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Abstract 
Skin irritation and allergic reactions associated with the use of skincare products formulated with synthetically derived 
surfactants such as sodium lauryl ether sulphate (SLES) have encouraged the search for naturally derived and biocompat-
ible alternatives. Glycolipid biosurfactants such as sophorolipids (SL) and rhamnolipids (RL) offer a potential alternative 
to SLES. However, most studies on the bioactive properties of microbial glycolipids were determined using their mixed 
congeners, resulting in significant inter-study variations. This study aims to compare the effects of highly purified SL (acidic 
and lactonic) and RL (mono-RL and di-RL) congeners and SLES on a spontaneously transformed human keratinocyte cell 
line (HaCaT cells) to assess glycolipids’ safety for potential skincare applications. Preparations of acidic SL congeners were 
100% pure, lactonic SL were 100% pure, mono-RL were 96% pure, and di-RL were 97% pure. Cell viability using XTT 
assays, cell morphological analyses, and immunoassays revealed that microbial glycolipids have differing effects on HaCaT 
cells dependent on chemical structure. Compared with SLES, acidic SL and mono-RL have negligible effects on cell viabil-
ity, cell morphology, and production of pro-inflammatory cytokines. Furthermore, at non-inhibitory concentrations, di-RL 
significantly attenuated IL-8 production and CXCL8 expression while increasing IL-1RA production and IL1RN expression 
in lipopolysaccharide-stimulated HaCaT cells. Although further studies would be required, these results demonstrate that 
as potential innocuous and bioactive compounds, microbial glycolipids could provide a substitute to synthetic surfactants in 
skincare formulations and perform immunopharmacological roles in topical skin infections such as psoriasis.

Key points
• Purified glycolipid congeners have differing effects on human keratinocytes.
• Compared with SLES, acidic sophorolipids and mono-rhamnolipids have innocuous effects on keratinocytes.
• Di-rhamnolipids and mono-rhamnolipids modulate cytokine production in lipopolysaccharide stimulated human 
keratinocytes.

Keywords Glycolipid biosurfactants · Sodium lauryl ether sulphate · Keratinocytes · Cosmetics and personal care · 
Immunomodulation · Skin irritation · Skincare formulations

Introduction

Cosmetics and personal care products are formulated 
to function as an added nutritional source to the human 
skin, improve skin barrier functions, inhibit the growth 
of pathogenic microorganisms, cleanse, and moisturise 
skin surfaces (Heinrich et al. 2014; Rodan et al. 2016; 

Purnamawati et al. 2017; Yamaguchi et al. 2017; Bou-
slimani et al. 2019). Despite these health benefits and 
the subsequent ubiquitous and frequent use of cosmetics 
and personal skincare products, many of the component 
ingredients used in their base formulations are often syn-
thesised from petrochemical resources; a key example 
are surfactants such as synthetic sodium lauryl ether sul-
phate (SLES), which can make up to 50% (v/v) of the 
formulation and play a role in emulsification, gelling, and 
micro-encapsulation (Leoty-Okombi et al. 2021; Moldes 
et al. 2021).These synthetically derived surfactants have 
drawbacks with regards to their sustainability and are 
less biodegradable than biologically derived alternatives 
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(Marchant and Banat 2012; Suhail et  al. 2019; Goyal 
and Jerold 2021). Synthetically derived surfactants such 
as SLES are also reported to have the potential to cause 
allergic reactions, skin irritations, and dysbiosis in the skin 
microbiome when they come into direct contact with the 
human skin (Bouslimani et al. 2019; Mijaljica et al. 2022). 
In such instances, SLES binds to lipids and proteins on the 
epidermal layer of the human skin resulting in their solu-
bilisation, the production of cytokines, chemokines, and 
other pro-inflammatory mediators. This ultimately desta-
bilises the structural integrity of the skin and subsequently 
results in transepidermal water loss (Seweryn 2018). As 
such, there is a current market demand to replace synthetic 
ingredients in cosmetics and personal skincare formula-
tions with naturally derived and biocompatible alterna-
tives generated from sustainable resources (Otzen 2017; 
Mohiuddin 2019; Goyal and Jerold 2021).

Biosurfactants are naturally derived surfactants produced 
as secondary metabolites by bacteria, yeast, and filamentous 
fungi (Banat et al. 2010; Naughton et al. 2019; Da Silva et al. 
2021; Manga et al. 2021). The classification of microbial 
biosurfactants is based on their chemical structure, molecu-
lar weight, and microbial origin (Ceresa et al. 2021; Moldes 
et al. 2021; Sarubbo et al. 2022). Glycolipids comprised of 
a carbohydrate moiety linked to long-chain aliphatic acids or 
hydroxy aliphatic acids of varying lengths, which constitute 
the most extensively studied and biotechnologically promis-
ing class of biosurfactants (Bhattacharya et al. 2017; Shu 
et al. 2021). Glycolipids can be further classified into rham-
nolipids, sophorolipids, trehalolipids, and mannosylerythri-
tol lipids (Thakur et al. 2021). Among these, rhamnolipids 
and sophorolipids are the most abundant, extensively stud-
ied, and promising groups. Rhamnolipids are produced by 
gram-negative bacteria such as Pseudomonas, Burkholderia, 
and Marinobacter species; they consist of one (mono-rham-
nolipids) or two rhamnose (di-rhamnolipids) as the hydro-
philic moiety bonded to a hydrophobic moiety of one or two 
β-hydroxy fatty acid chains of 8–16 carbons (Funston et al. 
2016; Twigg et al. 2018; Tripathi et al. 2019). Sophorolipids, 
produced by yeast species such as Starmerella bombicola, 
comprise of a hydrophilic head (sophorose) bonded to either 
esterified (lactonic sophorolipids) or non-esterified (acidic 
sophorolipids) hydroxy fatty acid tail lengths of 16–18 car-
bons (Santos et al. 2016). The potential advantages of uti-
lising glycolipids over synthetic surfactants such as SLES 
in cosmetics and personal skincare formulation are low 
toxicity, biodegradability, and increased compatibility with 
the human skin (Fracchia et al. 2015; Naughton et al. 2019; 
Fenibo et al. 2019; Adu et al. 2020). For skincare applica-
tions, the safety of glycolipids is of particular importance for 
incorporation into skincare formulations. Hence, the safety 
of glycolipids in skincare formulations is usually ascertained 
in vitro by assessing their cytotoxicity effects on various 

mammalian skin cell types (Inès and Dhouha 2015; Maeng 
et al. 2018; Moldes et al. 2021).

