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Analysis of maturation features in fetal brain
ultrasound via artificial intelligence for the estimation
of gestational age
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BACKGROUND: Optimal prenatal care relies on accurate gestational
age dating. After the first trimester, the accuracy of current gestational
age estimation methods diminishes with increasing gestational age. Con-
sidering that, in many countries, access to first trimester crown rump
length is still difficult owing to late booking, infrequent access to prenatal
care, and unavailability of early ultrasound examination, the development
of accurate methods for gestational age estimation in the second and third
trimester of pregnancy remains an unsolved challenge in fetal medicine.
OBJECTIVE: This study aimed to evaluate the performance of an artifi-
cial intelligence method based on automated analysis of fetal brain mor-
phology on standard cranial ultrasound sections to estimate the
gestational age in second and third trimester fetuses compared with the
current formulas using standard fetal biometry.
STUDY DESIGN: Standard transthalamic axial plane images from a
total of 1394 patients undergoing routine fetal ultrasound were used to
develop an artificial intelligence method to automatically estimate gesta-
tional age from the analysis of fetal brain information. We compared its
performance—as stand alone or in combination with fetal biometric
parameters—against 4 currently used fetal biometry formulas on a series
of 3065 scans from 1992 patients undergoing second (n=1761) or third
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trimester (n=1298) routine ultrasound, with known gestational age esti-
mated from crown rump length in the first trimester.
RESULTS: Overall, 95% confidence interval of the error in gestational
age estimation was 14.2 days for the artificial intelligence method alone
and 11.0 when used in combination with fetal biometric parameters, com-
pared with 12.9 days of the best method using standard biometrics alone.
In the third trimester, the lower 95% confidence interval errors were
14.3 days for artificial intelligence in combination with biometric parame-
ters and 17 days for fetal biometrics, whereas in the second trimester, the
95% confidence interval error was 6.7 and 7, respectively. The perfor-
mance differences were even larger in the small-for-gestational-age
fetuses group (14.8 and 18.5, respectively).
CONCLUSION: An automated artificial intelligence method using stan-
dard sonographic fetal planes yielded similar or lower error in gestational
age estimation compared with fetal biometric parameters, especially in
the third trimester. These results support further research to improve the
performance of these methods in larger studies.
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Introduction

O ptimal prenatal care relies on
accurate gestational age (GA)

dating.1,2 GA estimation is essential for
many perinatal interventions, such as
fetal lung maturation, the use of magne-
sium for neuroprophylaxis in preterm
infants, induction of delivery, and even
neonatal resuscitation.3−6 Inaccurate GA
estimation can lead to suboptimal or iat-
rogenic prenatal care. At 11 to 13+6

weeks, the crown rump length (CRL)1,2
measurement predicts GA within
§4.7 days.7−9 After the first trimester,
biparietal diameter (BPD) and head cir-
cumference (HC) are considered the best
single predictors for GA estimation,10,11

whereas the combination of BPD, HC,
PA, and femur length (FL) has shown
higher accuracy in the second trimester.12

Although many regression equations
have been described to estimate GA in
the second and third trimester,13−18 the
reported accuracy is still substantially
lower than CRL dating and diminishes
with increasing GA. The reported devia-
tion is around 12 to 14 days at 26 weeks’
gestation, whereas it increases to
>19 days later in the third trimester.
Considering that, in many countries,
access to first trimester CRL is still diffi-
cult owing to late booking, infrequent
access to prenatal care, and unavailability
of early ultrasound examination,19,20 the
development of accurate methods for
GA estimation in the second and third
trimester of pregnancy remains an
unsolved challenge in fetal medicine.
The field of artificial intelligence (AI)

has had remarkable progress during the
last decade, owing to deep learning (DL)
algorithms,21 and it is now a part of our
daily lives. In medicine, AI methods have
shown their potential to quantitatively
analyze images (classifying and measur-
ing structures, organs, lesions, etc) on a
wide set of medical images, such as cardi-
ology,22 radiology,23 or dermoscopy,24 to
name just a few. The potential use of AI
applied to fetal ultrasound has been
recently reported,25 and several groups
have evaluated its use for fetal
diagnosis.26,27 The use of AI for GA esti-
mation has been attempted in prelimi-
nary studies. Considering that the brain
undergoes significant morphologic
changes during fetal development,28 pre-
vious approaches have been based on
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AJOG MFM at a Glance

Why was this study conducted?
This study aimed to evaluate whether artificial intelligence (AI) could improve
gestational age (GA) dating in the second and third trimester.

