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—— Abstract

Affirmative Sampling is a practical and efficient novel algorithm to obtain random samples of distinct

elements from a data stream. Its most salient feature is that the size S of the sample will, on
expectation, grow with the (unknown) number n of distinct elements in the data stream. As any
distinct element has the same probability to be sampled, and the sample size is greater when the
“diversity” (the number of distinct elements) is greater, the samples that Affirmative Sampling
delivers are more representative than those produced by any scheme where the sample size is fixed a
priori — hence its name. Our algorithm is straightforward to implement, and several implementations
already exist.
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1 Introduction

Drawing random samples from a population is the starting point of any statistical inference,
and also in closely related tasks arising in machine learning, information retrieval, data
stream analysis, randomized algorithms and many more.

Algorithms to sample elements without replacement from a set of N have a long history [9,
10, 24, 25, 26, 33], but a notable turning point was Vitter’s Reservoir Sampling algorithm [32]*
as it was one of the first algorithms not requiring N to be known in advance. After the
reservoir of size k is filled with the first k elements, it contains at all moments a random
sample of size k of the IV elements seen so far. This is a useful property that we would also
like to have in our sampling algorithms: namely, the ability to return a random sample at
any moment.

Despite this, in the context of (large) data streaming, where we deal with streams in which
an element can appear many times, Reservoir Sampling may not be the most appropriate
tool, as it samples all items with identical probability k/N. If there are a few elements that
appear very frequently in the data stream, the reservoir will likely only contain instances of

L Refer to Table 1 for a comprehensive comparison of Reservoir Sampling and other existing algorithms,
to Affirmative Sampling and its variant both presented in this paper.
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these few very frequent elements, and the sample won’t be representative enough to make
useful statistical inferences (e.g., to infer how many distinct elements there are in the data
stream or to make predictions about elements that are not very frequent), or to make these
inferences without too much error.

1.1 Novelty of Affirmative Sampling

Our sampling algorithm is novel, as it combines three properties. First, it is an online
algorithm, that can produce a guaranteed random sample at any time while processing a
data stream?. Second, it is a distinct sampling algorithm, which means it only keeps one
copy of a given element, no matter how frequently it may occur in the stream, and therefore
avoids being flooded by frequent elements. Third, it is able to grow the sample size when
the number of distinct elements grows, ensuring we can have a fixed error when inferring
population sizes (this is, as far as we know, a completely novel property).

More formally, the data stream Z = zi,...,2zy is a (typically very long) sequence of
items z; from some domain or universe U, where there are n < N distinct elements (we call
n the cardinality of Z). Thus underlying Z we have, on the one hand, the multiset

M=MZ)={al" 2>, ... 2l

where xf * denotes that the i-th distinct element x; occurs f; > 0 times in Z, and on the
other hand, the set X of distinct elements

X:X(Z):{$1,$2,...,l’n}.

Our goal is to obtain a sample S C X such that any distinct element z; has the same
probability to be sampled as any other. In other words, we want our sampling algorithms
to produce random samples from the underlying set of distinct elements: any sample S
of size S = |S| must have probability 1/(%) of being returned by the algorithm. Unlike
Reservoir Sampling, our algorithm therefore avoids having a sample that could be saturated
by frequent elements, by only storing one occurrence of an element in the sample — this is
generally called distinct sampling (which is the name of a family of algorithms, as well as a
specific algorithm [11]).

The problem is challenging because the cardinality n of Z is unknown, and we would
like our algorithm to avoid multiple passes, to spend very little time to process each item
in Z and to use very little memory, e.g., ©(1) or O(logn) (besides the amount of memory
for the samples, which will be usually small compared to n, say @(logn))2. Moreover, the
algorithm should not make any statistical assumptions about Z and it should work online,
that is, be able to return a random sample at any given moment of the execution.

Obtaining a random sample of k distinct elements for some fixed value k£ can be thought
as folklore (see for instance [6, 8]): using a carefully chosen hash function, it is enough to keep
the k distinct elements in Z with the largest (smallest) hash values seen so far. This method,
called bottom-k by several authors has many applications beyond random sampling (see for
example [8]). For example, it can be found at the heart of cardinality estimators like in [4, 5]

2 Nevertheless, the ideas and results in this paper apply in many other contexts.

3 These requirements, for instance, exclude computing the cardinality n with an initial pass iterating over
the stream, and uses some data structure to keep track of elements that have been seen: this would
introduce an additional initial pass, which makes the algorithm less time efficient and may not even be
an option in online applications; it would require memory proportional to the cardinality, e.g., ©(n).
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or in the estimation of the similarity of sets [6]. We can assume that the probability that the
hash value of some z; is among the k largest hash values is k/n and thus the corresponding
sample will be random. As different occurrences of x; all will have the same hash value, we
will either sample x; when processing its first occurrence or not all; moreover if some sampled
element is evicted from the sample (because some element with a larger hash value is seen
and sampled) then that element will not be sampled ever again. The sampling algorithm can
thus maintain frequency counters and other useful data about the sample elements because
we have them from their very first occurrences; every time we see a new occurrence of an
element already in the sample we can update that information accordingly.

» Definition 1. We will call dependable a sampling algorithm with this property, e.g., that
the algorithm can produce exact frequency counts for the elements in its sample.

Besides this folklore algorithm for distinct sampling mentioned above, the first algorithm
designed with that purpose in mind is the famed Distinct Sampling proposed by Wegman
in 1984 and analyzed in depth by Flajolet [11], and popularized by Gibbons?* [17]. The
algorithm was further analyzed by Louchard [28].