The cytotoxicity effects of rhamnolipids and sophorolip-
ids have been demonstrated in vitro against mouse skin 
fibroblasts (NCTC clone 929), spontaneously transformed 
human keratinocyte cell line (HaCaT cells), and normal 
human dermal fibroblastic cells (Lydon et al. 2017; Maeng 
et al. 2018; Haque et al. 2020; Rodríguez-López et al. 2020; 
Voulgaridou et al. 2021). However, most of these studies 
utilised either impure preparations, poorly characterised or 
single class of glycolipids resulting in significant interstudy 
variations, which in effect render glycolipids less attractive 
for use in skincare applications. Moreover, most in vitro 
studies on glycolipids only focused on their effects on cell 
viability rather than comprehensive studies involving the 
investigation of potential glycolipid mechanisms of cell 
death induction and the production/modulation of cytokines 
(Callaghan et al. 2016; Lydon et al. 2017). Therefore, to 
broaden the potential applications of glycolipids and to make 
them more attractive for skincare applications, this study 
aims to comprehensively assess the cytotoxicity and immu-
nomodulatory effects of purified and fully characterised gly-
colipid congeners on HaCaT cells and compare with SLES. 
We, therefore, hypothesised that in comparison with SLES, 
the purified glycolipid congeners utilised in this study will 
have not deleterious effects on human keratinocytes, but will 
provide added functionality to skin cells.

Using a combination of in vitro cell culture, molecular 
biology techniques, and immune assays, we have demon-
strated that the purified microbial glycolipid congeners have 
differing effects on human keratinocytes depending on their 
chemical structure. Moreover, compared with SLES, some 
glycolipid congeners demonstrated negligible effects on cell 
viability, cell morphology, the production of pro-inflamma-
tory cytokines, and the expression of their related genes. 
Furthermore, these glycolipids attenuated pro-inflammatory 
cytokine production following stimulation with pathogen-
associated molecular patterns (PAMPSs). These findings 
suggest that as potential innocuous and naturally derived 
surfactants, microbial glycolipids could potentially offer a 
safer and suitable alternative to SLES in skincare formula-
tions and, as an added functionality, perform immunophar-
macological roles in topical skin infections such as psoriasis.

Materials and methods

Purification, chemical characterisation, and analysis 
of glycolipids’ surface activity

Purified non-acetylated acidic sophorolipids (acidic SL) 
and di-acetylated lactonic sophorolipids (lactonic SL) 
were obtained from Biosynth Carbosynth, Compton, UK. 
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Rhamnolipids were obtained from Daqing Victex Chemical 
Co. Ltd., Daqing, China, as crude mixture of mono-rham-
nolipid (mono-RL) and di-rhamnolipid (di-RL) congeners 
and purified in-house via liquid and solid-phase extractions. 
All glycolipid congeners were chemically characterised 
using high-performance liquid chromatograph-mass spec-
trometry coupled electrospray ionisation mass spectrom-
eter (HPLC–MS/ESI) as described in previous work (Adu 
et al. 2022). Stock preparations of each glycolipid congener 
were prepared at a concentration of 1 mg  mL−1 in 1% (v/v) 
HPLC-grade methanol (Merck, Gillingham, UK) and stored 
at − 20 °C. For CMC determination, the stock preparations of 
each glycolipid congener were further diluted in sterile dis-
tilled water to a concentration gradient of 0.04–1 mg  mL−1. 
SLES (R & D Laboratories Limited, Antrim, UK) was 
diluted in sterile distilled water to a concentration gradient 
of 0–5.27 mg  mL−1. CMC was determined using Krüss K10 
ST digital tensiometer (Krüss K10 ST, Hamburg, Germany) 
via the Du Noüy platinum ring method previously described 
by Rodríguez-López et al. (2020). Surfactant concentra-
tion against surface tension was plotted, and the CMC was 
determined from extrapolated intercepts of the X and Y axes 
(Rodríguez-López et al. 2020).

Cell culture

A spontaneously transformed human keratinocyte (HaCaT 
cells) (T0020001/117) cell line utilised in this study was 
sourced from AddexBio, San Diego, CA, USA. HaCaT cells 
were routinely cultured in high-glucose DMEM (Ther-
moFisher Scientific, Loughborough, UK) supplemented 
with 10% (v/v) foetal bovine serum (FBS) (ThermoFisher 
Scientific, Loughborough, UK) and 1% (v/v) sodium pyru-
vate (ThermoFisher Scientific, Loughborough, UK). Cells 
were cultured at 37 °C in a humidified atmosphere contain-
ing 5%  CO2.

Cell viability assays

The viability of HaCaT cells treated with varying concentra-
tions of each glycolipid congener and SLES was assessed 
using a cell proliferation assay II (XTT) kit (Roche, Welwyn 
Garden City, UK). HaCaT cells were cultured to confluency, 
seeded into 96-well cell culture plates (Sarstedt, Leicester, 
UK) at a density of 1 ×  104 cells per well, and cultured for 
24 h. Cells were serum-starved for 24 h and then treated 
with media supplemented with either 1% (v/v) HPLC-grade 
methanol (vehicle control) (Merck, Gillingham, UK) or with 
incremental concentrations of each surfactant preparation 
(0–100 μg  mL−1) for a further 24 h. For acidic SL and mono-
RL congeners, a further experiment treating the cells with an 
increased concentration up to 500 μg  mL−1 was performed. 
Following treatment, the medium was aspirated, and the 

cells were washed three times with sterile phosphate-buff-
ered saline (PBS) (ThermoFisher Scientific, Loughborough, 
UK). Pre-prepared XTT medium (Roche, Welwyn Garden 
City, UK) was added to the cells (50 μL per well) and incu-
bated for 4 h. Post incubation, absorbance was measured at 
450 and 650 nm using a FLUOstar Omega microplate reader 
(BMG Labtech, Offenburg, Germany). Viability of HaCaT 
cells post treatment with either glycolipids or SLES was 
expressed as a percentage relative to the untreated control 
group. Furthermore, lethal dose 50%  (LD50) values were 
determined by nonlinear regression curves using Prism v 
9.4.1 (458) for MacOS (GraphPad Software, San Diego, 
CA, USA).

Cell morphology assessment

HaCaT cellular morphology following treatment with each 
glycolipid congener or SLES was assessed by directly 
observing the cells using visible light microscopy. HaCaT 
cells were grown to confluency, seeded into 12-well cell cul-
ture plates (Sarstedt, Leicester, UK) at a density of 1 ×  105 
cells per well, and cultured for 24 h. Cells were serum-
starved for 24 h and treated for a further 24 h in complete 
medium supplemented with either 1% (v/v) HPLC-grade 
methanol (V. ctrl) (Merck, Gillingham, UK) or 20 μg  mL−1 
and 100 μg  mL−1 of each surfactant. These treatment con-
centrations were chosen to assess the effects on morphology 
of the HaCaT cells induced by the surfactants at the lowest 
and highest concentrations utilised in the present study. As 
with the cell viability experiments, a further experiment with 
acidic SL and mono-RL congeners at an increased treat-
ment concentration of up to 500 μg  mL−1 was also carried 
out. Following treatment, the morphology of HaCaT cell 
was assessed by directly imaging the cells in the wells at 
200 × magnification using a Digital Sight DS-L1 camera 
(Nikon Europe B. V., Amsterdam, The Netherlands) attached 
to an Eclipse TS100 inverted microscopy (Nikon Europe B. 
V., Amsterdam, The Netherlands).