Key findings
An automated AI tool yielded similar or lower error in GA estimation compared
with fetal biometric parameters, especially in the third trimester.

What does this add to what is known?
AI can be used to improve current accuracy in GA estimation in the second and
third trimester from standard brain ultrasound.
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automatic fetal brain biometric parame-
ters29 or from an in-depth analysis of
brain features using 3-dimensional (3D)
ultrasound or fetal magnetic resonance
imaging (MRI).30,31 However, to our
knowledge, no attempts have been made
to perform this analysis with 2D ultra-
sound.
The goal of this study was to

develop a novel AI method to auto-
matically estimate GA from the rou-
tine brain transthalamic axial plane
on 2D ultrasound and to compare its
performance against current formulas
based on standard fetal biometric
parameters on a large cohort of preg-
nancies.
Materials and methods
Study design
This was a prospective observational
study performed at BCNatal, Barce-
lona Center for Maternal-Fetal and
Neonatal Medicine (Hospital Clinic
and Hospital Sant Joan de D�eu, Bar-
celona, Spain). The study protocol
was approved by the local ethics com-
mittee on March 14, 2019, under pro-
tocol identifier HCB 2018/0031, and
patients provided written informed
consent to use US images for research
purposes.
A total of 8580 images from 2034

patients were acquired during stan-
dard clinical practice for 6 months,
between September 2019 and Febru-
ary 2020. All pregnant women attend-
ing for routine ultrasound at the
second or third trimester of preg-
nancy were included in the study.
Congenital fetal malformations,
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aneuploidies, and multiple pregnan-
cies were excluded from the study.
GA was determined by CRL measure-
ments on first-trimester ultrasound7

and ranged from 16 to 42 weeks.

Fetal biometry measurements and
image acquisition
Ultrasounds were performed by clini-
cians with varying degrees of expertise.
Voluson E6 (GE Medical Systems, Zipf,
Austria), Voluson S8, Voluson S10, and
Aloka (Aloka Co, Ltd, Tokyo, Japan)
were used for image acquisition by
means of abdominal ultrasound using a
curved transducer with a frequency
range from 3 to 7 Mhz. GA at ultrasound
evaluation and fetal biometric parame-
ters (BPD, HC, abdomen circumference
[AC], and FL) measured manually were
recorded. Estimated fetal weight and
fetal percentile according to sex and local
charts32 were calculated. Fetuses were
classified as normal (10≤percentile≤97),
small-for-gestational-age (SGA) (percen-
tile<10), or large-for-gestational-age
(LGA) (percentile>97).

Images were stored during fetal ultra-
sound evaluation by either sonogra-
phers or fetal medicine specialists. The
images were retrieved from the picture
archiving and communication system,
and we used the exact same images
taken for actual clinical measurements
(BPD and HC), avoiding the use of any
type of postprocessing or artifacts, such
as smoothing, noise, pointers, or cali-
pers. Other image settings parameters,
such as gain, frequency, and gain com-
pensation, were left to the discretion of
each operator. Images were stored in
the original Digital Imaging and
Communication in Medicine (DICOM)
format.

Gestational age estimation via
artificial intelligence
A novel method for GA estimation
from the transthalamic plane (axial
plane for BPD measurement) was devel-
oped using state-of-the-art DL techni-
ques. The method is based in supervised
learning and therefore required a previ-
ous learning stage. It was trained using
images from 1394 patients collected
during the months before the evaluation
set used in this study, under the same
protocol. These images were manually
labeled with the orientation and specific
brain landmarks by a maternal-fetal
specialist (B.V.A.) using computer soft-
ware. This was necessary for the method
to learn to locate the brain in the image
(first step of the method).We coined
this new method quantusGA.
The outline of how quantusGA works