The size S of the sample returned by Distinct Sampling is a random variable, and it is
used (together with another parameter called the depth) to estimate the cardinality n of the
data stream. Of course, the samples are random, and they can be used to make statistical
inferences about the data stream; Distinct Sampling is also dependable. But the size of
the sample is bounded by a fixed value B (the so-called cache size), S < B; because of the
way the algorithm works, we have B/2 < E{S} < B (actually, B/2 < S < B with high
probability).

In this paper we propose a new distinct sampling algorithm called Affirmative Sampling
(AS, for short). As we have mentioned, the main difference with existing distinct sampling
algorithms is that Affirmative Sampling returns random samples of variable size S and
E{S} grows with n (despite n is unknown!). This is a very useful property, as larger

samples will give more accurate inferences if the size n of the “target” population gets large.

As the algorithms previously discussed, AS is dependable (in the meaning introduced by
Def. 1) and very easy to understand and implement, with good performance in practice. AS
draws upon the ideas behind the cardinality estimator Recordinality [20] (briefly reviewed in

Subsection 3.3 here) as well as the replacement mechanisms in hiring strategies [2, 20, 19, 21].

1.2 Plan of This Paper

In the first part of the paper (Section 2), we describe AS in detail, discuss its main properties,
and then analyze its expected performance (Subsection 2.1). In the second part (Section 3),
we discuss and analyze unbiased estimators for the proportion and the absolute number

of distinct elements satisfying a certain property (Subsections 3.2 and 3.3, respectively).

For example, we might be interested in the proportion or number of elements with relative
frequency below 1%, or the number of distinct elements occurring among the last W items
seen in the data stream. We also discuss how can we use the algorithm to draw an element
close to the median or some other o quantile — assuming some total order to compare elements
in the data stream, we want an element that is larger than « - n of the n distinct elements in
the data stream (Subsection 3.4). The samples can also be used to accurately estimate, as a
by-product, the cardinality n of the data stream (Subsection 3.3).

4 We will stick to the name Distinct Sampling used by Gibbons, instead of Adaptive Sampling used by
Flajolet and later by other authors.
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After that, in Section 4 we discuss variants of the standard AS algorithm; these are simple
modifications using slightly different rules to decide when an inspected element becomes
part of the sample or not, and in the first case, if some element is evicted from the sample
or the sample grows. To investigate these variants we profit from the generality of some of
our results (which are not specific to Affirmative Sampling, but to any algorithm drawing
random samples of distinct elements) and from the existing literature about the so-called
hiring problem, ak.a. select sets (see for example [2, 16, 19, 21, 22, 23, 27] and references
therein).

We end in Section 5 with some final conclusions and final remarks.

2 The Algorithm

Affirmative Sampling receives a single parameter k > 1, which we fix in advance, and the
data stream Z. If the number n of distinct elements in Z is equal or smaller than k£ then
the algorithm will read the entire data stream and end with a sample that represents the
whole population X (Z). This is rather uninteresting and obviously seldom happening; we
can therefore safely assume that n > k (actually, n > k).

Algorithm 1 Affirmative Sampling: the basic variant.

procedure AFFIRMATIVESAMPLING(k, Z)
fill S with the first k distinct elements (and hash values)
in the stream Z
for all remaining z € Z do
Y 1= HASH(2)
if y < y* = min hash value in S = HASH(z*) then
discard z;
else if z € S then
freq[z] := freq|z] + 1; update other statistics of z;
else if y > k-th largest hash value in S then
S = SU{z}; freq[z] :=1; ...

else > z replaces the element z* with min. hash value
S:=SU{z}\ {z*}; freq[z] :=1; ...
end if
end for
return S

end procedure

The initial phase of the algorithm collects in the sample S the first k& distinct elements in the
data stream Z, together with their hash values and frequency counts — this entails scanning
a subsequence of length > k until the (k 4+ 1)-th distinct element occurs in the data stream.
Then we enter the main loop in which we process one by one the remaining items. Let z be
the current item. If z is already in S, we just need to increment z’s frequency count (and
possibly some other associated statistics). Otherwise, we compute a hash value y for z and
compare y with the smallest hash value of any element in S. We shall assume here that hash
values have enough bits to make the probability of collisions negligible® and thus assume

5 While we cannot rule out collisions on a theoretical basis, we can safely make this assumption on
practical grounds.
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that every distinct element has a distinct hash value; moreover we will adopt the pragmatic
assumption that hash values behave as uniform random variates (see for instance [13]), that
is, for any element z and any real value = € [0, 1] we have hash(z) € [0, 1] and

Pr{hash(z) <z} = x.

Our first result links the size of the random sample S returned by AS with the number of
records in a random permutation of size n. More specifically with the number of k-records;
given a permutation o of size n, we say that i is a (left-to-right) k-record in o if o (i) < o(j)
for at most k — 1 values of j, 1 < j < 4. This is a natural generalization of the well-known
notion of records in permutations. Both standard records, k = 1, and k-records have been
discussed and studied in the literature, see [3] and references therein. Results about the
number of k-records in a random permutation were derived in [2] and later largely extended
in [21]; although computing the expected number of k-records is a mere exercise, other
moments or the probability distribution were not considered in other previous works, as far
as we know.

» Lemma 2. Let Y be the permutation of size n induced by the hash values of the corresponding
first occurrences of the n distinct elements in a data stream Z. Then the size of the sample
S returned by AS is the number of k-records in Y.

