regional changes in annual average 
concentrations over time (Gulliver et al., 2013). We did not include 
industrial emission data as predictors, because emission data was 
already included in the chemical transport models (Brandt et al., 2012; 
Marécal et al., 2015) and we used the model estimates as a predictor. 

To capture the dispersion of the air pollution, several variables were 
calculated in several circular buffer sizes (ranging from 50 m to 10,000 
m), such as land use data and road data (Table S1). After the buffered 
values of land cover data and road data were calculated, all predictor 
maps were regridded to a 25-m resolution using nearest neighbor 
resampling. Most of these predictors were processed in Google Earth 
Engine (GEE) (Gorelick et al., 2017) except for road data. 

We calculated road predictors from OpenStreetMap data (Open-
StreetMap contributors, 2020). OSM is a crowd-sourced project, and the 
robustness of the OSM data highly depends on the data contributed by 
the users. We obtained the OSM road data in 2020 because the robust-
ness and validity of OSM show large spatial discrepancies back in time 
(more than 5–8 years ago) (Girres and Touya, 2010; Neis et al., 2011). 
Although road network changes over time, we focused on capturing the 
representative of the road network instead of the temporal changes in 
the network, as most of the network stays unchanged in most developed 
countries in Europe. From OSM, we extracted motorways, primary, and 
local roads. Each road segment in each road type was reprojected to 
ETRS89-LAEA and then was intersected with 25-m grids. Road lengths 
per grid cell were calculated and then summed to obtain the buffered 
road predictors. We finally calculated predictors in buffer sizes ranging 
from 50 m to 10,000 m (Table S1). Other detailed descriptions of all 
predictor variables are in Table S1. 

2.3. Algorithms for training LUR models 

We used four algorithms (i.e., SLR, GWR, GTWR, RF) to train our 
annual LUR models. Details on the technical implementation of GWR 
and GTWR are in the Supporting Information. 

2.3.1. Supervised linear regression (SLR) 
SLR is a standardized approach for including the most informative 

variables stepwise and it has been widely used for LUR modeling (Chen 
et al., 2021; de Hoogh et al., 2018a; Eeftens et al., 2012a). We followed 
the ESCAPE protocol (Eeftens et al., 2012a) to train SLR. In short, firstly, 
a linear regression model was built using the predictor variable that 
explains the most variation in the concentrations (highest R2 value) 
among all variables. In subsequent steps, additional predictor variables 
were allowed to enter the model if they improved the adjusted R2; if the 
sign of the coefficient met the predefined direction of effect (stated in 
Table S1); and if the coefficient value was statistically significant (p <
0.1). Finally, a predictor variable was excluded if its variance inflation 
factor (VIF) was larger than 3 to avoid multicollinearity and this 

exclusion step stopped when no variables had VIF larger than 3. We built 
the single-year SLR model for each year, and therefore the model for 
each year could have different variables selected. We built one multi- 
year SLR model using data from 2000 to 2019, and after variables 
were selected, year was included as a predictor to vary the intercept 
value of the regression model for each year. Year was only included as a 
predictor after the variables were selected because year would not 
necessarily be selected in the step-wise procedure in SLR. 

2.3.2. Geographically weighted regression (GWR) 
GWR (Brunsdon et al., 1996) includes spatial heterogeneity by using 

spatially-varying coefficient values. The coefficient values were esti-
mated by using a weight function. The weight function gives higher 
weights to observation points closer to the estimate points than points 
further away. The function decays with spatial Euclidean distance ac-
cording to a predefined kernel function and bandwidth. The kernel 
function determines the shape of the relation between distance and 
weight, and the bandwidth controls how fast the kernel function decays 
in space. For the kernel function, we used an exponential function to 
give an abrupt decrease in weight with increasing distance. Due to the 
heterogeneous spatial distribution of the air pollution observations 
across Europe, we chose an adaptive bandwidth (nngb) to ensure suf-
ficient local information is included. We used 200 km × 200 km grids for 
the spatially-varying coefficient values of the linear regression. We used 
functions in the GWmodel package version 2.2–4 (Gollini et al., 2015; Lu 
et al., 2014) in R (R Core Team, 2020) to train GWR. GWR can tackle the 
spatial heterogeneity in the relationships between predictors and air 
pollution concentrations. The detailed technical implementation of 
GWR is in the Supporting Information. 