Acridine orange (AO) and propidium iodide (PI) 
staining

To determine the distinct morphological pattern of HaCaT 
cell death induced following treatment with each glycolipid 
congener and SLES, treated cells were stained with AO 
and PI (Lee et al. 2015). Experiments were set up and cells 
treated as described in the previous sub-section “Cell mor-
phology assessment”. Following treatment, the cells were 
washed three times with sterile PBS (ThermoFisher Scien-
tific, Loughborough, UK) to remove detached cells and sub-
sequently incubated with a 1:1 ratio of 100 μg  mL−1 AO and 
PI (Merck, Gillingham, UK) for 3 min. To remove excess 
stains, the cells were washed three times with prewarmed 
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sterile PBS (ThermoFisher Scientific, Loughborough, UK) 
and the stained cells were immediately imaged at 200 × mag-
nification using Eclipse TS100 fluorescence microscope 
(Nikon Europe B. V., Amsterdam, The Netherlands). The 
excitation and emission wavelengths for AO were 493 and 
535 nm, and for PI, 535 and 614 nm, respectively.

Assessment of pro‑inflammatory cytokine 
production

Both a semi-quantitative array and enzyme-linked immuno-
sorbent assays (ELISA) for individually selected cytokines 
were used to investigate the effect of surfactant treatment 
on the production of pro-inflammatory cytokines in HaCaT 
cells. Supernatant samples generated from treated HaCaT 
cells were initially assayed using a semi-quantitative mul-
tiplexed Proteome Profiler Human Cytokine Array Kit 
(R&D Systems, Inc., MN, USA). HaCaT cells were grown 
to confluency and seeded into 6-well cell culture plates 
(Sarstedt, Leicester, UK) at a density of 3 ×  105 cells per 
well for 24 h. Cells were then serum starved for 24 h and 
treated with complete medium supplemented with either 
1% (v/v) HPLC-grade methanol (V. ctrl) (Merck, Gilling-
ham, UK); 25 μg  mL−1 of lipopolysaccharide (LPS) from 
Escherichia coli (Merck, Gillingham, UK) (positive control 
for the assay); or  LD50 concentrations of lactonic SL and 
di-RL (63 μg  mL−1 and 48 μg  mL−1, respectively). Treated 
cultures were centrifuged at 1000 × g to generate cell-free 
supernatant samples which were incubated on nitrocellulose 
membranes as per the manufacturer’s instructions. Dot blots 
developed on nitrocellulose membranes were imaged using 
a G: BOX Chemi XRQ (Syngene, Cambridge, UK), and the 
densitometry of each dot was analysed using ImageJ Soft-
ware (Schneider et al. 2012) .

Following the initial profiling of pro-inflammatory 
cytokines, interlukin-8 (IL-8) and interlukin-1 receptor 
antagonist (IL-1RA) levels in HaCaT cells were measured 
via commercially available ELISA kits (R&D Systems, Inc., 
MN, USA). HaCaT cells were grown to confluency and 
seeded into 6-well cell culture plates (Sarstedt, Leicester, 
UK) at a density of 3 ×  105 cells per well for 24 h. Subse-
quently, the cells were serum starved for 24 h and treated 
with complete medium supplemented with either 1% (v/v) 
HPLC-grade methanol (V. ctrl) (Merck, Gillingham, UK); 
25 μg  mL−1 of LPS from E. coli (Merck, Gillingham, UK) 
(positive control for the assay); 20 μg  mL−1 of each gly-
colipid congener; or SLES for a further 24 h (surfactants’ 
concentrations previously shown to have no inhibitory 
effects on the viability of HaCaT cells). Cell-free super-
natant samples were generated for ELISA assessment as 
described in the previous paragraph and analysed with 
ELISA kits utilised as per the manufacturer’s instructions.

Evaluation of immunomodulatory effects 
of glycolipids

Assessment of potential immunomodulatory effects of sur-
factants was carried out using the method described by Di 
Caprio et al. (2015) with slight modifications. HaCaT cells 
were cultured to confluency, seeded into 6-well cell cul-
ture plates (Sarstedt, Leicester, UK) at a density of 2 ×  105 
cells per well, cultured for 24 h, and then serum starved 
for another 24 h. Thereafter, the cells were stimulated with 
25 μg  mL−1 LPS from E. coli (Merck, Gillingham, UK) for 
24 h. Following LPS stimulation, the medium was aspi-
rated and the cells were treated with complete medium sup-
plemented with 1% (v/v) HPLC-grade methanol (V. ctrl) 
(Merck, Gillingham, UK) or 20 μg  mL−1 of each glycolipid 
congener or SLES for a further 24 h. Cell-free supernatant 
samples were generated as described in the previous sub-
section “Assessment of pro-inflammatory cytokine pro-
duction”, and the protein levels of IL-8 and IL-1RA were 
measured using commercially available ELISA kits (R&D 
Systems, Inc., MN, USA) utilised as per the manufactures 
instructions (Di Caprio et al. 2015).

RNA extraction and cDNA synthesis

Total RNA was extracted from monolayer of HaCaT cells 
using TRIzol™ Reagent (Invitrogen, Paisley, UK), analysed 
integrity via agarose gel electrophoresis, and quantified 
using NanoDrop ND-1000 (ThermoFisher Scientific, Lough-
borough, UK). Total RNA extracts were reverse transcribed 
to generate cDNA samples using a G-STORM GS1 thermal 
cycler (Gene Technologies Ltd., Somerset, UK). Unless oth-
erwise stated, all reagents for cDNA synthesis were sourced 
from ThermoFisher Scientific, Loughborough, UK. cDNA 
was synthesised in the following reaction mixture of 20 μL: 
50 ng of total RNA, 12 μL nuclease-free double distilled 
water, 25 ng of Oligo(dT)12–18 primer, 10 mM DTT, 0.5 mM 
dNTP, and 10 U of SuperScript™ Reverse Transcriptase 
II (RT). The reaction mixture was incubated for 10 min at 
70 °C to denature RNA, 2 min at 42 °C for primer hybridisa-
tion, 50 min at 42 °C for cDNA synthesis, and, finally, RT 
deactivation step at 70 °C for 15 min. Reverse transcriptase 
minus (NRT) negative control and no template negative con-
trol (NTC) were generated by supplementation of the respec-
tive components with molecular grade water (UltraPure™ 
distilled water) (ThermoFisher Scientific, Loughborough, 
UK).