is shown in Figure 1. It receives the fetal
brain ultrasound image in DICOM for-
mat as input and provides GA estima-
tion, in days, as the final output. The
method is not limited to the measure-
ment of a specific set of structures of
the fetal brain; it combines textural
information together with pixel resolu-
tion in mm of the image (which is
stored in the DICOM) for a more
robust estimation. This is important for
the method to work on any image, con-
sidering that ultrasound settings were
not standardized and different
machines were used. Therefore, brain
resolution in pixels varied between
studies. Optionally, the method can
incorporate fetal biometric parameters
for GA estimation (we provide results
both with and without fetal biometrics).
QuantusGA performs the following 3

steps: (1) it automatically detects the
position and orientation of the fetal
brain in the image by detecting the skull
and internal key points, such as the
midline and the anterior/posterior
regions; (2) the key point positions are
used to crop and rotate the brain, result-
ing in a horizontally aligned brain
image; and (3) it extracts textural and
size information from the brain pixels
and uses this information (optionally in



FIGURE 1
Proposed AI method (quantusGA) outline

Brain key points are based on HC/BPD measurement: (1) midline sinciput (front), (2) cavum septum, (3) midline center, (4) mirror point with respect to
cavum septum along midline, (5) midline occiput (back), (6) upper parietal bone at 90° angle from the midline center, and (7) lower parietal bone at 90°
angle from the midline center.
BPD, biparietal diameter; HC, head circumference.
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combination with fetal biometric
parameters) to estimate GA. Each step
is explained in more detail below.
Brain key point detection: The first

step uses a deep convolutional neural
network (CNN)21,33 to detect 2D key
points in the brain image. The network,
previously trained on 1394 patients, is
capable of detecting the position in the
image of key structures, such as the
midline, skull contour, anterior horns,
and cerebellar hemisphere.
Brain alignment: Using standard 2D

Euclidean geometry from the aforemen-
tioned 2D brain key points, an oriented
ellipse can be fitted to the image, pro-
viding the centroid, orientation, and
extrema of the brain. Then, the fetal
brain image is cropped and rotated in
such a way that the midline is fully hori-
zontal and the anterior part of the brain
is located to the right.
Final GA estimation: Once the fetal

brain image is aligned, another deep
CNN21,33 (previously trained using
the same 1394 patients) is used to
estimate GA from the brain image
pixels and the image resolution. The
image resolution is extracted directly
from the DICOM and is important to
provide the network internally with
information on the true size of the
structures seen in the image.

The CNN used was an XCeption34

adapted to the task by replacing regular
convolutions by a series of slightly
altered coordinated convolutions35

layers, which incorporated image reso-
lution into the computation. The con-
volutional part of the network extracts
textural and size information from the
pixels, whereas the last layers (predictor
part of the network) use this informa-
tion to estimate GA in days, using a lin-
ear regression. The linear regression can
optionally also receive as input the value
of fetal biometric parameters (BPD, HC,
AC, FL) in mm, which it then combines
together with the textural and size infor-
mation extracted from the image to esti-
mate GA using a stepwise regression.

Artificial intelligence evaluation and
comparison
quantusGA was directly compared with
the following 4 different fetal biometry
GA estimation strategies based on the
same data: (1) the use of fetal brain bio-
metric parameters (BPD and HC).15,16

This method was evaluated to analyze
whether our method was capable of
extracting more information from the
brain image than cephalic biometric
parameters alone; (2) the use of all 4
biometric parameters through classic
Hadlock formula13; (3) the use of HC
and FL, the formula with current best
reported results for second and third
trimester pregnancies developed for the
Intergrowth project17; and (4) using all
4 biometric parameters through sec-
ond-best reported results for second
and third trimester pregnancies, a
formula proposed by the Eunice Ken-
nedy Shriver National Institute of Child
Health and Human Development
(NICHD).18 All formulas were evalu-
ated for a comprehensive comparison
against current state-of-the-art meth-
ods.
Statistical analysis
All statistical analyses were performed
using python (Python Software Founda-
tion, Wilmington, DE). All the methods
mentioned above were applied to all
available ultrasound studies, storing the
output: GA estimation in days. When-
ever several images of the same patient
with the same study date were available,
the average GA estimation was used
(both for biometrics and AI method).
November 2021 AJOG MFM 3