Proof. Under our assumptions of uniqueness and uniformity of hash values, the sample size
increases exactly by one each time that a new distinct element has a hash value that is among
the k largest hash values seen so far, that is, when the item is a k-record in the permutation

V. |

» Lemma 3. Let X = {x1,...,2,} be the set of distinct elements in the data stream Z. The
sample S returned by AS is random: any subset of size |S| has exactly the same probability
of being returned. In symbols, for any value of s and any subset A C X of size s

Pri{S—A||S| = s} = —.

7
S
Equivalently, any element x € X has the same probability of being sampled.

Proof. Every time we find a new item z whose hash value is larger than the minimum hash

value in S we either add z to S or replace the element z* with minimum hash value with z.

Thus, if the sample has size S at any given moment, S will contain the S distinct elements
in Z with largest hash values. By the way, this also proves that AS is dependable (see
Def. 1) — the reasoning is exactly the same as in the case of fixed size samples, returning the
k elements with largest hash values seen so far.

Since the hash values are random, any subset A of s distinct elements has the same
probability of being the subset of elements with the s largest hash values. |

The size S := S, 1 of S is given by the number of k-records in a random permutation
of size n. This random variable is very well understood, including its exact probability
distribution (see, for instance [21]). Its expected value and variance are

E{S} = k(H, — H,+ 1) = kln(n/k) + k + O(1)
V{S} = k(H, — Hy) — K*(H® — HY) = kln(n/k) — k + k*/n + O(1), (1)

12:5
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where H,, = 7,.,.,1/j = Inn + O(1) denotes the n-th harmonic number and o =
D1 nn(1/5%) =m/6 —1/n+ ©(n~?) denotes the n-th harmonic number of order 2. The
probability generating function of S is [21]

n+k(u—1)
onk(u) = Pr{S,,=}u’ = uk((,;;)) (2)
>0 k

from which the expected value and the variance above can be easily derived. Likewise, it’s
easy to show, albeit cumbersome, that for any r > 0, E {ST} = O((logn)") (we give a proof
in Appendix A). From the explicit expression for the probability distribution of S one can
also show (see Subsection 3.2)

E 1 1 1
S E{S} kln(n/k)
This last result will be fundamental in our analysis of accuracy of inferences made from the
samples drawn using AS (in particular, see Subsection 3.2).

2.1 Complexity

In order to make sure that hash values collide with negligible probability we need that hash
values are ©(logn) bits long. A logarithmic number of bits is also necessary for each of
the elements in the sample (as they are distinct!), therefore the sample needs total memory
O(|S|logn); in expectation this is ©(klog? n). To support efficient querying and removal of
the element with minimum hash value and of the element with k-th largest hash value, one
easy and efficient solution is to store the hash values of the sample elements in a min-heap
H; for the k elements with largest values and another min-heap Hs for the remaining |S| — &
elements. These two heaps need O(|S|logn) bits. We also need an efficient way to check if a
given element belongs or not to the sample; for that we can store the elements of the sample
in a hash table (using a hash function which is completely independent and different from
the hash function used by the AS algorithm!). That hash table will need ©(|S|logn) bits.
In summary, the memory consumption is a constant factor from the memory needed for the
sought result (the size of the sample in bits).

As for the time complexity of the algorithm, the first phase requires time (O(Ny) where
Ni > k is the number of elements Ny until the first occurrence of the (k + 1)-th distinct
element. At the end of this phase, the min-heap Hs is empty and the min-heap #; contains
the first & distinct hash values; it can be constructed in ©(k) right at the end of the first
phase. Then, during the second phase we process the remaining N — Ny items. Most of
them are immediately discarded. Either their hash value is below the minimum hash value
in the sample — just check the top of Hs in time ©(1) — or they are already in the sample
— this query also needs time ©(1) on average using the hash table. Hence these elements
can be processed in constant expected time per item. On the other hand, for each of the
S = |S| elements in the table we will have incurred ©O(log.S) time to add them; moreover
there will be F,, items that were added to the sample and later kicked out from the sample
(never to be sampled again), and we also incur time (log S) to add them to the sample and
to remove them later. Indeed, when an element has a hash value among the largest k£ hash
values it will be inserted in H; (time @O(logk)), but before that the minimum of H; must
be removed (time O(logk)) and then added to Ha (in time O(log(|S| — k)) = O(log|S))).
For elements with hash value smaller that the k-th largest hash value but larger than the
minimum hash value in the sample (check the top of H; and Hs in constant time), we must
remove the minimum in #Hs and add then the new element to Hs in time O(log|S]).
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Let C(n, N;k) denote the complexity of AS with parameter k to process a data stream
of length N that contains n distinct elements. Then we can write

C(n,N;k)=O(N +k)+ Y  Ci(n,N;k)=O(N)+ >  Ci(n,N;k)

k<i<n k<i<n

where C;(n, N; k) is the cost of processing the first occurrence of the i-th distinct element; it
is either 0 if the element is discarded (because its hash value is below the minimum hash
value in the current sample) or O(log(S; 4+ 1)) if it is added to the sample, where S; denotes
the size of the sample just before processing the i-th distinct element. This cost @(log S;)
accounts for the addition of the i-th distinct element to the sample (either to H; or Hs, which
ever corresponds) and the eventual transfer of one element from #; to Hg or the removal of
one element from Ho (and hence from S). We say C; = 0 if the element is discarded because
the cost of processing that element is already accounted for in the ©(N) term. Likewise the
sum starts at ¢ = k + 1 because the cost of processing the first k distinct elements is also
accounted for within the ©(N + k) term. Call ¥; the indicator random for the event “the
i-th distinct element is added to the sample”. Then