Quantitative real‑time PCR (qPCR)

qPCR experiments were performed as per the Minimum 
Information for Publication of Quantitative Real-Time PCR 
Experiments (MIQE) guidelines (Bustin et al. 2009). qPCR 
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was carried out in LightCycler480 II 96 multi-well plates 
(Roche Diagnostics, Burghess Hill, UK) using a LightCy-
cler480 II (Roche Diagnostics, Burghess Hill, UK). Reac-
tions were set up following the manufacturer’s instructions 
using SYBR® Green I master mix (Roche Diagnostics, 
Burghess Hill, UK), and the primer sets listed in Table S1. 
The qPCR cycling conditions were set at 95 °C for 5 min and 
45 cycles for 30 s at 95 °C, 20 s at 60 °C, and 30 s at 72 °C. 
Three technical replicates of all experimental samples were 
analysed, and data were reported as fold change normalised 
to the house-keeping gene (GAPDH) relative to untreated 
control and computed as  2−ΔΔCq (Maussion et al. 2021).

Statistical analysis

Statistical analyses of all data were carried out using Prism v 
9.4.1 (458) for MacOS (GraphPad Software, San Diego, CA, 
USA). Cell viability and AO/PI staining data was analysed 
via a two-way analysis of variance (ANOVA) followed by 
post hoc multiple comparison testing. ELISA and RT-qPCR 
data were analysed using a one-way ANOVA followed by 
post hoc multiple comparison testing. The significance of all 
results was tested at a level of p ≤ 0.05.  LD50 was determined 
from three independent cell viability assays and reported as 
the mean and standard error from the mean. Significant dif-
ferences in  LD50 of each glycolipid congener in comparison 
to SLES was established by carrying out unpaired t tests at 
a level of p ≤ 0.05.

Results

Chemical characterisation and analysis 
of glycolipids’ surface activity

The relative percentage abundance and congener profile 
of all glycolipids utilised in this study were analysed via 
HPLC–MS/ESI and are fully detailed in a previous study 
(Adu et al. 2022). HPLC–MS/ESI analysis revealed that 
acidic SL was 100% pure and lactonic SL was 90% pure. 
The predominant congeners present in acidic SL and lac-
tonic SL were acidic SL C18:1 (65.53%) and lactonic SL 
R1 + R2 = Ac, C18:1 (63.40%), respectively. For rhamnolip-
ids, the mono-RL preparations were 96% pure and the di-RL 
97% were pure. The most abundant congeners present in 
the mono-RL and di-RL were Rha-C10-C10 (84.40%) and 
Rha-Rha-C10-C10 (57.99%), respectively (Adu et al. 2022).

A comparative analysis of the surface activity of each gly-
colipid congener against SLES revealed that all glycolipid 
congeners utilised in this study had lower CMC values 
(0.03–0.06 mg  mL−1) compared with SLES (0.66 mg  mL−1). 
The di-RL preparation exhibited the greatest surface activity 
reducing the surface tension of water from 72 to 28.70 mN 

 M−1 (Table S2). It is important, however, to mention that the 
glycolipids utilised in this study are not similar in chemical 
structures and composition with SLES and may account for 
the differences in their chemical properties and consequently 
their bioactivities (Fig. S1).

Comparative effects of microbial glycolipid and SLES 
treatments on the viability of human keratinocytes

The cytotoxicity effects of each highly purified glycolipid 
congener in comparison with SLES on the HaCaT cell line 
were assessed in vitro using an XTT cell viability assay. Via-
bility of HaCaT cells post treatment with glycolipids, metha-
nol, and SLES was expressed in percentage relative to the 
untreated control group. As expected, the vehicle control of 
1% (v/v) methanol had no significant effects on HaCaT cells. 
Di-RL and lactonic SL significantly reduced the viability of 
HaCaT cells at concentrations above 40 and 60 µg  mL−1, 
respectively (p < 0.0001, Fig. 1). Both acidic SL and mono-
RL had no inhibitory effects on the viability of HaCaT cells 
up to 100 µg  mL−1 (Fig. 1). When treatment concentration of 
acidic SL and mono-RL was increased up to 500 µg  mL−1, 
mono-RL significantly reduced cell viability at concentra-
tions exceeding 400 µg  mL−1 (p < 0.0006, Fig. S2) while 
acidic SL demonstrated no inhibitory effects on HaCaT cells 
at concentrations as high as 500 µg  mL−1 (Fig. S2). SLES 
significantly reduced the viability of HaCaT cells at con-
centrations above 60 µg  mL−1 (p < 0.0096, Fig. 1). Compar-
ing SLES with glycolipids, we observed significantly less 

Fig. 1  Microbial glycolipid congeners and SLES affect the viabil-
ity human keratinocytes in a differential manner. HaCaT cells were 
treated with either 1% (v/v) methanol (V. ctrl) or 0–100  μg   mL−.1 
of acidic SL, lactonic SL, mono-RL, di-RL, and SLES. Data are the 
mean results of three independent experiments; error bars represent 
standard error from the mean. Statistical significance was determined 
using a one-way ANOVA followed by Dunnett’s multiple comparison 
test (*p ≤ 0.05)
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viable cells in di-RL and lactonic SL treatment groups than 
in SLES only at 40 µg  mL−1 and 60 µg  mL−1, respectively 
(p > 0.0051). However, above 60 µg  mL−1, the percentage 
of viable cells treated with SLES was significantly lower 
than cells treated with acidic SL and mono-RL (p ≤ 0.0028). 
These observations were further investigated by calculat-
ing the  LD50 of each glycolipid congener and comparing 
with the calculated  LD50 of SLES (Table 1). The  LD50 
for mono-RL was significantly higher than that of SLES 
(628.27 ± 47.61, 65.50 ± 1.26, respectively). As acid-SL had 
no discernible effect on cell viability up to the maximum 
concentration tested, the  LD50 could not be calculated; it is, 
therefore, reasonable to assume that it is also significantly 
higher than that of SLES. Conversely, di-RL and lactonic 
SL were found to possess a lower  LD50 (47.57 ± 2.76, 
62.62 ± 1.33, respectively) than SLES; however, this was 
only significant for the di-RL.

Comparative effects of microbial glycolipid and SLES 
treatment on the cell morphology of human 
keratinocytes

HaCaT cells were treated for 24 h with 1% (v/v) methanol 
(V. ctrl), preparations of each glycolipid congener and SLES 
at concentrations of 20 μg  mL−1 and 100 μg  mL−1, and in 
the case of acidic SL and mono-RL 500 μg  mL−1. Visible 
light microscopy was used to observe and compare changes 
in cell morphology to untreated cells. As expected, HaCaT 
cells in untreated and vehicle control groups remained 
adherent to the bottom of plates maintaining the normal flat 
cuboidal shape of keratinocytes (Fig. 2). Similarly, treatment 
with preparations of all glycolipid congeners and SLES at 
20 μg  mL−1 had no observable effect on HaCaT cellular 
morphology. However, treatment with lactonic SL, di-RL, 
and SLES at 100 μg  mL−1 resulted in drastic reductions in 
cell population with the few adherent cells acquiring round/
shrinking cell morphology (Fig. 2). Morphological changes 
in comparison to the untreated and vehicle control-treated 
cells were absent in cells treated with acidic SL at concen-
tration as high as 500 μg  mL−1, and in the cells treated with 

mono-RL, observable morphological changes were observed 
at 500 μg  mL−1 (Fig. 2).

