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ABSTRACT: Incorporating radical ligands into metal complexes is
one of the emerging trends in the design of single-molecule magnets
(SMMs). While significant effort has been expended to generate
multinuclear transition metal-based SMMs with bridging radical
ligands, less attention has been paid to mononuclear transition
metal−radical SMMs. Herein, we describe the first α-diiminato radical-
containing mononuclear transition metal SMM, namely, [κ2-PhTttBu]-

Fe(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe-
(CyNCHCHNCy) (2) (PhTttBu = phenyltris(tert-butylthiomethyl)-
borate, Ad = adamantyl, and Cy = cyclohexyl). 1 and 2 feature nearly
identical geometric and electronic structures, as shown by X-ray
crystallography and electronic absorption spectroscopy. A more detailed description of the electronic structure of 1 was obtained
through EPR and Mössbauer spectroscopies, SQUID magnetometry, and DFT, TD-DFT, and CAS calculations. 1 and 2 are best
described as high-spin iron(II) complexes with antiferromagnetically coupled α-diiminato radical ligands. A strong magnetic
exchange coupling between the iron(II) ion and the ligand radical was confirmed in 1, with an estimated coupling constant J < −250
cm−1 (J = −657 cm−1, DFT). Calibrated CAS calculations revealed that the ground-state Fe(II)−α-diiminato radical configuration
has significant ionic contributions, which are weighted specifically toward the Fe(I)-neutral α-diimine species. Experimental data and
theoretical calculations also suggest that 1 possesses an easy-axis anisotropy, with an axial zero-field splitting parameter D in the
range from −4 to−1 cm−1. Finally, dynamic magnetic studies show that 1 exhibits slow magnetic relaxation behavior with an energy
barrier close to the theoretical maximum, 2|D|. These results demonstrate that incorporating strongly coupled α-diiminato radicals
into mononuclear transition metal complexes can be an effective strategy to prepare SMMs.

■ INTRODUCTION

Due to the modern development of advanced physical and
computational methods, in-depth studies of the electronic
structures of metal complexes have become increasingly
tractable. Such studies are especially insightful for complexes
with ambiguous electronic structure assignments due to
noninnocent ligands that are bound to redox-active metals.1−4

A survey of the recent literature reveals an increasing number
of redox-active (noninnocent) ligand-containing metal com-
plexes that exhibit interesting and new small-molecule
activation and catalytic characteristics.5−9 In addition, some
redox-active ligand complexes have shown novel electronic and
magnetic properties and thus the potential for use in
applications such as spin-based molecular electronics and
quantum computing devices.10−16 In this context, a thorough
understanding of their electronic structures through which
structure−property and structure−reactivity relationships may
be established is crucial for the rational design of catalysts and
functional materials.

Over the past few years, several of our laboratories have been
studying first-row transition metal complexes of redox-active
1,2-dioxolene ligands due to an interest in their bioinspired O2

activity.17−19 During our interrogation of the electronic
structures of the dioxolene complexes, we discovered the
magnetic bistability of several five-coordinate Co(II)-semi-
quinonate radical complexes.20 These observations stimulated
our interest in deducing the magnetic properties of the
tris(thioether) ligand-containing transition metal complexes of
redox-active ligands. Our attention was drawn to recent reports
of radical-ligand-containing metal complexes that exhibit slow
magnetic relaxation, a phenomenon characteristic of single-
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molecule magnets (SMMs).12 Due to potential applications in
quantum information processing and high-density data storage,
SMMs have received tremendous interest. Extraordinary effort
has been put into synthesizing molecules with high spin-
relaxation barriers. While the most recognized strategy to
obtain SMMs focuses on maximizing the spin state (quantified
as S) and the uniaxial magnetic anisotropy (quantified as the
zero-field splitting parameter D), the design of the radical-
ligand-containing SMMs takes into consideration a third
parameter that has received less attention: the exchange
coupling constant J. When radical ligands are incorporated into
metal complexes, direct-exchange coupling involving para-
magnetic metal ion(s) and radical ligand(s) is present. When
the exchange coupling is sufficiently strong, i.e., the J value is
large, the energy level of the spin ground state will be well
below the energy levels of the excited states, resulting in a
suppression of the relaxation pathways that involve spin excited
states. Meanwhile, quantum tunneling processes within a single
spin-state manifold might also be suppressed by the strong
exchange coupling. Thus, incorporating the direct-exchange
coupling of metal ions with radical ligands can be an effective
strategy to produce SMMs with higher relaxation barriers.
In the pursuit of radical-ligand-containing SMMs, an

emerging trend is to use strongly exchange-coupled redox-
active bridging radicals to generate multinuclear transition
metal-based SMMs.12,21 This strategy has proven to be very
effective and productive, generating diiron,22−24 dicobalt,25−30

and dinickel SMMs25 with strong exchange couplings (in one
example,22 |J| > 900 cm−1) and Ueff values up to 267(3) K26

(Ueff is the effective spin-reversal barrier). A wide range of
bridging radicals have been employed to construct these
dinuclear transition metal-radical SMMs, including semi-
quinone radical,25 tetraoxolene radical,24 tetraazalene radi-
cal,22,23 nindigo radical,30 2,2′-bipyrimidine radical,28 tetrazine
radical,29 tetrapyridophenazine radical,27 and 1,2,4,5-tetrakis-
(methanesulfonamido)benzene) radical ligands.26 In contrast,
mononuclear transition metal-radical SMMs have received less
attention despite the rapid growth in the number of transition
metal-based mononuclear SMMs.31,32 Current examples of
mononuclear transition metal-radical SMMs are limited to
cobalt−nitroxide radical complexes,33−35 cobalt−carbene
radical complexes,34−40 and an iron−dithiadiazolyl radical
complex.41 It is noteworthy that the magnitudes of the
magnetic exchange interactions in these complexes are
moderate (30 cm−1 < |J| < 70 cm−1).
Widely used in coordination chemistry and catalysis,42−44 α-