E{C(n,N;k)} =

{]E{C 1Y; = 1} Pr{Y; =1} + E{C;|Y; = 0} Pr {Y; _0}}

k<i<n

=ON)+ 0| Y. E{logS}Pr{y;=1}

k<i<n

The sample size never decreases, hence S; < Sy < ---5, = 5; on the other hand
Pr{Y; =1} = E{Y;} = S,/i (it is the probability that the element is among the S, largest
elements of the 7 elements seen so far) so we can write

E{C(n,N;k)} =O(N)+0 [ E{logS} D> E{V}

k<i<n

=O(N)+ O | E< E{logS} Z =

k<i<n

=0O(N)+ O | E{logS} Z E{?}

k<i<n

=O(N)+0 [E{logSIE{S} Y -

k<i<n

= O(N) + O (klog®(n/k) E {log S}) .

As logx is concave, Jensen’s inequality gives us E {logS} < logE{S} and putting
everything together we find

E{C(n,N;k)} = O (N + klog?(n/k)loglog(n/k)) . (3)

12:7
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3 Making Inferences about the Data Stream

3.1 Frequent Items vs. Frequent Properties

It is important to distinguish between the frequency of an item z and frequent properties P.
Consider some property P and the subset Xp = {x € Z |z satisfies P} of distinct elements
in Z that satisfy P; we say P is frequent if np = | Xp| = O(n). Notice that some properties,
like being a very frequent element, can’t be a frequent property; for instance, at most |1/c|
distinct elements might have relative frequency > c¢. As an important consequence, estimating
with fixed size samples the proportion of elements in Z that satisfy P, that is, np/n, can be
accurately done only if P is frequent.

Distinct Sampling, with its fixed sample size, is thus not a good choice if we want to
make inferences about frequent elements (in that case we should sample with probability
proportional to the frequency) or the property of interest is not frequent. If not enough
elements in the data stream satisfy the property, the samples of variable size drawn by AS
can come to the rescue.

3.2 Estimating Proportions

Consider some property P(z) depending only on the occurrences of x in the data stream Z,
and let np be the number of distinct elements in the data stream satisfying P. We make
this restriction as we want to ensure that determining whether x satisfies P or not can be
efficiently done and requires little memory.

Let

n
19p = l
n
denote the fraction of elements that satisfy P. If we take a random sample of S = |S| distinct
elements, now with S > 0 a random variable, then the probability that there are Sp elements
in the sample that satisfy P is given by the hypergeometric distribution

(s7) (5=57)
- .
(5)
Let us assume in the computations below and for the remaining of the paper that n > S >
k > 2, that is, that the sampling algorithm will return at least £ > 2 distinct elements.

Otherwise, if the data stream contains less than k distinct element, the sample contains all
distinct elements in the data stream and their relevant statistics and we can answer queries

(4)

exactly.
The following theorem is well-known and can be found in many textbook on statistics,
see for instance [7].

» Theorem 4. Let 91: := Sp/S and assume that S > 0. Then
E{ﬁp} =Up.

That 1is, Op is an unbiased estimator for Yp, no matter what the probability distribution of
S =S| is; in particular, it is also true if S = M for some fized constant M > 0.
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Proof. We expand E {19 p} using the formula of total probability conditioning on the events
S = ¢, and plug-in the hypergeometric distribution for the probability that Sp of the S = ¢
elements drawn at random without replacement satisfy the property P. Then

Lo ”p n—mnp
E{ﬁp}ng{% Szé}Pr{S:E}:ZPr{S_g 22 )(n )

£>0 =
_Zpr{s_g}z M

£>0 @ 1)
n - np_l) (™) n

=23 Pr{S=1¢} Z o = Y Pr{S =14}
n £>0 7=0 f 1) n £>0

= % :’19[—77

where we have used Vandermonde’s convolution in the final step to simplify the summation
on j, yielding the statement of the theorem. |

Quite intuitively, the accuracy of the estimator Ip will depend of the size of the sample.

Indeed, for v {@ p} and now assuming that n > S > 2 we get the following result, which

can also be found, for instance, in [31, 7] for the case where the size of the sample S is fixed
and not a random variable itself.

» Theorem 5. Let 1§p := Sp/S and assume that S > 2. Then

(o)== (e {5 )

Proof. We start computing E {(1§ p)2} following the same steps as in the proof of Theorem 4.

2 l . np n—np
Szé}Pr{S:E}:ZPr{S_g Z% )(n )
£>0 £>0 j=0 )
*ZPr{s—z} ‘7””%

£>0 " (471)

£—1 np—l n—mnp

:& P {S_Z}Zj J )(6 j— 1)

" €>0 7=0 (2= )

/.