2.3.3. Geographically and temporally weighted regression (GTWR) 
GTWR (Fotheringham et al., 2015; Huang et al., 2010; Wu et al., 

2014) is an extension of GWR, allowing both spatial and temporal het-
erogeneity of the relationships between air pollution and predictors. 
GTWR uses a weight function to estimate the spatiotemporally-varying 
coefficient values of the regression model, and the weight function in-
cludes both spatial and temporal distances. In short, it assumes that 
observation points closer in the spatiotemporal distance have a higher 
impact on local coefficient estimates than observation points further 
away, and one-meter spatial distance has a different impact compared to 
one-year temporal distance. We used functions in the GWmodel package 
version 2.2–4 (Gollini et al., 2015; Lu et al., 2014) in R (R Core Team, 
2020) to train GTWR. We first used SLR to select the informative vari-
ables and then used GTWR to estimate the potential spatially- and 
temporally-varying coefficient values. Some of the original settings in 
GTWR are unsuitable for air pollution modeling (Wu et al., 2014) and 
therefore we adjusted some parameter settings. First, the original GTWR 
only uses the observations from prior time steps to estimate the GTWR 
coefficients for the current time step. But we used observations from 
both prior time steps and subsequent time steps to train GTWR for the 
current time step, because we assumed that observations from the past 
and subsequent years could improve the concentration predictions. 
Second, we included more flexibility in modeling spatial and temporal 
distances by adding a conversion factor. We tuned the parameters using 
5-fold CV. The detailed technical implementation of GTWR is in the 
Supporting Information. 

2.3.4. Random forest (RF) 
RF is an ensemble tree-based machine learning method (Breiman, 

2001). Previous studies showed that RF gave similar or superior model 
performance for air pollution compared to linear regression or spatial 
interpolation methods (Chen et al., 2020, 2019; Kerckhoffs et al., 2021, 
2019; Li et al., 2011; Lu et al., 2020). RF can deal with highly correlated 
variables by randomly selecting a subset of variables in each split node 
of a tree. The regression trees are built using bootstrapping training data 
(i.e., by sampling training data with replacement), and thus not all 
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training data is used in each regression tree. The unused data is often 
referred to as out-of-bag (OOB) data. We used the overall OOB root 
mean squared error (RMSE) to optimize RF hyperparameters. 

The optimized hyperparameters that led to the least OOB RMSE were 
used in our RF. We optimized the hyperparameters using a grid search 
method. We only optimized the number of trees (ntree) and the number 
of variables being split at each node (mtry) due to their higher effect on 
model performance than other hyperparameters (Lu et al., 2020). We 
optimized the hyperparameters for every year (single-year) or between 
2000 and 2019 (multi-year) using the grid searching process with ntree 
ranging from 200 to 800 with an increment of 200 and mtry ranging 
from the squared number of the predictors to the total number of the 
predictors with an increment of 20. We used functions in the ranger 
package version 0.12.1 (Wright and Ziegler, 2017) in R (R Core Team, 
2020) to train RF. 

Because RF can tackle highly correlated variables, we used all vari-
ables (shown in Table S1) in the RF and evaluated the variable impor-
tance. Variable importance was measured by averaging a variable’s total 
decrease in the remaining mean square errors (MSE) left after the var-
iable was used as the node split. The variable importance was calculated 
using the ranger function (Wright and Ziegler, 2017) by setting the 
variable importance mode as ‘impurity’. 

2.4. Comparison with previous approach using back-extrapolation 

We compared predictions from the newly developed annual LUR 
models with predictions from back-extrapolation methods used previ-
ously (de Hoogh et al., 2018a; Gulliver et al., 2013). We added this 
comparison to evaluate how large the reduction was in model perfor-
mance of back-extrapolation compared to year-specific LUR. As previous 
studies have used the back-extrapolation methods, it is important for air 
pollution epidemiology to evaluate how different exposure predictions 
were from the new models and the previously applied back- 
extrapolation models. The back-extrapolation methods extrapolated 
predictions from the annual LUR model built for the year 2010 (t1 =

2010) to another time (t2) using the surfaces from the Danish Eulerian 
Hemispheric Model (DEHM) described in Table S1. The DEHM is a 3D 
long-range atmospheric chemical transport model (Brandt et al., 2012; 
Christensen, 1997). Following de Hoogh et al (2018) (de Hoogh et al., 
2018a), we used two extrapolation methods: ratio (Eq (1)) and differ-
encing (Eq (2)) (Gulliver et al., 2013): 

yextrap(t2) = yLUR(t1) ×
yDEHM(t2)

yDEHM(t1)
(1)  

yextrap(t2) = yLUR(t1)+ yDEHM(t2) − yDEHM(t1) (2)  

where yextrap is the extrapolated value, yLUR is the estimate from a LUR 
model, and yDEHM is the DEHM estimate. The DEHM surfaces (50 km ×
50 km) were resampled to the LUR surfaces (25 m × 25 m) using nearest 
neighbor resampling. The reference time was set to be 2010, the 
midpoint of our study period and the year in which our previous Europe- 
wide ELAPSE LUR model was built (de Hoogh et al., 2018a). 