TABLE 1
General characteristics of the study population

Variable Mean§SDor n (%) Range

Number of patients 1992 —
Number of distinct visits 3065 —
Number of images 8391 —
Brain images or visits 2.7§1.4 1−25

Number of visits or patients 1.5§0.9 1−7

GA at scan 25.8§6.2 16.2−41.2

Male 912 (45.8) —
Percentile 53.7§25.9 0−100

SGA (percentile ≤10) 124/1992 (6.2) —
LGA (percentile >97) 96/1992 (4.8) —
BPD (mm) 64.5§17.1 15−100

HC (mm) 237.9§62.1 49−390

AC (mm) 222.7§68.7 20−483

FL (mm) 47.1§14.8 18−100
Full GA distribution is shown in the Supplemental Figure.

AC, abdomen circumference; BPD, biparietal diameter; FL, femur length; GA, gestational age, HC, head circumference; LGA,
large for gestational age; percentile, fetal growth percentile computed from estimated fetal weight; SD, standard deviation; SGA,
small for gestational age.

Burgos-Artizzu. Gestational age estimation from fetal brain ultrasound via artificial intelligence. Am J Obstet
Gynecol MFM 2021.
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Then, the estimated GA was compared
with gold-standard GA obtained from
CRL during the first trimester of preg-
nancy. Regression errors, such as R-
squared, the average absolute deviation,
and its 95% confidence interval, and the
proportion of errors above 2 weeks
were computed.
Furthermore, the power of the differen-

ces between the regression errors of the
different techniques were analyzed by
means of statistical power sampling using
a level of significance (alpha) of 0.05 (5%).

Results
Study population
Table 1 summarizes the characteristics
of the study population. A total of 1992
patients were included in the study.
Half of the patients had >1 ultrasound
examination during the pregnancy,
resulting in a total of 3065 scans. The
number of brain images recorded dur-
ing each ultrasound was on average 2.7
(§1.4). The total fetal ultrasound brain
image count was 8391. Mean GA was
26.5 (§6.5) weeks (range, 16+0−41+2
4 AJOG MFM November 2021
weeks). The Supplemental Figure shows
the full GA distribution histogram.
Gestational age estimation
Table 2 shows the results of GA estima-
tion on the 3065 ultrasound studies
from 1992 patients. The new AI model
estimated GA with a 95% CI deviation
of 14.2 days (standard error, 4.76 days).
In comparison, 95% CI deviation results
of the biometry calculators were
18.8 days for the brain biometry calcula-
tor (BPD and HC),15,16 13 days for
Hadlock,13 14.9 days for Intergrowth,17

and 12.9 days for NICHD.18 Adding all
biometric parameters to the AI model
improved results, with a 95% CI devia-
tion of 11 days (standard error, 3.74
days).

In second trimester fetuses (N=1761),
the AI method had a 95% CI deviation
of 6.7 and 8.6 days with and without the
association of fetal biometric parame-
ters, respectively. Deviations for biome-
try calculators alone were 13.8 days for
BPD and HC,15,16 7.1 days for
Hadlock,13 7.2 days for Intergrowth,17

and 7 days for NICHD.18

In third trimester fetuses (N=1298),
the AI method had a 95% CI deviation
of 14.3 and 17.9 days with and without
the association of fetal biometric
parameters, respectively. Deviations for
biometry calculators alone were
24.1 days for BPD and HC,15,16

18.4 days for Hadlock,13 18.8 days for
Intergrowth,17 and 17 days for
NICHD.18 Large errors were reduced
from 7.9% to 5.5% when using the
method in combination with biometric
parameters, compared with best biome-
try results.
Figure 2 shows the scatter plots for

each of the 6 methods (brain biometry
calculator,15,16 Hadlock,13 Intergrowth
calculator,17 NICHD,18 AI method
alone, and AI method and FL) using all
ultrasound studies (N=3065).
The statistical power between the

deviations from true GA when using
NICHD18 vs the AI method alone was
8% (small differences between the 2).
However, the power when comparing
the errors of NICHD vs those of the AI
method and biometric parameters was
99% (clearly different). Power between
the AI method alone and brain biome-
try calculator15,16 was >99% (clearly dif-
ferent).
Table 3 shows the results on GA esti-

mation on SGA (weight percentile ≤10)
and LGA (weight percentile >97)
fetuses. In the 137 SGA studies, the new
AI model estimated GA with a 95% CI
deviation of 14.8 days (standard error,
5.4 days). In comparison, deviations for
biometry calculators alone were
28.3 days for BPD and HC,15,16