_ M - (np]_l) (/n jnpl np_l) (in jnpl)
- Zﬁﬂ”s‘”{] N *Z ) }

™ Z S Pr{s =1} (;1) {(”P - 1)@—22) i (Z—ll)}

£>0
o n, 1 B (np—1)(¢—-1)
—ng:ogPr{S—f}{Pn_l—i—l}
_np(np—1)  np(n—np) 1
 nn-1) n(n—1) E{S}
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Hence, assuming that n > .S > 2, we have

- ny(n —ny) 1 1

dpl = M\ =) 2oy
V{ P} n(n—1) (E{S} n) <
If the behavior of the random variable S is smooth enough® and E {S} — oo when n — oo

then the accuracy of the estimator Ip will improve, as the variance will decrease and tend
to 0 as n — o0o. Indeed, the standard error of ¥p satisfies

N \/Vﬁ{jp} N\/u_ﬁp)E{;} 5

Up

For the samples drawn by AS we have E{1/S} ~ 1/E{S}. Indeed, we can start from
the bivariate generating function [21] for S = S, k

_ _ n L.n __ (Zu)k
Sk(z,u)—ZZPr{Sn’k—f} Py = A=k (6)

£>0n>0

Integrating Sk (z,u)/u we can recover E {1/S}; there is an explicit primitive in terms of the
confluent hypergeometric functions, namely Whittaker’s M, , () function [1], and it can be
shown that around the singularity z = 1 we have

k

1 -2
/ L Sz w) du sy : +o<<1—z>‘k‘1 (bg 11) )
o U k(l—z)k“ln( L ) —z

1—=

hence, using standard singularity analysis results (see, for instance [14, 15]) we finally get

1 1 1 1
E{S} - @[z ' k(1 — 2)k+11n (1%) ~ kIn(n/k)’

Then, roughly speaking, the standard error approaches 0 whenever n/(npE{S}) — 0

and n goes to oo, which is indeed the case for AS if np =)

I ) In many cases we will
ogn

be intested in properties such that np = ©(n), hence the standard error of Jp will decrease
and go to 0 as 1/4/E {S}, a rate of decay which we find in many estimators in data stream
analysis (e.g., Probabilistic Counting [13], HyperLogLog [12], to name a few) where instead
of E{S} we have M, the fixed size of the memory used by those estimators.

3.3 Estimating Cardinalities

We can also estimate the number np of elements that satisfy P, not just the proportion
np/n. For that we can use

__Sp S—k+1
== (k(l +1/k) 1)

or
Sp S—1
Cy:=22 2" 7
2 Sl_)/v(s)a

where Sp and S are as in the previous section and Y(g) is the smallest hash value in the
sample (the S-th largest hash value in the data stream). Indeed E{C1} = E{C2} = n,.

5 In the sense that E{1/S} = ©(1/E{S}); by Jensen’s inequality we have only 1/E{S} < E{1/S}.
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For the first estimator C7, recall that the size of the sample S = |S| returned by AS
coincides with the number of k-records in the random permutation of size n induced by the
first occurrences of the hash values of the n distinct elements in the data stream. Then the
estimator

1 |S|—k+1

called RECORDINALITY, is an unbiased estimator of n (see [20]), that is, E{R} = n.

To compute R we would not need to collect the sample S collected by AS: tracking the k
distinct elements in the data stream with largest hash value and how many times we have
updated that table would suffice — that is, we would need significantly less memory to achieve
the same accuracy to estimate the cardinality. However, if our main goal is to draw a random
sample of size growing with n — as drawn by AS— we can get, as a by-product, estimates of
the cardinality of the data stream “for free,” as well as estimates of the absolute number np
of elements that satisfy a property P. Indeed,

E{C} = ]E{SP} ZPr{S—e}E{%R‘szz}

_bzopr{g_g}zj < ( 1>é—k+1_1> ( )((n§ P)
:;Pr{S:K} (k (1+;>M+11>§i( )((”;‘ ;)
:ZPr{S:K} (k (1+;>4k+11> %:%E{R}:n?

Alternatively we can extend the well-know KMV estimator [4, 5, 29] to samples of varying-
size. KMV has a parameter k > 2, fixed in advance, and uses the bottom-k algorithm, that
is, collects a table with the k distinct elements with smallest hash values seen so far. Then
the largest hash value Y(j) in the table is the k-th smallest hash value in the data stream,
that is, the k-th smallest number in a set of n random numbers independently and uniformly
drawn in [0,1]. Hence

k—1

Zk =
Yir)

is an unbiased estimator of n and its standard error is O(1/vk — 2).

But once you use AS you have a sample of size S = |S|, with E{S} = kln(n/k) and
therefore using the smallest hash value in the sample (the S-th largest hash value in the
data stream) we can get sharper cardinality estimations. Indeed, if we denote Y the
smallest hash value in the sample” then Z := (S —1)/(1 — ¥{g)) is an unbiased estimator of

7 AS is formulated in terms of elements with largest hash values, whereas KMV is formulated in terms of
the k-th smallest hash value in the data stream; we have adapted the estimator to work with the k-th
largest hash value in the data stream instead. We can therefore use the smallest in the sample Y(g)
plugging the value 1 — Y gy in the KMV estimator. Alternatively, AS could be reformulated in terms of
the elements with smallest hash values; all its properties would remain unaltered or could easily be
adapted, but we have preferred to keep the original formulation in terms of largest hash values, also to
honor the inspiration drawn from the RECORDINALITY algorithm.
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n, while the standard error goes to 0 as n — oo (admittedly, at a very slow rate, i.e., it is
(’)(1og_1/2 n)). We do not use here the subscript k in the estimator, as the sample is now of
size S, and to distinguish it from the estimator Zj based in the k-th order statistics of the
set of hash values in the sample, for a fixed k.

In what follows we assume that n > k > 2, hence S > k (or Pr{S < k} = 0). For the
expectation we have

E{Z} =) E{Z|S=1¢} Pr{szg}zzpr{szgm{ (6—1)}

>k f2k o
:nZPr{SZE} =n.
2>k
Likewise
B {2} =Y E(2 s =0} pris =0 = L pr(s =0 { 1 ]
o =h ()
n2 1
:QZkPr{S:f}m zn(n—l)E{“}’
and

V{Z}n(nl)E{Sl_Q} —n?.