diimines are redox-active ligands that can access three different
redox states: neutral α-diimines (L0), monoanionic π-radicals
(L−1), and dianionic diamides (L−2), where each state has
distinct C−N and C−C bond distances (Scheme 1).45 In

addition, α-diimine ligands are easily accessible, and their steric
and electronic properties may be tuned by varying the ligand
substituents, i.e., R1, R2, and R3 (Scheme 1). Most importantly,
the monoanionic radical form of α-diimine ligands is well-
known for delivering exceptionally strong exchange cou-
pling,15,16,46−48 making them attractive candidates for con-
structing mononuclear transition metal-radical SMMs. Nota-
bly, α-diiminato radical ligands (as well as the analogous
iminopyridyl radical ligands) have recently been applied to
construct mononuclear lanthanide-based SMMs.49−52

Herein, we report an α-diiminato radical-containing
mononuclear iron complex, [κ2-PhTttBu]Fe(AdNCHCHNAd)
(1), that exhibits field-induced slow magnetic relaxation. We
also report its analogue, [κ2-PhTttBu]Fe(CyNCHCHNCy) (2).
Both complexes were subjected to structural and spectroscopic
characterizations and were found to have nearly indistinguish-
able geometric structures and spectroscopic features. The
electronic structure and magnetic properties of 1 were further
interrogated using a combined experimental and computa-
tional approach. The results indicate that 1 contains an
antiferromagnetically coupled α-diiminato π-radical ligand with
an exchange coupling constant J < −250 cm−1 (J = −657 cm−1,
DFT). To the best of our knowledge, the magnitude of the
exchange coupling in 1 is among the largest observed in
radical-containing SMMs. The calibrated computational
studies also revealed that the ground state Fe(II)−α-diiminato
radical configuration has a significant ionic character, which is
weighted specifically toward the Fe(I)-neutral α-diimine
description. To our knowledge, this unique electronic property
has not been previously reported in any α-diimine-containing
transition metal complex.

■ EXPERIMENTAL AND COMPUTATIONAL
METHODS

2.1. General Information. All air- and moisture-sensitive
reactions were performed under N2 using standard Schlenk
techniques or under an Ar or N2 atmosphere in a Vacuum
Atmospheres glovebox equipped with a gas purification system.
Unless otherwise noted, all reagents were purchased from commercial
sources and used without further purification. Solvents were of
reagent-grade or better and were dried by passing them through
activated alumina, then stored over 4 Å molecular sieves prior to use.
Deuterated solvents were purchased from Cambridge Isotope
Laboratories and stored over 4 Å molecular sieves. [PhTttBu]FeCl,53

AdNCHCHNAd, and CyNCHCHNCy54 were prepared following
published procedures.

2.2. Synthesis of 1 and 2. 2.2.1. Synthesis of 1. To the solution
of [PhTttBu]FeCl (147 mg, 0.3 mmol) in 1 mL of THF and 30 mL of
diethyl ether was added AdNCHCHNAd (97 mg, 0.3 mmol) in small
portions. The reaction mixture was stirred for 1 h. A pink-purple
precipitate formed. KC8 (45 mg, 0.33 mmol) was then slowly added
to the reaction mixture over about 10 min. The solution turned
brown. After stirring for 3 h, the mixture was filtered through a pad of
Celite, and the solvent was removed under vacuum. The residue was
washed with pentane (2 × 4 mL), dissolved in 4 mL of benzene, and
passed through a small plug of APTS-coated silica gel to remove
impurities. After removing the benzene under vacuum, the residue
was washed with pentane (2 × 2 mL) and dried under vacuum to
obtain a yellow-brown powder (84 mg, 36%). Single crystals suitable
for X-ray crystallography were obtained by the slow evaporation of the
pentane/diethyl ether solution (v/v = 1:1) of the product at room
temperature. 1H NMR (C6D6): δ 126.2 (s, NCH), 31.3 (s, Ad), 29.7
(s, Ad), 8.8 (br, C(CH3)3S), 7.8 (s, (C6H5)B), 6.9 (s, (C6H5)B), 5.1
(s, Ad), 4.5 (s, Ad), 3.2 (s, C(CH3)3S (free)), 1.4 (s, Ad), −1.3 (s,
CH2S

tBu), −11.2 (s, Ad), −11.5 (s, Ad). UV−Vis (THF): λmax (ε,
M−1 cm−1) 289 (9748), 402 (7983), 456 (sh), 613 (380), 1007

Scheme 1. Redox Series of α-Diimine Ligands: Neutral α-
Diimines (L0), Monoanionic π-Radicals (L−1), and the
Dianionic Diamide (L−2)a

aTypical C−N and C−C bond distances (Å) for each state are labeled
in red.
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(188). LIFDI-MS: m/z calcd. for C43H70BFeN2S3 (M)+ 777.4144,
found (M)+ 777.4152 (100%). μeff (C6D6) = 3.9(1) μB.
2.2.2. Synthesis of 2. To the solution of [PhTttBu]FeCl (147 mg,