24.3 days for Hadlock,13 18.5 days for
Intergrowth,17 and 20 days for
NICHD.18 Adding biometrics to the
model did not improve results (devia-
tion of 15.5 days).
In 104 LGA studies, the new AI

model estimated GA with a 95% CI
deviation of 19.8 days (standard error,
7.64 days). In comparison, deviations
for biometry calculators alone were
29.5 days for BPD and HC,15,16

21.9 days for Hadlock,13 34 days for
Intergrowth,17 and 20.5 days for
NICHD.18 Adding biometrics to the
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model further improved results (devia-
tion of 17.8 days).

Comment
Principal findings
We developed an AI method (coined
quantusGA) to estimate GA directly
from a routinely used plane in all fetal
ultrasound screenings. The method
estimates GA from a standard transtha-
lamic plane, where BPD and HC are
usually measured. This AI was devel-
oped for this purpose using a single
ultrasound image acquisition. The AI
model here evaluated, when used in
combination with FL, provided a statis-
tically different and more accurate GA
estimation than biometric evaluation.
Furthermore, the errors observed were
lower than other previous approaches
using other specialized biometrics,36 3D
ultrasound,30 or MRI,31 especially in
the third trimester of pregnancy. Using
the entire image and its whole resolu-
tion, the method was able to detect
changes relevant for GA estimation not
identifiable by the human eye, likely
associated to brain growth and matura-
tion.

Comparison with previous results/
studies
The results of this study are in line with
previous studies suggesting that AI
methods might be a way forward to aid
in the estimation of GA. A recent study
by Namburete et al30 reported the use
of an automated framework for predict-
ing GA and neurodevelopmental matu-
ration based on 3D ultrasound volumes
of the fetal brain, showing promising
results (95% CI, §11.6 days). In this
study, we report a similar performance
(95% CI, §11 days) using a 2D-based
approach. Other studies31 have
reported fetal age estimation from T2-
weighted MRI images, using an auto-
mated AI framework. Average error
reported was 5.37 days, with an R2 of
0.92 (95% CI was not reported). We
found a similar or slightly better perfor-
mance using 2D ultrasound, with the
obvious advantages of ultrasound over
MRI in terms of clinical applicability.
Therefore, our results are in line with
previous studies and further provide a
November 2021 AJOG MFM 5



TABLE 3
Performance on small-for-gestational-age and large-for-gestational-age fetuses

Method

SGA (percentile ≤10)
All GA, 16−42 wk

137 ultrasound studies124 patients

LGA (percentile >97)
All GA, 16−42 wk

104 ultrasound studies96 patients

R2 Mean deviation(d) 95% CI(d) Error>14 d(%) R2 Mean deviation(d) 95% CI(d) Error>14 d(%)

Fetal biometrics

Brain only15,16

(BPD and HC)
0.802 14.25 28.3 33.6 0.722 12.86 29.5 33.7

Hadlock13

(BPD, HC, AC, FL)
0.908 10.23 24.3 19.7 0.897 9.06 21.9 11.5

Intergrowth17

(AC, FL)
0.930 6.98 18.5 10.9 0.774 13.82 34.0 43.3

NICHD18

(BPD, HC, AC, FL)
0.949 7.29 20.0 13.1 0.862 12.22 20.5 45.2

Computational AI model

quantusGA 0.970 5.40 14.8 5.8 0.944 7.64 19.8 15.4

quantusGA+(BPD, HC, AC, FL) 0.970 5.40 15.5 7.3 0.934 8.41 17.8 18.3
R2 = R-squared. Avg error (d) = average absolute error in days, 95% CI (d) = 95% CI of the absolute error in days. Error >14 d (%) = percentage of cases where error was >2 weeks.