The comparison in model performance was done by using 5-fold CV 
and calculating correlations between extrapolated concentrations and 
the new annual LUR predictions. We calculated the correlations at 
random points. We generated 77,675 random points in populated areas 
(Fig. S3). The comparison was done for the full study domain and per 
NUTS1 area. The number of random points in each NUTS1 region was 
proportional to the population and each region had at least 300 points 
generated. We ensured these random points were randomly distributed 
in the populated areas defined by the impervious density data for the 
year 2018 and the population data for the year 2011 (see Table S1). 

2.5. Model performance evaluation 

For internal validation, we used 5-fold CV to evaluate the model 
performance in explaining the variability of observed concentrations for 
each year. For single-year modeling, the observation points were 
divided randomly into 5 folds stratified by the climate zone (see Fig. S4) 
and routine monitoring station type (i.e., background, industrial, 
traffic). For multi-year modeling, because some stations stopped or 
started monitoring during the period (2000–2019), we first obtained the 
number of annual averages available during the period for each station. 
Then, the observation points were divided randomly into 5 folds strat-
ified by the number of annual averages, climate zone, and station type. 
For multi-year modeling, we ensured that the observations from the 
same station could only be in either the training fold or the validation 
fold across the years. 

For external validation, we used ESCAPE measurements (Cyrys et al., 
2012; Eeftens et al., 2012) to evaluate model performance in 2010 for 
NO2, PM10, and PM2.5. The ESCAPE measurements consist of 1396 long- 
term NO2 measurements and 415 PM10 and PM2.5 measurements 
collected in specific clustered study areas across Europe in 2010 (see 
Fig. S5). 

Two performance metrics were used: the coefficient of determination 
(R2) and root mean square error (RMSE). We calculated the MSE-based 
R2, affected by both systematic bias and random differences between 
model predictions and observations. The predictions from all five vali-
dation folds were combined to obtain one value of each performance 
metric described in Eq (3) and Eq (4): 

R2 = 1 −
∑N

i=1(yi − ŷi)
2

∑N
i=1(yi − y)2 (3)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ (4)  

where yi is the observation of the annual average concentration at sta-
tion i, ̂yi is the estimate of the annual average concentration at station i, y 
is the average observations from all N stations. 

3. Results and discussions 

3.1. Model performance of algorithms with and without spatially-varying 
coefficients 

Sections 3.1.1 to 3.1.3 document the performance of single and 
multi-year models. Section 3.1.4 illustrates the predictor variables in the 
different models. Section 3.1.5 compares our findings with previous 
studies and discusses the importance of including spatially-varying 
coefficients. 

3.1.1. GWR: spatially-varying coefficients in single-year models 
GWR modestly improved the explained variance R2 values of single- 

year models compared to SLR and RF for all four pollutants (see columns 
in ‘Difference in CV R2 between single-year models’ in Table 1). Table 1, 
Fig. 1 (for selected years), and Tables S3–S6 (for all years) document 
that GWR improved predictions compared to SLR and RF consistently 
across years. The largest improvement in R2 was found for O3 and PM10 
(about 10% on average) and the smallest for PM2.5 (about 2% on 
average) compared to SLR (see column ‘GWR vs SLR’ in Table 1). The 
difference between the performance for the two particle metrics may be 
because the ratios between PM2.5 and PM10 concentrations are different 
across Europe (Eeftens et al., 2012). RF improved model performance 
compared to SLR modestly for NO2, O3, and PM10, but not PM2.5 for 
which it performed modestly worse (Table 1). The small improvement of 
model improvement by RF compared to SLR is consistent with previous 
work for European models of the year 2010 (Chen et al., 2019) and 
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models based upon mobile monitoring data (Kerckhoffs et al., 2019). 
The model performance of the annual GWR LUR models was quite 

stable over time for NO2 (Table S3, Figs. S6 & S7). For O3, the spatial 
variations explained by the GWR LUR models fluctuated between years 
(Table S4). For PM10 (Table S5) and PM2.5 (Table S6), model perfor-
mance improved in recent years compared to earlier years, probably 
related to the significant increase in the number of sites and possibly 
harmonization of monitoring methods across Europe. The trends and 

improvement in R2 (Fig. S6) and RMSE values (Fig. S7) were similar. 

3.1.2. GTWR: spatially- and temporally-varying coefficients in multi-year 
models 

GTWR00-19 explained more variation in observations than the other 
multi-year models (SLR00-19, RF00-19) (Table 1, Fig. 1 for selected 
years, Tables S3–S6 for all years). GTWR00-19 improved the R2 values 
compared to SLR00-19 by 7%, 13%, 12%, 3% on average and compared 

Table 1 
Descriptive statistics of 5-fold CV R2 values and differences in 5-fold CV R2 between different models from 2000 to 2019.    