0.3 mmol) in 8 mL of THF and 16 mL of diethyl ether was added
CyNCHCHNCy (66 mg, 0.3 mmol) in small portions. The reaction
mixture was stirred for 1 h. A dark blue solution was obtained. KC8
(45 mg, 0.33 mmol) was then slowly added to the reaction mixture
over about 10 min. The solution turned brown. After stirring for 3 h,
the mixture was filtered through a pad of Celite, and the solvent was
removed under vacuum. The residue was washed with pentane (2 × 4
mL), dissolved in 4 mL of benzene, and passed through a small plug
of APTS-coated silica gel to remove impurities. After removing the
benzene under vacuum, the residue was washed with pentane (2 × 2
mL) and dried under vacuum to obtain a yellow-brown powder (90
mg, 45%). Single crystals suitable for X-ray crystallography were
obtained by the slow evaporation of a concentrated diethyl ether
solution of the product at room temperature. 1H NMR (C6D6): δ
139.5 (s, NCH), 29.1 (s, Cy), 27.0 (s, Cy), 8.9 (br, C(CH3)3S), 7.9
(s, (C6H5)B), 6.8 (s, (C6H5)B), 5.2 (s, Cy), 2.6 (s, C(CH3)3S (free)),
−1.1 (s, CH2S

tBu), −8.5 (s, Cy), −9.9 (s, Cy). UV−Vis (THF): λmax
(ε, M−1 cm−1) 294 (8400), 401 (6816), 458 (sh), 615 (285), 984
(195). LIFDI-MS: m/z calcd. for C35H62BFeN2S3 (M)+ 673.3518,
found (M)+ 673.3542 (100%). μeff (C6D6) = 3.9(1) μB.
2.3. Physical Methods. NMR spectra were recorded on a Bruker

AVIII 400 spectrometer. Chemical shifts (δ) were referenced to
residual protons in the deuterated solvents. LIFDI-MS55,56 was
performed on a Waters GCT Premier mass spectrometer. Electronic
absorption spectra were recorded on a Varian Cary 50 UV−vis
spectrophotometer using screw-top quartz cuvettes with a 1 cm path
length. Solution-state magnetic moments were determined using the
Evans method.57−59

Continuous wave X-band EPR spectra were collected on a Bruker
E580 at T = 10 K using a 0.2 mW (or 2 mW) power. The modulation
amplitude was 10 G. EPR spectra were simulated in Matlab using
EasySpin.60

Mössbauer spectra were recorded on a closed-cycle refrigerator
spectrometer (model CCR4K) equipped with a 0.04 T permanent
magnet while maintaining temperatures between 5 and 300 K. The
samples consisted of solid powders (or crystalline material) that were
suspended in Nujol, placed in Delrin 1.00 mL cups, and frozen in
liquid nitrogen. The isomer shifts are quoted at 5 K with respect to
the iron metal spectrum recorded at 298 K. Mössbauer spectra were
analyzed using WMOSS software (Thomas Kent, See Co., Edina,
MN).
The static magnetic properties of complex 1 were measured on

samples of ground crystals using a Quantum Design MPMS-XL
SQUID magnetometer operating over the temperature range 1.8−330
K at a 1000 Oe direct-current field. The data were corrected for
diamagnetic contributions using Pascal constants. AC magnetic
susceptibility measurements were performed on the same samples
with an oscillating field of 5 Oe in the frequency range from 1 Hz to
1.5 kHz.
Single-crystal XRD data were obtained by mounting crystals onto

plastic mesh using a viscous oil and cooling them to the data
collection temperature. Data were collected on a Bruker-AXS APEX II
CCD diffractometer with graphite-monochromated Mo Kα radiation
(λ = 0.71073 Å). Unit cell parameters were obtained from 36 data
frames, 0.3° ω, from three different sections of the Ewald sphere. The
data sets were treated with absorption corrections based on redundant
multiscan data. For 1, the systematic absences in the diffraction data
are consistent with the triclinic space group, P1. For 2, the systematic
absences in the diffraction data are consistent with the monoclinic
space group, P21/c, and the asymmetric unit contains two symmetry-
independent molecules. All non-hydrogen atoms were refined with
anisotropic displacement parameters. All hydrogen atoms were treated
as idealized contributions. Atomic scattering factors are contained in
the SHELXL 2013−2014 program libraries. The CIF filess have been
deposited with the Cambridge Crystallographic Database as CCDC
1974684 for 1 and 1974685 for 2.

2.4. Computational Methods. Initial density functional theory
(DFT) calculations were performed in Gaussian 16 rev. C.01.61 A
model of 1 was built from crystallographic coordinates and optimized
using the BP86 functional62,63 with definition two of Ahlrich’s triple-ζ
with polarization (def2-TZVP) basis64 on all atoms in the gas phase
on the broken symmetry S = 3/2 surface. An analytical frequency
calculation was performed to ensure that a stationary point on the
potential-energy surface had been reached and provide thermal
corrections to the Gibbs free energy. No imaginary frequencies were
obtained. Molecular orbitals were visualized with Lumo.65

A truncated model of 1 called 1* was built using the optimized
coordinates of 1 by replacing the phenyl ring with a hydrogen,
replacing the noncoordinated thioether arm at the S position with a
proton, and replacing the adamantane with a methyl that had the C
located at the bridgehead carbon position. This truncated model was
partially optimized by freezing the positions of the heavy atoms and
allowing the hydrogens to freely optimize with the BP86 functional on
the broken-symmetry S = 3/2 spin surface. Time-dependent (TD)
DFT calculations were performed with the TPSSh functional with the
polarizable continuum model in THF to yield the first 200 excited
states.

The truncated model 1* was subsequently used for property
calculations in ORCA ver. 4.2.1.66,67 All calculations used the same
basis sets as above. A broken-symmetry DFT solution was initially
computed and equivalent to the Gaussian computation. The fractional
orbital occupation density (FOD) was computed on both 1 and 1*.68

Graphical FOD plots were generated from the electron density to
define the delocalization of correlated electrons. Mössbauer
parameters were calculated by determining the field gradient (V)
and the electron density at the nucleus (ρ0). The value of δiso was
derived using ρ0 and the TZVP correction parameters α, β, and C for
the TPSSh functional69 by δiso = α(ρ0 − C) + β. EPR parameters were
calculated using the gauge invariant origin. The D tensor was
calculated by including spin−spin and spin−orbit contributions. The
spin−orbit component included the 1e− terms, semi-numerical
Coulomb terms, and exchange via one-center exact integrals.