It turns out that E{1/(S —2)} ~ (kln(n/k))~!, hence
1
VEIn(n/k)

Using Z we can also obtain accurate estimates of the number np of elements that satisfy P.
Following the same steps as in the computation of E{C;} we obtain

SE{Z} = VE{1/(S—-2)}(1—1/n) -1~

E{Cs) —E {S;Z} ~np,

as we stated at the beginning of this subsection.

3.4 Finding Approximate a-Quantiles

We can use AS to estimate the median and other a-quantiles in the data stream — the rank
of an element = being the number of distinct elements smaller or equal to x.

Let z* the a-quantile in the random sample S returned by AS. That is, [a - S| elements
in S are smaller or equal than x*. These elements have the property of being < x*, and the
same proportion of elements in Z will have that property. That is, the expected value of
[aS] np/nis a+£(a,S), with £(a, S) — 0 as S — oo. Therefore, the expected rank of

5
x* in the data stream is a - n + £(, S) -n =~ [a-n].

4 «-Affirmative Sampling: Producing Samples of Size n®

Instead of using the k-th largest hash value in the sample to decide if a new item is added
or not to the sample we can use a different criterion, for instance add it if the hash value
is above (100 - @)% of the hash values. These strategies have also been widely studied
(see [16, 22, 19, 23, 27] and the references therein) in the context of the so-called hiring
problem.
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The expected size of the sample when we add elements (not replacing any other, but
making the sample grow) if their hash value is above (100 - a)% of the hash values will be
O(n®). All collected elements with hash value above or equal to the one that defines the
“threshold” constitute a random sample of size ©(n®), and there would be no need to use the
replacement mechanism, as long as we already get a sample of growing size. However, the
algorithm needs to keep not only the elements above the “threshold”, but all the elements
which were above the “threshold” at some point along the execution of the algorithms. If we
apply the replacements mechanism then we guarantee that all collected items, not just those
above the threshold, constitute a random sample. This means only a little additional effort,
as the expected number of replacements will only be ©(n®) (see [22, 19]). We shall call the
resulting algorithm «-Affirmative Sampling (a-AS, for short).

The average complexity of processing a data stream of N elements (of which n are
distinct) with a-AS will be O(N + n®logn), the analysis follows similar steps to those in
Subsection 2.1. The expectation of both S = |S| and F,, (the number of replacements) is
©(n®). Precise estimates of the constant factor in E {S} and E {F,,} exist, but there are some
subtleties that depend on the exact definition of what is the element defining the threshold.
For instance, if we add elements whenever their hash value is above the median, it is clear
what to do if the size of the sample is odd; but if the size of the sample is even, which is
the element that sets the threshold? We refer the reader to [22] or [23] for a more detailed
discussion of this issue.

Most results in Section 3 apply, in particular, estimating the proportion of distinct
elements that satisfy some property or finding elements close to the median and other
quantiles of the data stream. Estimating the absolute number of distinct elements that
satisfy P or the cardinality of the data stream is also possible using the generalization of
KMV to samples of variable size (that is, the estimators Cy and Z, respectively, using the
smallest hash value in the sample).

To compute the variance and standard error in the estimation of the proportion of distinct
elements that satisfy P we would need to know E{1/S}; we conjecture that E{1/S} =
O(1/E{S}) = O(n~%), but because of the lack of information about the distribution of S,
we haven’t proved it. In the case of the rule “above the median” [22] we have the exact
expressions for Pr{S = j}. Using the results and techniques there, it is easy to show that

nl/2+e
/S =57 Pr{s =i}~ 3 e "1+ 00/0)
>0 =1

1 o0 712d 1 ™
~— e Y
v Jo 2V n’

which is proportional to 1/E {S}; indeed, E{S} = /7n + O(1) [22].

Likewise, an estimator of the cardinality of the data stream based upon the size S of the
sample should be possible if we had a complete characterization of the probability distribution
of S; but as far as we know this is only known for the rule “above the median” [22]. In general,
we anticipate that R := ¢- S/ should be an estimator of n, but a detailed knowledge of the
probability distribution of S is needed to find the correcting factor ¢ that guarantees that
E{R} ~ n. In the particular case of the rule “above the median” (the one studied in [22],
not the rule in [16] and [27] with p = 1/2, there are subtle differences), a suitable unbiased
cardinality estimator is R := S?/4. The exact and asymptotic estimation of Pr{S = j}
in [22] can be used to show that
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Table 1 Sampling Algorithms — a comparative. AS = Affirmative Sampling (this paper). a-AS
(this paper, section 4). RS = Reservoir Sampling. BOT = Bottom-k. DS = Distinct Sampling.
* = dependable means the exact frequency counts of each element in the sample can be obtained,
see Def. 1. ** = conjectured. *** = S?/4 is an unbiased estimator of n, for a = 1/2.

Algorithm AS a-AS | RS BOT DS
Parameter k a € (0,1) k k B
Distinct elements Yes Yes No Yes Yes
Dependable” Yes Yes No Yes Yes
Ezp. sample size S kln(n/k) O(n®) k k 25 ~0.72B
Std. deviation os kln(n/k) O(n®) 0 0 V2Ysm2-25 W +0(1)
Std. inference err. \/ﬁ O(n=)** No 1/Vk 1/v/Bln2
Runtime O(N+...) klog?(n/k)loglog(n/k) n®logn klogklog(N/k) klogklog(n/k) Blogn
Memory (in bits) O(klog(n/k)logn) O(n”logn) O(klogn) O(klogn) O(Blogn)
Cardinality estim. Yes [20] S2 /4% No Yes [4, 20, 29] Yes [11]
(G Ve
2 -2 . —L
E{S?} =D i*Pr{S=j}~ ) —e (14 0(1/0))
Jj=0 =1

o0 2
~ 8n/ z3e™ dx = 4n,
0

and thus E{R} = n + o(n). The estimator R can also be used to estimate the absolute
number np of distinct elements satisfying P, namely,

Cy = (SPS)/4 - E{Cl} ~np.