Absolute CV R2 

values 
Difference in CV R2 between 
single-year models 

Difference in CV R2 between multi-year models Difference in CV R2 between single-year 
and multi-year models   

GWR GTWR00- 
19 

GWR vs 
SLR 

GWR vs 
RF 

RF vs 
SLR 

GTWR00-19 vs 
SLR00-19 

GTWR00-19 vs 
RF00-19 

RF00-19 vs 
SLR00-19 

SLR vs 
SLR00-19 

GWR vs 
GTWR00-19 

RF vs 
RF00-19 

NO2 mean  0.67  0.66  0.05  0.02  0.03  0.07  0.03  0.04  0.02  0.00  0.01 
min  0.62  0.61  0.04  0.01  0.01  0.06  0.00  − 0.07  0.01  − 0.01  − 0.02 
max  0.70  0.69  0.07  0.04  0.05  0.09  0.15  0.07  0.04  0.01  0.13 
sd  0.03  0.03  0.01  0.01  0.01  0.01  0.03  0.03  0.01  0.01  0.03 

O3 mean  0.57  0.58  0.11  0.04  0.06  0.13  0.09  0.04  0.01  − 0.01  0.04 
min  0.43  0.45  0.07  0.00  0.02  0.08  0.01  − 0.04  − 0.03  − 0.04  − 0.02 
max  0.66  0.67  0.15  0.10  0.13  0.19  0.19  0.14  0.05  0.03  0.12 
sd  0.05  0.05  0.03  0.03  0.04  0.03  0.05  0.05  0.02  0.02  0.03 

PM10 mean  0.61  0.62  0.10  0.05  0.05  0.12  0.08  0.04  0.02  − 0.01  0.02 
min  0.48  0.50  0.07  0.00  − 0.01  0.08  0.04  0.00  0.00  − 0.03  − 0.02 
max  0.71  0.73  0.14  0.11  0.12  0.16  0.14  0.11  0.07  0.04  0.12 
sd  0.06  0.07  0.02  0.03  0.04  0.03  0.03  0.04  0.02  0.02  0.03 

PM2.5 mean  0.77  0.77  0.02  0.09  − 0.08  0.03  0.07  − 0.04  0.00  − 0.01  − 0.03 
min  0.69  0.71  − 0.01  0.07  − 0.20  0.00  0.04  − 0.13  − 0.03  − 0.06  − 0.12 
max  0.82  0.82  0.06  0.19  − 0.02  0.10  0.13  0.04  0.06  0.01  0.04 
sd  0.04  0.04  0.02  0.03  0.04  0.02  0.03  0.04  0.02  0.02  0.04 

mean: average; min: minimum; max: maximum; sd: standard deviation. 

Fig. 1. R2 values of 5-fold CV R2 values for SLR, GWR, GTWR, and RF models for selected years. Internal validation using 5-fold CV was done for each year (shown in 
solid-square icons), whereas external ESCAPE validation was only available for 2010 (shown in cross icons). ‘slr’ and ‘gwr’ are the single-year SLR and GWR models 
built for each year. ‘slr00-19′and ‘gtwr00-19′ are the multi-year SLR and GTWR models built for period from 2000 to 2019. For PM2.5, because the number of 
observations was too few to train GTWR (between 2000 and 2003) for some folds and GWR (between 2000 and 2005) for all folds, the values of GWR and GTWR 
were missing. Values for other years are shown in Fig. S6 and Tables S3–S6. RMSE values are shown in Fig. S7. 
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to RF00-19 by 3%, 9%, 8%, 7% on average for NO2, O3, PM10, and PM2.5 
respectively (see columns ‘Difference in CV R2 between multi-year 
models’ in Table 1). Table 1 and Tables S3–S6 document that GTWR 
improved model performance for all years compared to other multi-year 
models. The multi-year RF model (RF00-19) overall slightly improves 
model performance compared to the multi-year SLR model (SLR00-19) 
for NO2, O3, and PM10 but not PM2.5 for some years (Tables S3–S6). The 
scatterplots of GTWR predictions against ground-based monitoring ob-
servations are shown in Fig. S8. 

We evaluated whether using observations from shorter multi-year 
periods would lead to different model performance and model pre-
dictions for each year. We used observations from shorter multi-year 
periods (ranging from 3 to 8 years) to train GTWR. These GTWR 
models with shorter multi-year periods gave similar 5-fold CV R2 values 
(Table S7) in 2010, 2015, and 2019. The correlations were high between 
predictions from GTWR00-19 (our default GTWR model using obser-
vations from 20 years) and other GTWR models built by observations 
from multi-year periods shorter than the 20-year period (as shown in 
row ‘cor’ in Table S7). 