The DFT broken-symmetry S = 3/2 model was used as an initial
guess for a second-order Møller−Plesset perturbation theory (MP2)
single-point calculation.70 This calculation was subsequently used as
the initial guess for a domain-based local pair-natural orbital
(DLPNO) coupled-cluster (CC) calculation.71,72 The CC calculation
included single and double excitations and perturbative triples
(CCSD(T)). CCSD(T) single-point calculations were performed
on both the quartet and sextet states. The electric field gradient for
the Mössbauer parameters was calculated analogously to that
described above. Electron paramagnetic resonance properties were
computed analogously to that described above, except the origin was
defined as the center of charge and the resolution of the identity (RI)
approximation73 was used with associated auxiliary basis sets.

The DFT broken-symmetry S = 3/2 model was used to generate
quasi-restricted orbitals (QRO) as the initial guess for complete
active-space self-consistent field (CASSCF) computations. Prelimi-
nary CASSCF calculations were converged using a smaller basis set
(def2-SVP), followed by a tighter convergence with the full basis as
described above. These preliminary calculations employed the
iterative-configuration expansion (ICE-SCF)74 to dramatically speed
up the computations. Orbitals were selected for inclusion in the active
space using occupation number N (0.005 > N > 1.995). The final
CASSCF calculations employed 11 electrons in 14 orbitals (CAS-
(11,14)) utilizing the same basis sets as those in the DFT and
CCSD(T) calculations. These calculations also required RI and
appropriate auxiliary basis sets. Roots for state-averaged (SA)
CASSCF were determined by an initial computation with frozen
orbitals. Quartet and sextet roots within 10 000 cm−1 of the ground
state were chosen for the SA-CASSCF. n-Electron valence second
order perturbation theory (NEVPT2)75 was used to determine the
dynamic correlation energy correction to the ground-state CAS
solutions, and the RI approximation was used. The strongly
contracted (SC) variant of this method was used. Mössbauer
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parameters were calculated analogously to the CC computations, and
the EPR parameters were calculated within the CASSCF module.

■ RESULTS AND DISCUSSION
3.1. Syntheses and Crystal Structures. Complexes 1

and 2 were synthesized in 36% and 45% yields, respectively, by
the addition of 1 equiv of potassium graphite (KC8) to a 1:1
mixture of [PhTttBu]FeCl and the corresponding α-diimine in
THF/diethyl ether (Scheme 2). Yellow-brown crystals suitable

for X-ray diffraction were obtained for 1 and 2 by the slow
evaporation of concentrated pentane/diethyl ether and diethyl
ether solutions, respectively. Thermal ellipsoid plots of the
molecular structures and selected metric parameters of 1 and 2
are shown in Figure 1. Complex 2 crystallizes with two
symmetry-independent molecules, 2-Fe1 and 2-Fe2, and only
2-Fe1 is shown in Figure 1. Both 1 and 2 contain a
pseudotetrahedral iron center coordinated by two thioether
sulfur atoms and two nitrogen atoms from the α-diimine
ligand. The third sulfur is uncoordinated, likely due to the
steric bulk of the R groups. The κ2-coordination mode of the
tris(thioether) ligand was also found in a dialkyltetraazadiene
iron complex, namely [κ2-PhTttBu]Fe(AdNNNNAd),53 which
is an isoelectronic analogue of 1 and 2.
The average Fe−S distances in 1, 2-Fe1, and 2-Fe2 are

2.325(1), 2.327(1), and 2.331 (1) Å, respectively. These nearly
indistinguishable distances suggest that the electron densities
on the iron centers are very similar. Comparable Fe−S
distances are found in [κ2-PhTttBu]Fe(AdNNNNAd) (average
Fe−S distance of 2.299(1) Å) as well as a four-coordinate
high-spin (S = 3/2) iron(I) complex, [PhTttBu]Fe(PEt3)

(average Fe−S distance of 2.343(1) Å).53 The average Fe−N
distances are 1.974(2) Å for 1, 1.970(2) Å for 2-Fe1, and
1.976(2) Å for 2-Fe2, indicating that different alkyl groups on
the α-diimine ligands do not impart a difference in the
geometric and electronic structures of 1 and 2. Comparable
Fe−N distances are also found in [κ2-PhTttBu]Fe-
(AdNNNNAd)(average Fe−N distance of 1.945(3) Å).53

Additionally, the Fe−N distances in 1 and 2 are very close to
those of [ArNC(Me)C(Me)NAr)Fe]2(μ-Cl)2(Ar = 2,6-
diisopropylphenyl) (average Fe−N distance of 1.979(1) Å),
which is a high-spin diferrous complex with two α-diiminato π-
radicals.45,76

The metric parameters that are most indicative of the redox
state assignment of the α-diimine ligands are the C−N and C−
C bond distances within the α-diimine moiety (Scheme 1).45

Using the numbers shown in Scheme 1 as benchmarks, the
average C−N bond lengths of 1.334(2) Å for 1, 1.341(4) Å for
2-Fe1, and 1.338(4) Å for 2-Fe2 are consistent with an α-
diiminato π-radical monoanion description. In addition, the
nearly identical C−C bond lengths of 1.395(3) Å for 1,
1.395(4) Å for 2-Fe1, and 1.391(5) Å for 2-Fe2 also support
this assignment. Taking the metric parameters and charge
balancing into consideration, 1 and 2 are best described as
iron(II) complexes with α-diiminato π-radical ligands.