AC, abdomen circumference; Avg, average; BPD, biparietal diameter; CI, confidence interval; FL, femur length; GA, gestational age, HC, head circumference; LGA, large for gestational age; NICHD,
National Institute of Child Health and Human Development; SGA, small for gestational age.
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clinically feasible approach that can be
tested in large numbers of cases,
because it is applied on routine ultra-
sound sections now used in standard
practice.
Of note, the AI method reduced the

occurrence of large errors, defined as
GA estimation deviations >14 days, by
almost half. Finally, an observation with
high potential was that the performance
of the method here tested significantly
improved results on SGA and LGA
fetuses, although this notion requires
confirmation in studies with a larger
sample size.

Clinical implications
From a clinical standpoint, this study
supports that AI is able to extract addi-
tional information from ultrasound
images that might improve the accuracy
of estimating GA based on currently
used methods. The AI could be inte-
grated in automated software applicable
in any ultrasound machine. This appli-
cation would be particularly relevant for
large areas worldwide, where large
numbers of women still have late book-
ing in pregnancy and therefore access to
first trimester ultrasound is not
6 AJOG MFM November 2021
guaranteed. Here, the method described
is based on a routine axial section and
therefore no additional training is
required to acquire the image. We have
previously shown that AI-based meth-
ods are robust and can be used in differ-
ent ultrasound machines.6,27 This study
was performed using images from dif-
ferent ultrasound machines of mid- to
high-range quality. Images were taken
by different operators during routine
clinical practice, with no specific
instructions or constraints on image
quality or machine settings. Therefore,
we expect the system here described to
be fairly robust with respect to the
acquisition environment.

Strengths and limitations
This study has several strengths. Images
were collected from 2 different sites
using different machines and presets in
accordance of each technician, therefore
mimicking real clinical conditions. A
new model was designed and evaluated,
fully capable of estimating GA estima-
tion from a fetal ultrasound brain image
more reliably than using the brain fetal
biometric parameters alone. Moreover,
the method is automated and
complementary to biometrics, such that
both can be combined for a more accu-
rate estimation, and results were prom-
ising also on small and large fetuses
evaluated. Finally, it is important to
note that no image filtering or quality
check was performed whatsoever; the
method was tested on real clinical
images without any human intervention
tailored to improve results.
We acknowledge some limitations of

this study. First, the AI method was
trained using patients from the same
sites as the evaluation set, and in both
cases, the data were skewed by the
much larger numbers studied at 20
weeks. However, the number of patients
used to train the method was lower
than the evaluation patients (1394 to
train and 1992 to evaluate, which trans-
lates as a 41%/59% split), and the train-
ing patients were randomly selected,
which mitigates overfitting concerns.
Nevertheless, further research to con-
firm the results of this study in a larger
and less homogeneous population will
be pursued. Second, the main goal of
this study was to develop an AI method
to automatically estimate GA from the
routine transthalamic axial plane on 2D



FIGURE 2
Scatter plots on all distinct ultrasound studies

a, Brain biometrics only.15,16 b, Hadlock.13 c, Intergrowth.17 d, NICHD.18 e, AI method (quantusGA). f, AI method (quantusGA) combined with all fetal
biometrics.
NICHD, National Institute of Child Health and Human Development.
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ultrasound. For this reason, fetal mal-
formations, such as holoprosencephaly,
ACC, and hydrocephaly, were excluded,
and we have no data in this respect.
The use of this AI model offers better

accuracy in GA estimation; however,
there is still deviation when compared
with dating by CRL measurement in
first trimester, so the development of
better methods for improving estima-
tion of GA, especially in late pregnancy,
remains an unsolved challenge in
obstetrics.

Conclusions
We describe a fully automated AI
method for GA estimation, which
requires an image of the transthalamic
plane routinely obtained during fetal
standard ultrasound examination. The
method can be combined with fetal bio-
metric parameters for a more precise
GA estimation. These results should be
validated externally in large samples
and multicenter studies. The results of
this study support further research to
develop automated AI methods,
improving the accuracy of GA estima-
tion in pregnancies that could not be
dated by a first trimester ultrasound. &
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