3.1.3. Comparison between single-year and multi-year models 
When we compared single-year models and multi-year models, we 

noted that GTWR00-19 estimated spatial variation in annual average 
observations as good as the annual GWR models (column ‘GWR vs 
GTWR00-19′ in Table 1, Fig. 1 for selected years, and Tables S3–S6 for 
all years). For PM2.5, because the number of observations was too small 
to train GTWR (between 2000 and 2003) for some folds and GWR (be-
tween 2000 and 2005) for all folds, the values of 5-fold CV R2 were 
unavailable. The performance of multi-year models with the SLR and RF 
algorithm was slightly less than the performance of the single-year 
models with these algorithms (column ‘SLR vs SLR00-19′ and ‘RF vs 
RF00-19′ in Table 1). 

Using the ESCAPE data as external validation data available for the 
year 2010 for only NO2, PM2.5, and PM10, we observed that GWR and 
GTWR00-19 performed similarly compared to other algorithms for NO2. 
For PM2.5 and PM10, GWR and GTWR00-19 performed similarly 
compared to SLR and SLR00-19 but slightly worse than RF (indicated by 
the plus icon in Fig. 1). As the ESCAPE monitoring data is much more 
spatially clustered and covers fewer countries than the routine moni-
toring data (Fig. S5), we gave more importance to the 5-fold cross- 
validation when comparing modeling approaches. 

GWR and GTWR both improved the performance of regression-based 
methods by incorporating spatial-varying coefficients in the LUR 
models. The GWR models used slightly different predictors with 
spatially-varying coefficient values each year, whereas the GTWR model 
had a fixed model structure in terms of predictors and buffer sizes but 
with spatially- and temporally-varying coefficients. Although the annual 
GWR models have different predictors across years, these mostly reflect 
the same determinant (e.g., nearby road traffic represented by different 
buffer sizes) (Fig. S9). Although GTWR and GWR showed similar 5-fold 
CV accuracies, GTWR had the extra advantage of estimating PM2.5 
concentrations when the number of observations was too small to train 
an annual LUR model for years before 2006. GTWR includes observa-
tions in other years to inform the model for a specific year. Thus, we will 
use the GTWR models as our default model. 

3.1.4. Model structure of single-year and multi-year models 
Fig. S9 shows the variables selected by and used SLR and used in 

GWR in each year. The variables selected for NO2 and PM10 were quite 
similar across years with some different variables selected in some years, 
whereas the variables for O3 and PM2.5 were quite different across years. 
Road variables were selected with slightly different road types and 
buffer sizes in all years for all pollutants. The chemical transport model 
estimates were also selected for all pollutants: estimates from the MACC- 
II ensemble model for NO2 (no2_10MACC), estimates from the DEHM 
model for O3 (O3_dehm), and estimates from the satellite retrievals 

converted by the GEOS-Chem model for PM2.5 and PM10 (gwr_sat). 
Impervious densities with different buffer sizes were selected in all years 
for NO2 and O3. Population and altitude were selected almost every year 
for O3. Different meteorological variables were selected almost every 
year for all pollutants, which are wind speed for NO2 and temperature 
for O3, PM10, and PM2.5. 

Fig. S11 shows the optimized GWR adaptive bandwidth (nngb) for 
each pollutant and each year. Figs. S14–S17 illustrate spatially-varying 
coefficients estimated by GWR for all pollutants for the year 2010, 
indicating noticeable spatial variability in the coefficient values across 
Europe. We do not have a clear interpretation of the spatial pattern of 
coefficients related to known sources or dispersion characteristics. 

Fig. S10 gives the top-12 variables in reducing MSE the most for each 
RF model. Most variables selected in SLR were also the top-12 variables 
in RF. The optimized RF hyperparameters were similar in some RF 
models (Fig. S12, S13). 

Fig. S9 (in the columns of’00-19′ for four pollutants) shows the 
variables selected by and used in the multi-year SLR model (SLR00-19) 
and used in the multi-year GTWR model (GTWR00-19). Figs. S18–S25 
illustrates the spatially- and temporally-varying coefficient values of the 
GTWR00-19 multi-year model in the year 2010 and 2015. In 
Figs. S18–S25, the legend scales remain fixed for the same predictors 
and pollutants in the two years to observe changes in coefficient values 
over time. We observed fair consistent spatial pattern in the coefficient 
values over time. In other words, as observed from the spatially- and 
temporally-varying coefficients in the GTWR00-19 (Figs. S18–S25), the 
spatial variability in the coefficient values was larger than the temporal 
variability. Table S12 shows the optimized GTWR parameters for all 
pollutants. 

3.1.5. Discussion of the importance of allowing spatially-varying 
coefficients 

Overall, the modest improvement of model performance by allowing 
spatially-varying coefficients over a large spatial area, such as Europe, is 
consistent with the previous modeling at the North-American and global 
scale (Hammer et al., 2020; Lu et al., 2020; Van Donkelaar et al., 2015). 
Incorporating spatial variations in the relationships between predictors 
and air pollution is important for estimating air pollution over a large 
spatial extent. The GTWR00-19 models were used to estimate Europe- 
wide annual average concentrations for NO2, O3, PM10, and PM2.5 at a 
25 m × 25 m spatial resolution, a considerable improvement compared 
to our earlier work on a 100 m × 100 m spatial resolution (de Hoogh 
et al., 2018a). The high spatial resolution (25 m) provided by the road 
predictors could improve capturing traffic-related emission sources, 
especially for NO2. 