3.2. Spectroscopic and Static Magnetic Properties. In
addition to their metric parameters, 1 and 2 share striking
similarities in their electronic absorption spectra (Figure 2),
which point to a common electronic structure. While the
detailed assignments of the electronic transitions will be
discussed later, it is informative to compare 1 and 2 with
[iPrNC(Ph)CHNiPr]2Fe, an iron(II) complex containing α-
diiminato radical ligands, and [iPrNC(Ph)CHNiPr]FeCl2, an
iron(II) complex containing a neutral α-diimine ligand.45 1
exhibits strong charge-transfer (CT) transitions at 402 (7983
M−1 cm−1) and 456 (sh) nm, and 2 exhibits similar CT bands
at 401 (6816) and 458 (sh) nm. While analogous CT
transitions in the 400−500 nm region, i.e., 441 (6000 M−1

cm−1) and 515 nm (2000), were also observed for [iPrNC-
(Ph)CHNiPr]2Fe, [iPrNC(Ph)CHNiPr]FeCl2 lacks intense
CT bands in the same region. Thus, the CT bands in the 400−
500 nm region are suggestive of an α-diiminato radical ligand.

Scheme 2. Synthesis of 1 (R = Ad) and 2 (R = Cy)

Figure 1. Molecular structure of 1 (left) and 2 (right, only 2-Fe1 is shown) with heteroatom labeling. Thermal ellipsoids are drawn to 30%
probability. Hydrogen atoms have been omitted for clarity. Selected bond distances (Å) for 1 are as follows: Fe−S1 2.316(1), Fe−S2 2.334(1),
Fe−N1 1.971(2), Fe−N2 1.976(2), N1−C11 1.336(2), N2−C12 1.332(2), and C11−C12 1.395(3). Selected bond distances (Å) for 2-Fe1 are as
follows: Fe1−S1 2.327(1), Fe1−S2 2.327(1), Fe1−N1 1.970(2), Fe1−N2 1.969(2), N1−C28 1.342(4), N2−C29 1.339(4), C28−C29 1.395(4).
Selected bond distances (Å) for 2-Fe2 are as follows: Fe2−S4 2.331(1), Fe2−S5 2.332(1), Fe2−N3 1.973(2), Fe2−N4 1.978(2), N3−C63
1.340(4), N4−C64 1.336(4), and C63−C64 1.391(5).
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Given that 1 and 2 share a common electronic structure,
only complex 1, whose pure crystalline form was more readily
obtainable in sufficient quantities, was subjected to further
spectroscopic and magnetic property interrogations. While the
C−N and C−C bond lengths are informative of the redox
states of the α-diimine ligands, 57Fe Mössbauer spectroscopy
provides insight into the oxidation and spin states of the iron
center. Figure 3 shows the Mössbauer spectrum of 1 at 80 K in
a magnetic field of 0.04 T. Table S2 contains the Mössbauer
parameters of 1 and other relevant iron complexes for
comparison.

1 exhibited an isomer shift at δ 0.60 mm/s and quadrupole
splitting ΔEQ = −4.03 mm/s (Table S2). The isomer shift of 1
is much larger than those of the all the S- and N,S-ligated
iron(III) compounds in the literature (one example77 is given
in Table S2) but somewhat closer to those of the the high-spin
iron(II) dimer {[PhTttBu]FeCl}2 (δ 0.96(3) mm/s, Table
S2)53 and a bis(benzimidazolato) ligated diferrous [2Fe-2S]
cluster (δ 0.79 mm/s, Table S2).78 Interestingly, some sulfur-
ligated high-spin Fe(I) complexes such as [PhTttBu]Fe(PMe3)
and [PhTttBu]Fe(PhCCPh) also exhibit similar isomer shifts
(Table S2).53 Nevertheless, when the Mössbauer data were
considered with the crystallographic and electron absorption
spectroscopic data, it is clear that 1 is most consistent with the
description of a high-spin iron(II) complex with an α-
diiminato radical ligand.
To study the magnetic interaction between the high-spin

iron(II) and the α-diiminato radical ligand, static magnetic
properties were measured on samples of crushed crystals of 1.

The data were corrected for the diamagnetic contribution
using Pascal constants. As shown in Figure 4, the χT value of
1.91 cm3·K/mol at 300 K (μeff = 3.91 μB) comports with the
solution magnetic moment at room temperature, μeff = 3.9(1)
μB, and corresponds to an S = 3/2 ground state (spin-only, g =
2.02) derived from the antiferromagnetic coupling between the
high spin iron(II) center (S = 2) and the ligand radical (S = 1/
2). The χT values remain nearly constant throughout the
temperature range 25−300 K, indicating very strong magnetic-
exchange coupling. Below 25 K, the χT values dropped
gradually to 1.38 cm3·K/mol−1 at 2 K, which may be attributed
to zero-field splitting (ZFS) or intermolecular interactions.
The field-dependent magnetization data collected at 1.8 K
slowly increased at lower fields (Figure S1), which is indicative
of antiferromagnetic intermolecular interactions. At fields
above 5 T, the magnetization approaches saturation at 2.24
μB, which is well below the expected value for the S = 3/2
ground state and is also indicative of ZFS or intermolecular
interactions. The field-dependent magnetization curves at
different temperatures (1.8−4.5 K) are nonsuperimposable
(Figure 4 inset), which is further indicative of ZFS. In order to
obtain an acceptable estimation of the magnitude of the
coupling constant J, the susceptibility data were simulated
using PHI software79 under the Hamiltonian

μ= + + · · − ·g g DH BH S S S S J S S( ) ( ) 2 ( )1 2 1 ion 1 1 2 (1)

The first term corresponds to Zeeman splitting, whereas the
second and third terms are the zero-field splitting in the metal
ion and Heisenberg−Dirac−van Vleck magnetic exchange,
respectively, where S1 is the metal spin (S = 2) and S2 is the
radical spin (S = 1/2). Satisfactory simulations were obtained
for coupling constant J values < −250 cm−1 (Figure 4).
Simultaneous fitting of χT and the reduced magnetization data
using the Hamiltonian in eq 1 resulted in |Dion|(E) = 2.24
(0.55) cm−1 with J = −660 cm−1 (g1 = 2.19, g2 = 1.94, and g3 =
1.84). Notably, a similar tetrahedral iron(II)−radical complex
also exhibits very strong antiferromagnetic coupling, which
leads to an effective S = 3/2 ground state (LMeFe-
(AdNNNNAd), L = HC[C(Me)N(2,6-iPr2C6H3)]2, J =
−850 cm−1).80 Alternatively, the system was treated as a
fully coupled S = 3/2 system, and the data were fit according to
the Hamiltonian