Comparison of the mechanism of HaCaT cell death 
resulting from treatment with either microbial 
glycolipids or SLES

AO/PI dual staining technique was used to assess the mor-
phological pattern of cell death in HaCaT cells following 
exposure to each microbial glycolipid congener and SLES 
for 24 h. AO is membrane permeable and stains live cells 
green with a non-fragmented intact nuclei appearance. 
Observations of non-intact, green-stained cells showing 
membrane blebbing and chromatin condensation are indica-
tive of apoptotic cell death. PI is membrane impermeable 
and will only stain cells whose membrane integrity has been 
compromised as red or orange. The observation of cells 
staining red/orange with non-fragmented nuclei is indicative 
of necrotic cell death (Cummings and Schnellmann 2004; 
Atale et al. 2014). No morphological indications of apoptotic 
cell death were observed in any of the treatment conditions 
(Fig. S3).

HaCaT cells stained with either AO (live cells) or PI 
(necrotic cells) were imaged, and pixel brightness of the 
fluorescent images was measured as integrated density 
using ImageJ software. In comparison to untreated cells, 
there was no significant decrease in the percentage of live 
cells or increase in the percentage of necrotic cells following 
treatment with either the vehicle control or 20 μg  mL−1 of 
all surfactant preparations (Fig. 3a–g). There were, how-
ever, significant decreases in the percentage of live cells and 
increases in the percentage of necrotic cells following treat-
ment with lactonic SL, di-RL, and SLES at 100 μg  mL−1 
(p < 0.0001, Fig. 3b, d, g). Treatment with acidic SL and 
mono-RL at 100 μg  mL−1 resulted in no significant differ-
ence in the percentage of live or necrotic cells (Fig. 3a, c). 
Additionally, further increasing the treatment concentration 
of acidic SL up to 500 μg  mL−1 resulted in no significant 
difference in the percentage of live or necrotic cells (Fig. 3e). 
However, cells treated with mono-RL at 500 μg  mL−1 did 
result in significant decrease in the percentage of live cells 
and increase in the percentage of necrotic cells (p < 0.0001, 
Fig. 3f). When directly comparing the percentage of live 
cells present following treatment with each preparation of 
glycolipid congener to SLES, no significant differences 
were observed at 20 μg  mL−1 (Fig. 3h). At 100 μg  mL−1, 
there was a significant increase in the percentage of live 
cells following treatment with either acidic SL or mono-RL 
(p < 0.0001, Fig. 3h) in comparison to SLES. Treatment with 
100 μg  mL−1 of lactonic SL resulted in no significant dif-
ference in the percentage of live cells when compared with 
treatment with 100 μg  mL−1 SLES; however, treatment with 

Table 1  The  LD50 of each glycolipid congener and SLES on HaCaT 
cells. The results are the mean values (± SEM) calculated from three 
independent cell viability assays. ND, not determined; Est, estimated 
 LD50 concentration. (*Statistically significant result compared to 
SLES, p =  < 0.05)

Surfactants Mean LD50 (± SEM)

Acidic SL
Lactonic SL
Mono-RL
Di-RL
SLES

ND
62.62 μg  mL−1 (± 1.33)
628.27 μg  mL−1 (± 47.61)* (Est)

47.57 μg  mL−1 (± 2.76)*
65.50 μg  mL−1 (± 1.26)
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di-RL resulted in a significant decrease in the percentage of 
live cells (p < 0.0001, Fig. 3h).

Effect on the production of pro‑inflammatory 
cytokines and expression of pro‑inflammatory 
cytokine genes in human keratinocytes in response 
to treatment with glycolipids or SLES

The effect on the production of pro-inflammatory cytokines 
and the expression of their respective genes in HaCaT cells 
following treatment with each glycolipid congener and 
SLES were investigated using both immunological assays 
and reverse transcription qPCR (RT-qPCR). Initial screen-
ing of pro-inflammatory cytokine production using a semi-
quantitative array revealed that treatment with lactonic SL 

and di-RL stimulate the production of IL-8 at threshold level 
sufficient for detection via ELISA (Fig. S4). Using this result 
as a guide to further investigation, the effect on IL-8 and IL-
1RA cytokine production in HaCaT cells treated with each 
glycolipid congener in comparison to treatment with SLES 
was assessed by ELISA. Treatment with 1% (v/v) methanol 
(V. ctrl), 20 μg  mL−1 each of acidic SL, lactonic SL, and 
mono-RL, and SLES preparations had no significant effect 
on IL-8 and IL-1RA production in HaCaT cells (Fig. 4a, b). 
However, di-RL significantly attenuated IL-8 protein levels 
(p = 0.0271) while significantly inducing IL-1RA produc-
tion (p = 0.0031) (Fig. 4a, b). More importantly, in compar-
ing cytokine production levels in HaCaT cells treated with 
each glycolipid congener with SLES, we observed signifi-
cantly higher levels of IL-1RA (p = 0.0011) in di-RL-treated 

Fig. 2  The effects of glycolipids and SLES on HaCaT cellular mor-
phology and cellular detachment. Cells were directly observed at 
200 × magnification following treatment with either 1% (v/v) metha-
nol (V. ctrl), each microbial glycolipid congener or SLES at both 20 
and 100  μg   mL−1 for 24  h and compared to untreated controls. In 
the case of both acidic SL and mono-RL, cell morphology was also 

observed following treatment with up to 500 μg  mL−1 for 24 h. Cell 
morphological observations were carried out independently three 
times with three replicates per treatment group. Each replicate was 
imaged in three independent locations within the well, and a repre-
sentative image for publication was selected at random. Scale bar was 
set at 100 μm
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cells (Fig. 4b). Although IL-8 level in di-RL was reduced 
in comparison to SLES, this was not statistically significant 
(Fig. 4a).

The expression of CXCL8 and IL1RN genes was assessed 
in HaCaT cells treated with both microbial glycolipids and 
SLES preparations at 20 μg  mL−1 using RT-qPCR. Simi-
lar to the results from the ELISAs, no significant change in 
the expression of either gene was observed following treat-
ment of HaCaT cells with SLES or each glycolipid congener 
except for di-RL (Fig. 4c, d). When treated with di-RL, a 
trend toward decreased expression of CXCL8 was observed 
and expression of IL1RN was significantly increased when 
compared to untreated cells (p = 0.0117, Fig. 4c, d). Inter-
estingly, when comparing cells treated with each glycolipid 
congener and those treated with SLES, a significant increase 
in IL1RN expression was observed in di-RL (Fig. 4d). How-
ever, no significant difference in the expression of CXCL8 
was observed when comparing HaCaT cells treated with 
each glycolipid congener and SLES (Fig. 4c).