Our previous Europe-wide model (de Hoogh et al., 2018a) resulted in 
5-fold CV R2 values of 0.66 and 0.64 in 2010 and 2013 using SLR fol-
lowed by kriging compared to our GTWR R2 of 0.74 and 0.81 for PM2.5. 
For NO2, our SLR (0.65 in 2000, 0.59 in 2005, 0.59 in 2010) had slightly 
higher 5-fold CV R2 values than the previous SLR model (0.54 in 2000, 
0.5 in 2005, 0.58 in 2010). For O3, our SLR model (0.52 in 2000, 0.47 in 
2005, 0.63 in 2010) had slightly lower R2 values than the previous SLR 
model (0.58 in 2000, 0.47 in 2005 and 0.63 in 2010). But these lower R2 

values for O3 were because we did not include the X and Y coordinates as 
predictors in our SLR model, whereas the previous SLR included the X 
and Y coordinates. Our GWR model, however, had higher R2 values (0.6 
in 2000, 0.56 in 2005, 0.6 in 2010) than the previous SLR model. The 
improvement compared to the previous Europe-wide model could be 
because in this study we included more variables (e.g., meteorological 
variables) and variables with improved spatial resolution (e.g., road 
variables improved from 100-m to 25-m). 

Our GTWR model also outperformed another European model 
created in a global study in 2011 (Larkin et al., 2017) for NO2 (0.64 vs 
0.57). Although in these previous studies the study areas and validation 
methods were slightly different from ours, our higher R2 values could be 
because of two factors. Firstly, we used spatially-varying regression 

Y. Shen et al.                                                                                                                                                                                                                                    



Environment International 168 (2022) 107485

7

coefficients instead of spatially-fixed linear regression. Secondly, the 
predictors we used here were more spatially resolved and we also 
included some additional CTM, SAT, and meteorological data as pre-
dictors to capture spatial variations in air pollution (Fig. S9). For PM2.5, 
the second factor was especially important; for O3 and NO2 both factors 
were important. 

The improvement in model performance by including spatial varia-
tions in linear regression was larger than by including spatial variations 
in non-linear models as achieved by using climate zone in RF to capture 
the spatial variations in air pollution (shown in columns ‘GWR vs SLR’ 
and ‘GTWR00-19 vs RF00-19′ in Table 1). This may be specific to 
modeling at the annual time scale, where the relationships between 
predictors and concentrations do not materially deviate from linear 

(Chen et al., 2019). Moreover, the similar model performance between 
GWR and GTWR and the relatively stable temporal variability in GTWR 
coefficient values indicate that capturing spatial variability in linear 
regression is more important than capturing temporal variability at an 
annual scale in Europe. 

We note that the improvement of model performance by GTWR and 
GWR compared to SLR and RF was generally fairly modest, suggesting 
that models derived with these methods provide reasonable model 
predictions as well. 

3.2. Modeled spatial patterns over 20 years 

Fig. 2 shows Europe-wide annual average concentration maps of 

Fig. 2. Europe-wide annual average ground-level NO2, O3, PM10, and PM2.5 concentrations (µg/m3) estimated by GTWR00-19 in 2000, 2005, 2010,2015, and 2019 
(Base map source: Google Maps). For maps for all years from 2000 to 2019 for all pollutants, readers are referred to https://youchenshenuu.users.earthengine.app 
/view/expanse-air-pollution-20-yr-maps. 
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NO2, O3, PM10, and PM2.5 estimated by GTWR00-19 and Fig. 3 shows the 
zoom-in maps in Paris. All annual maps from 2000 to 2019 are available 
on the website (https://youchenshenuu.users.earthengine. 
app/view/expanse-air-pollution-20-yr-maps). 

For NO2, the large-scale spatial patterns were similar over time with 
a decreasing trend. High concentrations were in cities and in specific 
areas such as the Italian Po-Valley, the surroundings of the Netherlands, 
and eastern Europe, related to population density (de Hoogh et al., 
2018a). For O3, the large-scale spatial patterns were similar over time 
with a small increasing trend. Overall, the Alps, southern Europe, and 
the Balkans had higher annual average O3 concentrations than the rest 
of the study area. 