μ= + · ·g DH BH S S S( )T T T T (2)

Where ST is the fully coupled 3/2 spin state resulted in DT(E)
= −3.52 (−1.2) cm−1 (gav = 1.99 given g1 = 2.19, g2 = 1.94, and
g3 = 1.84, EPR).
While static magnetometry measurements were used to

estimate the ZFS parameters, this technique could not
unequivocally determine the sign of the axial ZFS parameter
D (i.e., DT in eq 2). In this context, continuous-wave X-band
EPR spectroscopy was performed to provide a high-resolution
evaluation of the electronic structure of 1 (Figure 5).
Experiments were conducted on dilute solutions (1 mM) in
THF at 10 K at 2.0 and 0.2 mW power levels. The spectra are
dominated by broad effective S = 1/2 features with effective g-
values of 4.83, 3.27, and 1.92, which are consistent with high-
spin iron. Given the model of a high-spin iron(II) strongly
antiferromagnetically coupled to a α-diiminato ligand radical
that developed above (|J| > 250 cm−1, Figure 4), the spectrum
of 1 was modeled in a J ≫ D regime as an effective S = 3/2
system, meaning that the shape of the spectrum is dominated
by ZFS. Consequently, fits to both positive and negative D

Figure 2. Electronic absorption spectra of [κ2-PhTttBu]Fe-
(AdNCHCHNAd) (1, blue) and [κ2-PhTttBu]Fe(CyNCHCHNCy)
(2, red) in THF.

Figure 3. Mössbauer spectrum of a solid microcrystalline sample of 1
in Nujol at 80 K in a magnetic field of 0.04 T. The hashed lines
represent the raw data, and the solid line is a result of the least-squares
fit of the data.
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were explored, which yielded the following two equivalently
good fits: (i) g = 2.11, 2.04, and 2.02 (gav = 2.06); D = +2.19
cm−1; and E/D = 0.146 (Figure S5); and (ii) g = 2.19, 1.94,
and 1.84 (gav = 1.99); D = −2.65 cm−1; and E/D = 0.073
(Figure 5). While these fits are indistinguishable, no
satisfactory fit of the static magnetometry data can be
accomplished with gav > 2.02, suggesting that the latter fit
with a negative D value is more consistent with the
magnetometry experiments. In addition, computational studies
with various methods further suggest that the sign of D is
negative (vide infra).
3.3. Dynamic Magnetic Properties. Recently, metal−

radical complexes have been extensively pursued as a viable
route for improved magnetically coupled systems with SMM
behavior.12,21 In 1, the strong exchange coupling between the
α-diiminato radical and the high-spin iron(II) leads to an
effective S = 3/2 magnetic center in an axially distorted

tetrahedral coordination environment, which is typically
expected to give rise to SMM behavior.81,82 The large
magnitude of the exchange coupling constant, |J| > 250
cm−1, ensures a large separation between the low-lying spin
excited states and the ground state. Such a large separation of
the excited states is expected to eliminate a possible fast
relaxation pathway that could otherwise be detrimental to the
thermal energy barrier. In addition, strongly coupled radical
discrete molecules were shown to exhibit a significant
enhancement of the thermal relaxation barriers up to the
theoretical maximum due to the suppression of quantum
tunneling pathways.26 Thus, despite of the relatively small
easy-axis anisotropy (−4 cm−1 < D < 0), a small effective
energy barrier to the spin reversal was expected (maximum
relaxation barrier U = (S2 −1/4) |D| for half-integer spin
systems when S = 3/2 and U = 2|D|). Indeed, the AC
susceptibility measurements of compound 1 revealed a field-
induced out-of-phase AC signal up to 2.5 K, as shown in Figure
6, which is indicative of possible SMM behavior. To determine
the optimum applied DC field, the frequency-dependent AC
measurements of 1 were scanned under different applied DC
fields to give the best signal under 1000 Oe (Figure S2). The
frequency-dependent measurements at different temperatures
in the range of ν (1−1500 Hz) were measured for the pure
sample over the temperature range 1.8−2.5 K under a 1000 Oe
DC field (Figure 7). The data were fit using a Debye model83

to give an estimated energy barrier Ueff = 5.3 cm−1 and a pre-
exponential factor τ0 = 7.5 × 10−6 s (1000 Oe) (Figure S3).
Notably, the effective relaxation barrier exactly matches the
theoretical maximum barrier, U = 2|D| (|D| = 2.65 cm−1, EPR).
Thus, these results demonstrate the potential for using strongly
exchange-coupled nonbridging radical ligands to achieve slow
magnetic relaxation in mononuclear transition metal com-
plexes even when the magnetic anisotropy is relatively small.
While a number of mononuclear iron complexes, including
iron(I),84,85 iron(II),86−95 and iron(III) complexes,96−98 have

Figure 4. χT versus T plots (blue circles) for 1. Simulations were done using PHI software79 (J = −100 cm−1, green; J = −250 cm−1, red; and J =
−600 cm−1, black), where |Dion| (E) = 2.24 (0.55) cm−1. The inset shows variable temperature field-dependent magnetization data for 1 at 1.8−4.5
K.