Immunomodulatory effects of glycolipids and SLES 
in LPS‑stimulated human keratinocytes

HaCaT cells were pre-treated with LPS at 25 μg  mL−1 to 
simulate an inflammatory response such as would occur in 
psoriasis infections and afterwards treated with each gly-
colipid congener and SLES preparations at 20 μg  mL−1 to 
investigate their potential ameliorative/immunomodulatory 
effects. Following both stimulation and treatment, IL-8 
and IL-1RA protein levels and CXCL8 and IL1RN expres-
sion levels in HaCaT cells were measured by ELISA and 
RT-qPCR, respectively. Treatment with 1% (v/v) methanol 
had no significant effect on cytokine production in HaCaT 
cells following stimulation with LPS. SLES, acidic SL, and 
lactonic SL had no significant effect on IL-8 and IL-1RA 
production in HaCaT cells stimulated by LPS (Fig. 5a, b). 
Interestingly, treatment with both di-RL and mono-RL 
significantly attenuated IL-8 protein levels in HaCaT cells 
(p = 0.0028 and p = 0.0456, respectively) while increas-
ing IL-1RA protein levels in HaCaT cells (p < 0.0001 and 

p = 0.0009, respectively) following stimulation with LPS 
(Fig. 5a, b). Consistent with these results, CXCL8 gene 
expression was significantly decreased in HaCaT cells stim-
ulated with LPS and then treated with either di-RL or mono-
RL (p < 0.0001). Additionally, the expression of IL1RN 
was increased in HaCaT cells stimulated with LPS and 
then treated with either di-RL or mono-RL (p < 0.0001and 
p = 0.0002, respectively) (Fig. 5c, d). Significant decreases 
in CXCL8 and increases in IL1RN gene expression were also 
observed in mono and di-RL treatment groups when com-
paring LPS-stimulated HaCaT cells treated with glycolipids 
with SLES (p < 0.0001).

Discussion

The growing consumer concerns over skin irritations and 
allergic reactions arising from the use of synthetic ingre-
dients in skincare formulations have expanded research in 
the cosmeceutical and biotechnology industries to replace 
these ingredients with natural, biocompatible, and sustain-
able alternatives (Seweryn 2018). In this study, we assessed 
the cytotoxicity and immunomodulatory effects of differ-
ent microbially derived glycolipid congeners on human 
keratinocytes in comparison with SLES, a synthetic sur-
factant commonly utilised in skincare formulations. In gen-
eral, this study demonstrated that highly purified glycolipid 
congeners have differing effects on human keratinocytes. 
Also, at high concentrations, acidic SL and mono-RL have 
negligible cytotoxicity effects on human keratinocytes com-
pared with SLES; at non-inhibitory concentrations, mono-
RL and di-RL modulate cytokines produced in LPS-stimu-
lated human keratinocytes.

There is a significant body of research investigating the 
effects of glycolipids on various mammalian cell types 
either in a diseased or “normal” state, but only a few of 
these studies have so far focused on healthy human skin cells 
(Lydon et al. 2017; Maeng et al. 2018; Voulgaridou et al. 
2021). The cytotoxicity effects of rhamnolipids extracted 
from Pseudomonas strain MCTG214(3b1) (mainly com-
prising of di-RL) and Marinobacter strain MCTG107b 
(composed of di-RL and mono-RL mixtures) demonstrated 
in vitro against HaCaT cells and transformed liver epithe-
lial cells (THLE3) (Voulgaridou et al. 2021). The authors 
reported that up to 0.25 mg  mL−1 treatment concentrations, 
the rhamnolipids exhibited negligible cytotoxicity effects 
against both cell lines whereas the synthetic surfactants 
induced cytotoxicity effects at treatment concentrations as 
low as 0.002 mg  mL−1 (Voulgaridou et al. 2021). In another 
study, Maeng et al. (2018) demonstrated that sophorolipid 
mixtures (comprising of lactonic and acidic forms) syn-
thesised from hydrolysed horse oil exhibited cytotoxicity 
effects on skin fibroblast cells only at concentrations above 

Fig. 3  The use of AO/PI dual staining technique to assess the mor-
phological pattern of cell death induced in HaCaT cells following 
treatment with each microbial glycolipid congener or SLES. Percent-
age of live cells (green) and necrotic cells (red) following treatment 
with 0, 20, or 100 μg  mL−1 of acidic SL (a); lactonic SL (b); mono-
RL (c); di-RL (d); 0, 100, or 500 μg   mL−1 acidic SL (e); mono-RL 
(f); and 0, 20, or 100 μg  mL−1 SLES (g); percentage live cells (green) 
to necrotic cells (red) following 100 μg  mL−.1 treatment of each sur-
factant (h). Live/dead staining experiments were carried out indepen-
dently three times, and three images per well were randomly selected 
and processed with ImageJ software for integrated density measure-
ment. Statistical significance compared to untreated controls was 
determined using a two-way ANOVA followed by Šidák’s multiple 
comparison test. *p ≤ 0.05

◂
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50 µg   mL−1. Low concentrations of these sophorolipids 
improved wound healing (0.5–5 µg  mL−1) and attenuated 
pro-inflammatory cytokines produced in LPS-stimulated 
macrophages (5–25 µg  mL−1) (Maeng et al. 2018). From 
the above reports, although significant bioactive properties 
of glycolipids were investigated using healthy human skin 
cells, the authors either utilised only a single class of impure 
glycolipids or glycolipid preparations having a mixture of 
various congeners. Hence, the bioactivities observed could 
not be assigned to a specific congener. Here, a broader range 
of glycolipid congeners highly purified and properly char-
acterised were utilised. HPLC–MS/ESI analysis showed 
that acidic SL was 100% pure and lactonic SL was 90% 
pure. Also, mono-RL preparations were 96% pure and the 
di-RL were 97% pure (Adu et al. 2022). This high level of 
the glycolipids’ purity was sufficient to attribute the effects 
observed in human keratinocytes as being caused by the 
individual glycolipid congeners. Moreover, measurement of 

surface activity revealed lower CMC values in all glycolipid 
congeners (0.03–0.06 mg  mL−1) than SLES (0.66 mg  mL−1). 
Consequently, in skincare applications, lower amounts of 
these glycolipids would be required to form micelles and to 
perform surface activities such as foaming and emulsifica-
tion (Rahimi et al. 2019; Perinelli et al. 2020).