For PM2.5, the spatial patterns were also similar over time with a 
decreasing trend, but the patterns varied more in time compared to NO2 
and O3. Overall, the northern part of Italy, eastern Europe and the 
Balkans had higher annual average PM2.5 concentrations than the rest of 
Europe. For PM10, the concentrations were decreasing over time, but the 
spatial patterns were more dynamic compared to NO2 and O3. In the 
early 2000 s, the PM10 concentrations were above 20 µg/m3 in all re-
gions except in the Alps, Ireland, and northern Europe. In the recent 5 
years, only the northern part of Italy, eastern Europe, and the Balkans 
had higher PM10 concentrations (>25 µg/m3) than the rest of Europe. 
For both PM10 and PM2.5, some distinct dividing lines in northern 
Europe were because areas above these lines had no values in the 

satellite-derived product (gwr_sat in Table S1) (Hammer et al., 2020; 
Van Donkelaar et al., 2019), and we replaced these missing values with 
zero values for this product. 

The overall spatial patterns for NO2 remained quite stable from year 
to year with a decreasing trend, but for PM10, PM2.5, and O3 some 
regional changes over time were visible. The ambient air pollution 
concentrations are mostly driven by anthropogenic emission sources and 
are also influenced by meteorological factors and long-range transport 
of precursor gases for some pollutants. For NO2, the ambient concen-
trations are mainly driven by the anthropogenic emission sources (i.e., 
mostly from road transport and energy combustion) reduced by policy 
regulation and improved efficiencies in energy combustion (Colette and 
Rouïl, 2020; EEA, 2021a, 2021b, 2021c). Thus, the declining estimated 
NO2 concentrations were spatially stable. For O3, PM10, and PM2.5, the 
ambient concentrations are influenced by not only emission sources but 
also meteorological factors and long-range transport of precursor gases 
(such as nitrogen oxides) (Colette and Rouïl, 2020; EEA, 2021b). The 
annual average of the daily maximum 8-hour mean for O3 was the only 
pollutant with an increasing trend over time, as found in both our study 
and ground-based observations (Colette and Rouïl, 2020). 

3.3. Back-extrapolation 

In section 3.3.1 we first discuss the performance of back- 

Fig. 3. Annual average ground-level NO2, O3, PM10, and PM2.5 concentrations (µg/m3) estimated by GTWR00-19 in 2000, 2005, 2010, 2015, and 2019 in Paris. For 
maps for all years from 2000 to 2019 for all pollutants, readers are referred to https://youchenshenuu.users.earthengine.app/view/expanse-air-pollution-2 
0-yr-maps. 
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extrapolation based on 5-fold CV. In section 3.3.2 we compare the 
performance of back-extrapolation with the new GTWR model described 
in section 3.1. 

3.3.1. Performance of back-extrapolated models 
The 5-fold CV performance of the back-extrapolation methods 

generally decreased when the extrapolation year (t2 in Eq (1) and (2)) 
became more distant from the reference year (t1 = 2010 in Eq (1) and 
(2)), as shown in Fig. S6 and Tables S8–S11 (in the 2nd-4th columns). 
For NO2 (Table S8), the differencing method had higher CV R2 values 
than the ratio method, with only a small decreasing trend for backward 
extrapolation (before 2010) and with a large decreasing trend for for-
ward extrapolation (after 2010). For O3 (Table S9), both back- 
extrapolation methods had similar performance that decreased with 
time especially for backward extrapolation and that decreased slightly 
for forward extrapolation (except 2018 & 2019). For PM10 (Table S10) 
and PM2.5 (Table S11), both back-extrapolation methods had similar 
performance that decreased with time especially for backward extrap-
olation and that decreased slightly for forward extrapolation (except 
2019). The large decreasing in CV R2 values for backward extrapolation 

for PM10 and PM2.5 could be because of the significant decrease in the 
available observations and the quality of the observations in the early 
2000 s. The number of observations for the earliest was small, especially 
for PM2.5 (with less than 200 observations available before 2006). 

Overall, the average annual predictions from the back-extrapolation 
were less similar to the annual average observations in years more 
distant to the year 2010 (for years both before and after 2010) for all 
pollutants. 

3.3.2. Comparison between GTWR LUR model and back-extrapolation 
The 5-fold CV performance of the back-extrapolation methods was 

lower compared to the GTWR00-19 models for all pollutants when going 
further away in time from 2010. For NO2 (Table S8), the CV R2 was 8% 
lower for back-extrapolated values in 2000 using the differencing 
method compared to GTWR00-19. For O3 and especially PM10 and 
PM2.5, the difference in CV R2 values of GTWR00-19 and back- 
extrapolation increased away from the year 2010 for both differencing 
and ratio methods in this study. 

The overall correlations were above 0.86 between the GTWR00-19 
annual average predictions and the differencing back-extrapolated 

Fig. 4. Correlation between predictions from GTWR00-19 (GTWR built for period from 2000 to 2019) and predictions extrapolated from the 2010 GTWR00-19 
predictions to other years by the differencing method using DEHM data described in Table S1 (t1 = 2010 in Eq (2)) for NO2, O3, PM10, and PM2.5. Correlation 
values shown in the upper corner of each graph are overall correlations. 
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predictions at random points for all years (Fig. 4). For NO2, the corre-
lations were high also within all NUTS1-regions (>0.8). For O3, PM10, 
and PM2.5, the correlations were above 0.8 in most regions but were 
below 0.6 in some regions and years. 