Figure 5. X-Band EPR spectrum of 1 at 10 K (9.3766 GHz, 10 G
modulation amplitude, and 2 mW) (blue) and effective S = 3/2 fit
(orange) with g = 2.19, 1.94, 1.84; D = −2.65 cm−1; and E/D = 0.073.
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been reported to exhibit SMM behavior, only one example41

besides complex 1 contains a radical ligand. In that case, the
relaxation time was not reported due to the lack of a clear
maximum in the out-of-phase AC susceptibility.
3.4. Computational Studies. Density functional theory

calculations were performed on 1 to evaluate its electronic
structure in greater detail. Using the molecular structure
derived from crystallographically determined coordinates,
initial single-point energies that used the BP86 functional
revealed that the quartet state was lower in energy than the
sextet, which is consistent with the experimental finding.
Consequently, the quartet wave function was used for the
optimization. DFT (BP86) predicts a tetrahedral geometric
structure, which is in close agreement with the structure

derived from the X-ray crystallography of 1. Specifically, two of
the thioether arms are coordinated to the iron at Fe−S
distances of 2.285 and 2.288 Å, with an S−Fe−S angle of 94.4°
(experimental Fe−S 2.316(1) and 2.334(1) Å and a S−Fe−S
angle of 93.84(2)°). The computed Fe−N distances of 1.981
and 1.989 Å and the N−Fe−N angle of 85.4° compare well to
the experimentally determined metric parameters (Fe−N
1.971(2) and 1.976(2) Å and a N−Fe−N angle of
84.92(6)°). The ligand bond lengths of C−N 1.349 and
1.347 Å and C−C 1.408 Å are consistent with the formulation
of L as a monoanionic π-radical (experimental C−N 1.336(2)
and 1.332(2) Å and C−C 1.395(3)).
The inspection of the frontier molecular orbitals from a

single-point calculation (TPSSh) of 1 further supports a high-
spin ferrous and L π-radical assignment (Figure 8). Using the

unfilled orbitals, which reflect the uncompensated spin of their
filled counterparts, four spin-down, predominantly iron, 3d
orbitals were found, which is reflective of a high-spin ferrous
(d6) electronic structure. A spin-up π* orbital of the α-diimine
ligand was also identified (213α), indicating the presence of an
α-diimine radical ligand. The ⟨S2⟩ value of this quartet was
4.45 and became 3.77 after the removal of the first spin
contaminant, which is close to the expected value of 3.75 for an
S = 3/2 system. Thus, J can be estimated using the formalism
of Yamaguchi by

= −
⟨ ⟩ − ⟨ ⟩

J
E E

S S

LS HS

2LS 2HS
(3)

where LSE and HSE are the SCF energies of the S = 3/2 and S =
5/2 states, respectively, and ⟨S2⟩ is the spin expectation value
of the respective calculation. This yielded a sizable J value of
−657 cm−1. When interpreted in the context of the molecular
orbitals, there exists a single ef f icient pathway for magnetic
exchange out of four possible pathways for this antiferromag-
netic coupling, wherein the ligand radical strongly interacts
with the Fe 3dxy (213β) orbital to strongly stabilize the S = 3/2
state.
TD-DFT (TPSSh) calculations were performed to aid in the

assignment of the electronic excited states. For computational
efficiency, a truncated model of 1 was created (1*) where the
heavy-atom positions were frozen to the larger model positions
(see the Computational Methods section). This choice was

Figure 6. Temperature dependence of the AC signal in 1.

Figure 7. Frequency dependence of the AC signal in 1.

Figure 8. Quantitative FMO diagram of 1 (TPSSh/Fe,S,N:Def2-
TZVP;C,H,B:Def2-SVP).
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justified based on the nearly identical quartet−sextet splitting
and g-tensor calculations (see below). Vacuum and solvated
calculations were performed on 1* and both yielded
qualitatively similar results compared to those of the
experimental spectrum, lending confidence to the band
assignments (Figure S6 and Table S7) and the overall
electronic structure model. The prominent feature at 402 nm
in the experimental spectrum was determined to be two closely
spaced transitions at 402 and 404 nm, which are composed of
coordinated thioether S pσ → Fe 3dyz and thioether S pσ → L
π3 transitions in nature. The shoulder on the low-energy side of
this transition, which was experimentally observed at 456 nm,
is correlated to a TD-DFT transition at 496 nm, L π3 → Fe dxy.
The dominant higher-energy transition was predicted to be L π
→ L π* overlapped with less-intense thioether S pσ → Fe d
transitions.
The close spacing of the LMCT transitions and the

significant spin contamination in the quartet from the sextet
led us to consider the electron correlation with a benchmark
CCSD(T) methodology and the multireference character with
a CAS methodology. These calculations used the truncated
model 1* for computational feasibility. CCSD(T) incorrectly
orders the sextet state as lower in energy than the quartet.
Moreover, the calculation of the fractional occupation number-
weighted electron density (Table S10) demonstrated signifi-
cant Fermi smearing (ρFOD = 1.68) across the Fe and diimine
radical−ligand π-system. The large delocalized ρFOD value
indicates a true multireference wave function and suggests that
a multiconfigurational methodology (i.e., CAS) should be
employed at minimum.
The broken-symmetry DFT wave function of 1* was used to

generate quasi-restricted orbitals (QROs) for the initial
CASSCF guess. The active space was systematically expanded
by the addition of occupied and virtual orbitals to include
orbitals with occupancy N between 0.005 and 1.995. Guided
by the plot of the FOD, the π-system of the alpha-diimine, S pσ
orbitals, and the Fe 3d set were considered, but the final 11
electrons in the 14 orbitals solution also included the “double-
shell” unoccupied Fe 4d orbitals99 and not the S pσ orbitals.
This calculation yielded a strongly multiconfigurational ground
state spanning the following three configurations (Table S11):
48% (3dxy)

2(π3)
0, 29% (3dxy)

1(π3)
1, and 18% (3dxy)

0(π3)
2

(invariant active orbitals were omitted). The (3dxy)
1(π3)