5 Conclusions and Final Remarks

Affirmative Sampling is a simple, elegant and practical algorithm to produce random samples
of distinct elements from a “population” of n elements. Contrary to other existing algorithms
(which produce random samples of fixed or expected constant size), it is the first distinct
sampling algorithm that produces random samples with (expected) size growing with n. In
this sense, AS gracefully adapts to the size n of the population and gives us probabilistic
guarantees of increasing accuracy of the inferences made, just the opposite of what would
happen if the size of the samples is fixed or bounded — this is the case, for instance, of the
well known bottom-k and the Distinct Sampling algorithms mentioned in the introduction.
Table 1 summarizes the features of the several sampling algorithms introduced in this paper
as well as others discussed here.

As we mentioned in our abstract, our algorithm uses primitives that are straightforward
to access in most programming languages, and is therefore readily implementable. Several
implementations exist, for instance our reference code in Python, see [30].

The idea of replacements can be also used in combination to sampling algorithms such
as the famous Reservoir Sampling [32], which returns a random sample of fixed sized from
the data stream. As we mentioned in the introduction and in Table 1, Reservoir Sampling
samples occurrences z; in the data stream, not distinct elements. A given element z might
appear several times in the sample. Actually, the relative frequency of x within the sample
will be, on average, the relative frequency of = in the data stream. To combine replacements
with Reservoir Sampling, we just need to change AS so that instead of using the hash value
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of each item, we use a random number associated with every element of the data stream.
That way, we would be able to collect a random sample of expected size ~ kIn(N/k) without
prior knowledge of the length N of the data stream.

—— References

1

10

11

12

13

14

15

16

17

M. Abramowitz and I.A. Stegun, editors. Handbook of Mathematical Functions. Dover Publ.,
New York, 1964.

M. Archibald and C. Martinez. The hiring problem and permutations. In Proc. of the 21Int.
Col. on Formal Power Series and Algebraic Combinatorics (FPSAC), volume AK of Discrete
Mathematics € Theoretical Computer Science (Proceedings), pages 6376, 2009.

B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja. Records. Wiley series in probability and
mathematical statistics. John Wiley & Sons, Inc., New York, 1998.

Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting distinct
elements in a data stream. In J. D. P. Rolim and S. P. Vadhan, editors, Randomization and
Approzimation Techniques, 6th International Workshop, RANDOM 2002, Cambridge, MA,
USA, September 13-15, 2002, Proceedings, volume 2483 of Lecture Notes in Computer Science,
pages 1-10. Springer, 2002. doi:10.1007/3-540-45726-7_1.

K. S. Beyer, R. Gemulla, P. J. Haas, B. Reinwald, and Y. Sismanis. Distinct-value synopses
for multiset operations. Commun. ACM, 52(10):87-95, 2009. doi:10.1145/1562764.1562787.
A. Z. Broder. On the resemblance and containment of documents. In B. Carpentieri, A. De
Santis, U. Vaccaro, and J.A. Storer, editors, Proc. of the Compression and Complexity of

SEQUENCES 1997, pages 21-29. IEEE Computer Society, 1997. doi:10.1109/SEQUEN.1997.

666900.

W. G. Cochran. Sampling Techniques. John Wiley & Sons, Inc., New York, 3rd edition, 1977.
E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches. In Indranil Gupta
and Roger Wattenhofer, editors, Proceedings of the Twenty-Sizth Annual ACM Symposium
on Principles of Distributed Computing (PODC 2007), pages 225-234. ACM, 2007. doi:
10.1145/1281100.1281133.

J. Ernvall and O. Nevalainen. An algorithm for unbiased random sampling. The Computer
Journal, 25(1):45-47, 1982. doi:10.1093/comjnl/25.1.45.

C. T. Fan, M. E. Muller, and I. Rezucha. Development of sampling plans by using sequential
(item by item) selection techniques and digital computers. Journal of the American Statistical
Association, 57(298):387-402, 1962. doi:10.2307/2281647.

Ph. Flajolet. On adaptive sampling. Computing, 43(4):391-400, 1990. doi:10.1007/
BF02241657.

Ph. Flajolet, E. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a near-
optimal cardinality estimation algorithm. In Ph. Jacquet, editor, Proc. of the 2007 Conference
on Analysis of Algorithms (AofA 07), volume AH of Discrete Mathematics € Theoretical
Computer Science (Proceedings), pages 127-146, 2007.

Ph. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base applications.
J. Comput. Syst. Sci., 31(2):182-209, 1985. doi:10.1016/0022-0000(85)90041-8.

Ph. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM Journal on
Discrete Mathematics, 3(1):216-240, 1990. doi:10.1137/0403019.

Ph. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.
d0i:10.1017/CB09780511801655.

J. Gaither and M. D. Ward. Analytic methods for select sets. Probability in the Engineering
and Informational Sciences, 26:561-568, 2012. doi:10.1017/50269964812000186.