Between the GTWR00-19 LUR models and back-extrapolated models 
for all years, the decreasing difference in CV R2 (calculated as MSE- 
based R2) and the high overall correlation could be explained by the 
slightly increasing differences between absolute average levels esti-
mated by the large-scale DEHM model and the average levels estimated 
by the GTWR00-19 models (as shown in the 5th-8th columns of 
Tables S8–S11). Boxplots of the predicted values showed that the out-
liers and the average of the back-extrapolated values were slightly 
higher than the outliers and the average of the GTWR00-19 predictions 
(Fig. 5). 

Overall, our result is similar to previous studies for NO2. In Great 
Britain (Gulliver et al., 2016), a decrease of 8% in R2 was found between 
a 1991 LUR model and a back-extrapolated LUR (extrapolated from 
2009 LUR). In Vancouver in Canada, a decrease of 3% in the R2 was 
found between a 2003 LUR model and a 2010 LUR model recalibrated to 
2003 (Wang et al., 2013). The moderate to high correlations indicate 
that the GTWR predictions and the back-extrapolated predictions may 
give similar relative exposure ranking/classification across the popula-
tion in Europe-wide cohort studies, but the difference in absolute values, 
as indicated by the low MSE-based R2 values, could be high. Thus, 
GTWR would be preferred especially to study the shape of the expo-
sure–response relationships between health effects and air pollution (i. 
e., at what level of air pollution health effects occur) because accurate 
absolute values are required. The back-extrapolated values with sys-
tematic bias would be a reasonable approximation in health studies in 
which the occurrence of specific health outcomes is compared in linear 
models or compared between low and high exposed subjects. 

3.4. Limitations and strengths 

An important limitation of this study is the lack of ground-level ob-
servations for PM2.5 before 2006. This limitation was mitigated by the 
multi-year modeling method, but we were unable to perform 5-fold CV 

for GTWR00-19 before 2004 because of the limited observations, with 
the number of observations in each of those years less than 100. This 
limited number of ground-level observations however could make our 
cross-validation less reliable in the early 2000s than in the later years for 
PM2.5. With GTWR00-19 we were able to estimate PM2.5 concentrations 
with limited observations and to increase 5-fold CV R2 values by 7% in 
NO2, 13% in O3, 12% in PM10, and 3% in PM2.5 compared to SLR. 

We did not have traffic intensity data available across Europe and 
instead used buffered road length of different road types from Open-
StreetMap (OSM). We used the road type data from the year 2020 only 
because we judged that using historical data was associated with too 
large methodological issues (improved quality of OSM over time). 

Despite these limitations, our GTWR00-19 and GWR have captured 
the overall spatial variations in air pollution every year with satisfactory 
5-fold CV R2 values against the ground-level observations. Our output 
gives harmonized exposure estimates in European cohort studies at a 
high spatial resolution (25 m × 25 m). 

Our annual average air pollution exposure maps will be applied in 
health effect studies of long-term exposure to air pollution. For studies of 
short-term exposure, a more refined temporal resolution is needed, 
following the methodology of some recent studies that have developed 
daily pollution maps for multiple years at a resolution of 1 km or coarser 
with good performance (de Hoogh et al., 2019, 2018b; Di et al., 2019; 
Liu et al., 2020; Requia et al., 2020; Shtein et al., 2018). For our current 
objective, the spatial resolution of 1 km × 1 km is not sufficient. 

All code to build LUR models in R programming language is available 
on Github for single-year (Shen et al., 2021a) and multi-year modeling 
(Shen et al., 2021b). 

4. Conclusions 

We showed the importance of including spatially-varying relation-
ships in LUR models to improve long-term air pollution estimates in 
Europe. The spatially-varying linear regression models (GWR, GTWR) 
explained a modestly larger amount of spatial variation in air pollution 
concentrations across Europe than the spatially-fixed linear regression 
(SLR) and the machine learning method (RF). Our harmonized annual 

Fig. 5. Boxplots of predictions at random points from GTWR00-19, differencing back-extrapolation (diff) and ratio back-extrapolation (ratio) using GTWR00-19 for 
year 2010 extrapolated to other years using DEHM data described in Table S1 (t1 = 2010 in Eq (1) and (2)). 
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estimates available for NO2, O3, PM10, and PM2.5 from 2000 to 2019 will 
allow time-varying exposure-health risk models for Europe-wide health 
analysis studies. 
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Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., Madsen, C., 
Meliefste, K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., 
Nonnemacher, M., Oldenwening, M., Peters, A., Pontet, S., Probst-Hensch, N., 
Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., 
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