1

configuration is equivalent to the broken-symmetry Kohn−
Sham determinant. These three configurations mirror the
common resonance forms of the α-diimine ligand and suggest
a significant ionic contribution to bonding, which is weighted
toward the Fe(I) and neutral α-diimine description (−5J =
1706 [1992] cm−1 (square brackets indicate the NEVPT2
corrected value)). An investigation of quartet and sextet
excited states of the final CAS(11,14) wave function revealed
several low-lying states on each spin manifold. Thus, final
molecular orbitals were optimized by the systematic inclusion
of quartet and sextet roots; ultimately, five of each spin were
equally weighted to generate a state-averaged (SA) CAS
solution. The SA-CAS ground state configurations indicate a
less ionic ground state, and inclusion of the four low-lying
quartet excited states shift the configurational weighting
toward the Fe(II)−α-diimine radical description (Figure 9
and Table S13). The first sextet excited state is composed of a
single dominant configuration, (3dxy)

1(π3)
1, regardless of if the

orbitals are state averaged, again reflecting that this state is
well-described by a single determinant. The state-averaged

quartet−sextet energy gap (−5J) is 1301 [1715] cm−1 (the
NEVPT2 is indicated by square brackets), which is indicative
of the strong antiferromagnetic coupling.
With the above computational methods, we further

investigated the spectroscopic properties using the truncated
model 1* to compare them with the experimental values
(Tables 1 and S14). Mössbauer parameters for the quadrupole
splitting ΔEQ (−2.995 mm/s) and the isomer shift δ (0.523
mm/s) were computed by DFT(TPSSh) and match
reasonably well with the experimental values (δ 0.60 mm/s
and ΔEQ = −4.03 mm/s), further indicating that the DFT
model effectively describes the electronic structure of 1. The
calculation of the isomer shift requires fitting constants that are
not available for CAS or CCSD(T). Nonetheless, the
quadrupole splitting values can be directly calculated with
these methods (CAS ΔEQ = −3.572 mm/s CCSD(T) ΔEQ =
−3.560 mm/s) and are in good agreement with the
experimental value. Computational EPR parameters (g11, g22,
g33, D, and E/D) were also computed. The computational
values were in agreement with the experimental values, with all
methods yielding negative D values; however, the CAS
approaches overestimate the rhombicity, leading to E/D ratios
significantly larger than the experimental values.

■ CONCLUSIONS
The idea of incorporating a radical ligand in the design of
SMMs has received increasing attention in recent years. In this
context, we described the first α-diiminato radical-containing
mononuclear transition metal SMM, namely, [κ2-PhTttBu]Fe-
(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe-
(CyNCHCHNCy) (2). X-ray crystallography; electronic,
EPR and Mössbauer spectroscopies; SQUID magnetometry;
and DFT and CAS calculations were employed to fully
elucidate the geometric and electronic structures. 1 and 2
feature nearly identical geometric and electronic structures,
both of which contain pseudotetrahedral high-spin iron(II)
ions antiferromagnetically coupled to the α-diiminato radicals.
The variable-temperature magnetic susceptibility data of 1
suggest strong exchange coupling between the high-spin
ferrous ion and the ligand radical, with an estimated coupling
constant J < −250 cm−1. Such a strong magnetic coupling is
supported by theoretical calculations. In particular, exper-

Figure 9. Dominant configurations in the ground state (S = 3/2) and
first excited state (S = 5/2) based on a CAS(11,14) calculation using
state-averaged orbitals (5 quartet roots +5 sextet roots). The energy in
the square brackets is the NEVPT2 corrected.
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imentally gauged DFT calculations predict an exceptionally
large coupling constant of J = −657 cm−1.
EPR spectroscopy, SQUID magnetometry, and computa-

tional analysis suggest that 1 possesses an easy-axis anisotropy,
with axial ZFS −4 cm−1< D < −1 cm−1. Consistent with a
negative D value and a large |J| value, which likely suppress
quantum tunneling processes, 1 exhibits slow magnetic
relaxation behavior with an energy barrier close to the
theoretical maximum 2|D|. These results demonstrate that
incorporating a strongly coupled radical ligand, such as the α-
diiminato radical, into mononuclear transition metal complexes
can be an effective route to SMMs.
Further insight into the electronic structure of 1 and 2 was

provided by calibrated CAS calculations, which revealed that
the ground state Fe(II)−α-diiminato radical configuration has
significant ionic contributions that are weighted specifically
toward the Fe(I)-neutral α-diimine formalism. While it is
unknown how the dynamics of the magnetic relaxation
correlate with the electronic structure, it will be of interest to
interrogate the structure−property relationship in the future by
switching to more electron-accepting α-diimine ligands so that
the Fe(II)−α-diiminato radical state is more dominant.
Preparing new Fe(II)−α-diiminato radical complexes with
larger |D| values and thus higher energy barriers to magnetic
relaxation is also of interest.
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Table 1. Comparison of Computationally Derived Spectral Parameters with Experimenta

DFT CCSD(T)b CAS(11,14)c SA-CAS(11,14)d EXP

magnetic coupling
J (cm−1) −657 +284 −341 [−398] −260 [−343] <−250

Mössbauer
δ (mm/s)e 0.523 0.60
ΔEQ (mm/s) −2.995 −3.560 −3.572 −3.571 −4.03

electron paramagnetic resonance
g11 2.015 2.020 2.018 [2.023] 2.039 [2.035] 1.84
g22 2.032 2.052 2.042 [2.045] 2.063 [2.058] 1.94
g33 2.034 2.103 2.073 [2.081] 2.101 [2.092] 2.19
D (cm−1)f −3.554 −1.324 −2.368 [−2.550] −2.671 [−2.526] −2.65
E/Df 0.086 0.043 0.321 [0.279] 0.277 [0.291] 0.073

aValues in square brackets are SC-NEVPT2 corrected values. bCCSD(T) with the domain local-pair natural orbital approximation. cUsed the
ground-state orbitals with five quartet roots and five sextet roots. dUsed state-averaged orbitals with five quartet roots and five sextet roots. eCCSD
and CAS calibration tables for the calculation of δ are not available; fZero-field splitting parameters from the second-order spin−orbit coupling
contribution.
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