P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries and
event reports. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and
R. T. Snodgrass, editors, Proceedings of 27th International Conference on Very Large Data
Bases (VLDB 2001), pages 541-550. Morgan Kaufmann, 2001.

12:15

AofA 2022


https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1145/1562764.1562787
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1145/1281100.1281133
https://doi.org/10.1145/1281100.1281133
https://doi.org/10.1093/comjnl/25.1.45
https://doi.org/10.2307/2281647
https://doi.org/10.1007/BF02241657
https://doi.org/10.1007/BF02241657
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1137/0403019
https://doi.org/10.1017/CBO9780511801655
https://doi.org/10.1017/S0269964812000186

12:16

Affirmative Sampling: Theory and Applications

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison Wesley, 2nd
edition, 1994.

A. Helmi. The Hiring Problem and its Algorithmic Applications. PhD thesis, Dept. Computer
Science, Universitat Politecnica de Catalunya, 2013.

A. Helmi, J. Lumbroso, C. Martinez, and A. Viola. Counting distinct elements in data streams:
the random permutation viewpoint. In N. Broutin and L. Devroye, editors, Proc. of the
234 Int. Meeting on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis
of Algorithms (AofA), volume AQ of Discrete Mathematics € Theoretical Computer Science
(Proceedings), pages 323-338, 2012. doi:10.46298/dmtcs.3002.

A. Helmi, C. Martinez, and A. Panholzer. Analysis of the strategy “hiring above the m-th
best candidate”. Algorithmica, 70(2):267-300, 2014. doi:10.1007/s00453-014-9895-3.

A. Helmi and A. Panholzer. Analysis of the “hiring above the median” selection strategy for
the hiring problem. Algorithmica, 66(4):762-803, 2013. doi:10.1007/s00453-012-9727-2.
S. Janson. The hiring problem with rank-based strategies. FElectronic Journal of Probability,
24:1-35, 2019. doi:10.1214/19-EJP382.

T.G. Jones. A note on sampling a tape file. Comm. ACM, 5(6):343, 1962. doi:10.1145/
367766.368159.

J. Kawarasaki and M. Bbuya. Random numbers for simple random sampling without replace-
ment. Technical Report 7, Keio University, Dept. Mathematics, 1982.

D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley, 3 edition, 1997.

S. Langowski and M. D. Ward. Moments of select sets. In M. Mishna and J. I. Munro,
editors, Proceedings of the 16th Workshop on Analytic Algorithmics and Combinatorics,
ANALCO 2019, San Diego, CA, USA, January 6, 2019, pages 67-73. STAM, 2019. doi:
10.1137/1.9781611975505.7.

G. Louchard. Probabilistic analysis of adaptative sampling. Random Structures € Algorithms,
10(1-2):157-168, 1997.

J. Lumbroso. An optimal cardinality estimation algorithm based on order statistics and its
full analysis. Discrete Mathematics € Theoretical Computer Science, 2010.

J. Lumbroso and C. Martinez. Affirmative Sampling: Reference Python Implementation,
March 2022. doi:10.5281/zenodo.6601690.

J. W. Tukey. Some sampling simplified. Journal of the American Statistical Association,
45(252):501-519, December 1950. doi:10.2307/2280719.

J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37-57, 1985.
doi:10.1145/3147.3165.

J.S. Vitter. Faster methods for random sampling. Comm. ACM, 27(7):703-718, 1984. doi:
10.1145/358105.893.

A  Moments of the sample size S

In this appendix, we will write .S, ;, for the size of the sample S generated by AS, when
given a data stream that contains n distinct elements and the initial parameter £ — we have

been not making this dependence on n and k explicit in most of the paper, and have written
simply S. As we have discussed 5, coincides with the number of k-records in a random
permutation. Recall the bivariate generating function for S, , given in (6)

n ZU k
Se(zu) =3 (k> ST Pr Sk = 0} 2" = (1(2))@“

n>k >0


https://doi.org/10.46298/dmtcs.3002
https://doi.org/10.1007/s00453-014-9895-3
https://doi.org/10.1007/s00453-012-9727-2
https://doi.org/10.1214/19-EJP382
https://doi.org/10.1145/367766.368159
https://doi.org/10.1145/367766.368159
https://doi.org/10.1137/1.9781611975505.7
https://doi.org/10.1137/1.9781611975505.7
https://doi.org/10.5281/zenodo.6601690
https://doi.org/10.2307/2280719
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/358105.893
https://doi.org/10.1145/358105.893

J. Lumbroso and C. Martinez

Differentiating Sk(z,u) r times with respect to u and setting u = 1, we obtain the generating

function
— Z (Z) E {Sr%,k} Z",

u=1 n>k

_ arskr(za ’LL)

Slgr) (Z) aur

where 2”:=x - (x —1)--- (x — r + 1) denotes the r-th falling factorial of x [18].
The dominant singularity of Sl(:)(z) is located at z = 1; therefore we have

Tk r
(r) k"z 1
Sy (2) ~z2o e ln(1_2> .

Applying standard singularity analysis results [14, 15] we obtain an asymptotic estimate for

the n-th coefficient, and from there the sought asymptotic estimate for E {Sﬁ R E

krnk .
T(ln n)" + Lo.t.

r 1 - . i,
E{Sﬁk} ~ f[zn]S,(g )(z) =k"(Inn)" + Lo.t.

(x)

Notice also that E {S:L,k} =0O(E {S’ik}); it is enough to express Sy ; in terms of the falling

2757 (2) ~

factorials Si x (0 < <r)and the Stirling numbers of the second kind (see, for instance, [18]):
for all z and n >0
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