Cytotoxicity is characterised by adverse effects on cells 
caused by treatment agents post exposure at known concen-
tration within a specified time; hence, methods for assess-
ing cytotoxicity effects require that effects of the treatment 
agents on cellular functions and integrity be compared to 
untreated cells and the effects measured within a specified 
time (Cummings and Schnellmann 2004; Leoty-Okombi 
et al. 2021). The concentration of SLES utilised in most 
skincare products is at a dose rage of 0.01 to 50% (v/v), 
and for toxicological studies, the organisation for Economic 
Cooperation and Development (OECD; test no. 439) rec-
ommends the use of up 5% (v/v) sodium dodecyl sulphate 

Fig. 4  ELISA analysis of a IL-8 and b IL-1RA protein levels and 
RT-qPCR analysis of CXCL8 (c) and d IL1RN expression in HaCaT 
cells. The cells were treated with complete medium (Medium), 1% 
(v/v) methanol (V. ctrl), LPS (25 μg   mL−1), glycolipid preparations, 

and SLES (20 μg  mL−.1) for 24 h. Data are the mean results of four 
independent experiments; error bars represent standard error from 
the mean. Statistical significance was determined using a one-way 
ANOVA followed by Dunnett’s multiple comparison test. *p ≤ 0.05
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(SDS) as positive control (Leoty-Okombi et al. 2021; OECD 
2021). Keeping to these standards, XTT cell viability assay 
was utilised to comprehensively assess the effects of highly 
purified sophorolipid and rhamnolipid congeners on the 
viability of human keratinocytes in comparison with SLES 
at concentrations ranging from 0 to 100 µg  mL−1 for 24 h. 
For acidic SL and mono-RL, further experiments increasing 
treatment concentrations up 500 μg  mL−1 were performed. 
This range of concentrations utilised was sufficient to pro-
duce dose response in the human keratinocytes. In summary, 
we demonstrated that microbial glycolipids have differing 
effects on human keratinocytes dependent on their chemi-
cal structure and that acidic SL and mono-RL have negli-
gible cytotoxicity effects in comparison with SLES; while 
SLES were significantly inhibiting HaCaT cells at concen-
trations above 60 µg   mL−1, no cytotoxicity effects were 

observed in mono-RL and acidic SL at up to 300 μg  mL−1 
and 500 μg  mL−1, respectively. Effects of the surfactants 
on HaCaT cell viability were further investigated via  LD50 
analysis. Here, except for acidic SL whose  LD50 could not 
be determined, the  LD50 of mono-RL was the highest among 
all other surfactants.  LD50 is the amount of substance (drug) 
required to cause the death of 50% of cells or an organism 
within a specified time (Adamson 2016). In toxicological 
studies,  LD50 analysis is critical for drug safety evaluation 
and standardisation in that the higher the  LD50, the safer 
the drug (Zhang et al. 2022). Thus, the undetermined  LD50 
in acidic SL and the highest recorded  LD50 in mono-RL-
treated cells coupled with their high inhibitory concentra-
tions compared with SLES suggest that these glycolipids 
have less cytotoxicity effects on human keratinocytes and 
could potentially offer a suitable substitute to SLES.

Fig. 5  ELISA analysis of a IL-8 and b IL-1RA protein levels and RT-
qPCR analysis of CXCL8 (c) and d IL1RN expression in HaCaT cells. 
The cells were pre-treated with 25 μg  mL−1 LPS for 24 h and there-
after cultured in cultured in complete medium (Medium), complete 
medium supplemented with 1% (v/v) methanol (V. ctrl), or glycolipid 

preparations and SLES at 20 μg   mL−.1 for 24 h. Data are the mean 
results of four independent experiments; error bars represent stand-
ard error from the mean. Statistical significance was determined using 
a one-way ANOVA followed by Dunnett’s multiple comparison test. 
*p ≤ 0.05
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Although currently there are not enough studies to 
fully understand the mechanisms by which glycolipids 
may or may not affect skin cells, it is worthy of note that 
the differing cytotoxicity effects of the various glycolipid 
congeners demonstrated in this study could be attributed 
to factors such as their hydrophilicity/hydrophobicity, 
biological origin, surface tension reduction ability, con-
gener profile, their chemical structure and properties, 
and intercellular and intracellular organisation of the 
keratinocytes utilised (Rahimi et al. 2019). One notable 
study that explored these potential mechanisms exam-
ined the cytotoxicity effects of mono-RL and di-RL on 
MCF-7 human breast cancer cells (Rahimi et al. 2019). 
Considering that the less amount of sugar heads in mono-
RL make them more hydrophobic than di-RL, the authors 
hypothesised that there was stronger interaction between 
the more hydrophobic surfaces of the MCF-7 human 
breast cancer cells, thereby ensuring greater impact on 
cell viability  (IC50 = 25.87 µg  mL−1) than in di-RL-treated 
cells  (IC50 = 31 µg  mL−1) (Rahimi et al. 2019). Accord-
ingly, in this study, in view of the fact that keratinocytes 
possess membrane-rich hydrophilic proteins and intra-
cellular hydrophilic channels, their interaction with the 
more hydrophilic and highest surface-active Di-RL could 
account for their lowest  LD50 among all the glycolipid 
congeners (Juurlink and Sivilotti 2007; Mundstock et al. 
2015). Furthermore, the relatively strong interaction 
between the less anionic Di-RL and negatively charged 
functional groups on the membrane of the skin cells cou-
pled with electrophilic properties of these glycolipids is 
an additional interactive mechanism worth considering 
(Shao et al. 2017). Notwithstanding, in the future, further 
mechanistic studies would be required to better understand 
the interaction of rhamnolipids with the human skin. With 
regards to sophorolipids, their effects on cell viability are 
hypothesised to be associated with their degree of acetyla-
tion and saturation of fatty acid groups (Shao et al. 2012; 
Callaghan et al. 2022). In a study on the bioactivity of 
ten sophorolipids differing in molecular structures against 
human oesophageal cancer cells, the authors demonstrated 
that diacetylated sophorolipids exhibited higher cytotox-
icity effects (MIC = 30 µg   mL−1) than monoacetylated 
groups (MIC = 60 µg  mL−1) (Shao et al. 2012). Similarly, 
sophorolipid mixtures majorly comprising of diacetylated 
sophorolipids (40.12%) exhibited cytotoxicity effects 
on skin fibroblasts at concentrations above 50 µg  mL−1 
(Maeng et al. 2018). On the contrary, for acidic SL, irre-
spective of their level of acetylation, they were demon-
strated to have minimal effects on human oesophageal 
cancer cells (Shao et al. 2012). In another study conducted 
by Lydon et al. (2017), nonacetylated acidic sophorolip-
ids were shown to have no cytotoxicity effects on HaCaT 

cells at concentrations above 500 µg  mL−1, which are all 
in agreement with this present study (Lydon et al. 2017).

In terms of the effects of glycolipids and SLES on cell 
morphology and the pattern of cell death-induced post 
exposure to the human keratinocytes, again we showed 
that the glycolipids have differing effects on HaCaT cells 
with significantly less necrosis-inductive effects than SLES. 
Specifically, while acidic SL and mono-RL were demon-
strated to have negligible effects on both cell morphology 
and induction of necrotic cell death at concentrations above 
500 µg  mL−1, SLES drastically reduced cell population via 
induction of necrotic cell death at concentrations above 
100 µg  mL−1. Induction of necrosis in living cells post sur-
factant treatment is hypothesised to be associated with the 
membrane penetrative effects of the surfactants at certain 
concentrations. This results in alteration of the cell mem-
brane potential, carbon chain arrangements, dehydration of 
cell bilipid layer, and ultimately cell death (Callaghan et al. 
2016, 2022; Shao et al. 2017). Thus, glycolipids such as 
acidic SL and mono-RL with less penetrative effects and 
biophysical interactions with the human keratinocytes were 
reported to have minimal effects on necrosis induction even 
at high concentrations. These findings agree with the cell 
viability analysis and in summary suggest that the glycolip-
ids utilised in this study have innocuous effects on human 
keratinocytes and could potentially offer a safer alternative 
to SLES in skincare applications.

The primary function of the human skin is to serve as 
a physical, chemical, and biological barrier to external 
body surfaces and internal organs through specialised and 
highly regularised immune cells (Nguyen and Soulika 2019; 
Yousef et al. 2022). Consequently, in the event the human 
skin is exposed to foreign agents such as skin pathogens 
and toxic chemicals, immune responses may be initiated to 
ensure tissue homeostasis and repair (Nguyen and Soulika 
2019). Hence, to further investigate the safety of microbial 
glycolipids for potential skincare applications, we assessed 
the effects of all purified glycolipid congeners on the IL-8 
and IL-1RA cytokine production and their associated gene 
expressed at non-inhibitory concentration in comparison 
with SLES. Except for di-RL, no other surfactant had sig-
nificant effects on either cytokine production or gene expres-
sion levels in HaCaT cells. However, in the di-RL-treated 
cells, there was an inverse relationship between IL-8 and 
IL-1RA protein levels in that while there was significant 
reduction in IL-8 protein secretion, we recorded significant 
increases in IL-1RA protein levels. Generally, IL-8 is known 
for activating and recruiting neutrophils to sites of infec-
tion via the IL-1 and TNF-α signalling pathways (Russo 
et al. 2014; Matsushima et al. 2022). Conversely, IL-1RA 
is a naturally occurring anti-inflammatory cytokine and 
acts as competitor to the binding site of IL-1β (Herder and 
Donath 2015; Kaneko et al. 2019). The binding of IL-1RA 
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to the binding site of IL-1β prevents the binding of IL-1β, 
thereby inhibiting pro-inflammatory cytokines that could 
have been otherwise initiated by IL-1β (Herder and Donath 
2015). Therefore, the production of IL-1RA by di-RL may 
have altered the IL-1 pathway by inhibiting the activation 
of regulatory pro-inflammatory cytokine mediators such as 
mitogen-activated protein kinases (MAPKs), Ikappa kinase 
β (IKKβ), and nuclear factor-kappa β (NF-κβ), accounting 
for the inverse relationship between IL-8 and IL-1RA pro-
duction (Sajid et al. 2020; Matsushima et al. 2022). How-
ever, as there are currently no mechanistic studies to these 
effects, further investigations would be necessary.

LPS is an inflammatory substance that induces the syn-
thesis of nitric oxide and the expression of pro-inflam-
matory markers such as TNF-α and several interleukins 
after binding to toll-like receptor four (TLR-4) on cell 
surfaces resulting in downstream signalling transduction 
by NF-κB (Maeng et al. 2018; Sun et al. 2019). Here, we 
investigated whether post keratinocyte stimulation with 
LPS, glycolipids could ameliorate/modulate the cytokines 
produced. Using ELISAs and RT-qPCR, we demonstrated 
that of all surfactants tested at non-inhibitory concentra-
tions, only mono-RL and di-RL significantly attenuated 
IL-8 production and CXCL8 expression levels while 
increasing IL-1RA and IL1RN levels after LPS-stimulated 
HaCaT cells were treated with glycolipids and SLES for 
24 h. Psoriasis is a common skin disease affecting 60 mil-
lion people worldwide and 1.52% of people in the UK 
(Raharja et al. 2021). Psoriasis is characterised by hyper-
proliferation of keratinocytes and massive accumulation of 
inflammatory mediators such as neutrophils and cytokines 
(majorly IL-8) (Baliwag et al. 2015; Mylonas and Conrad 
2018). Therefore, treatment methods for psoriasis targeted 
at modulating CXCL8 expression such as demonstrated 
by mono-RL and di-RL in this study could be an impor-
tant step towards psoriasis treatments (Russo et al. 2014). 
Moreover, the higher IL-1RA and IL1RN levels post 
keratinocyte stimulation with LPS suggest that mono-RL 
and di-RL may have therapeutic potential to induce anti-
inflammatory mediators in diseased skin to modulate the 
continued cascade of pro-inflammatory cytokines that may 
have otherwise implicated an already establish skin infec-
tion (Herder and Donath 2015). Studies on immunomodu-
latory effects of glycolipids are quite rare. Moreover, most 
of these studies were performed using sophorolipids only. 
For instance, using immunoglobulin E (IgE) producing 
myeloma (U266 cells), sophorolipids extracted from Can-
dida bombicola decreased IgE and gene expression levels 
of STAT3, TLR-2, and IL-6 (Hagler et al. 2007). Similarly, 
these sophorolipids decreased asthma severity in vivo 
by reducing Ova-specific IgE production in asthma-
infected mouse model (Lee et al. 2008). More recently, 
sophorolipids synthesised from hydrolysed horse oil were 

demonstrated to reduce gene expression levels of TNF-α, 
COX-2, and IL-6 in mouse macrophages in a dose-depend-
ent manner (5–25 µg  mL−1) (Maeng et al. 2018). It must 
be noted that in our study, the sophorolipids utilised had 
no immunomodulatory effects. Nonetheless, the difference 
in the results reported could be attributed to the purity of 
the sophorolipids used, type of cells understudy, and dif-
ference in experimental design. However, the promising 
immunomodulatory effects of rhamnolipids demonstrated 
in this study would be worth exploring further.

Taken together, in this study, we have demonstrated that 
highly purified microbial glycolipids have differing effects 
on human keratinocytes depending on their chemical struc-
ture. Moreover, compared with SLES, acidic SL and mono-
RL have negligible effects on keratinocyte viability, mor-
phology, and production of pro-inflammatory cytokines. 
Furthermore, at non-inhibitory concentrations, di-RL and 
mono-RL modulate cytokine production and associated gene 
expression in LPS-stimulated human keratinocytes. These 
findings suggest that as potential innocuous and naturally 
derived surfactants, microbial glycolipids could potentially 
provide a safer and suitable alternative to SLES in skincare 
applications and, as an added functionality, perform immu-
nopharmacological roles in topical skin infections such as 
psoriasis. This is the first time such a comprehensive study 
on glycolipid safety assessment and potential benefits to the 
human skin has been carried out. Notwithstanding, further 
in vitro studies including the use flow cytometry, reactive 
oxygen species induction, and comet assays to assess cel-
lular DNA breakage coupled with robust mechanistic stud-
ies should be employed to further investigate the safety of 
glycolipids and their potential benefits to the human skin. 
Additionally, to accurately mimic the complex anatomy of 
the human skin, its physiological functions, and interactions 
with the human skin microbiome post glycolipid exposure, 
full thickness 3D in vitro skin models would be an important 
future step, bearing in mind to keep to the OECD standards 
for testing acute toxicity.
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