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Abstract 

The automotive industry has seen a revolution brought about by self-driving cars. However, 

one of the main challenges facing autonomous driving systems is ensuring safety in the 

absence of a supervising driver and verifying safe vehicle behaviour under various 

circumstances. 

Autonomous Driving Systems (ADS), due to their complexity, cannot be solved 

straightforwardly without proper structure. Thus, they need a well-defined architecture to 

guide their development with requirements that involve modularity, scalability, and 

maintainability among other properties. 

To help overcome some of the challenges, this master thesis defines and implements in a 

simulated environment an automated parking system that complies with industrial and 

safety standards. The work has been divided into four parts. Firstly, the safety rules for the 

development of an autonomous function have been analysed. Secondly, the use cases 

and system requirements have been defined following the needs of the automated parking 

system. Thirdly, the system has been implemented in the simulation environment with a 

structure based on a widely adopted automotive standard. The final result is the software 

architecture of an autonomous vehicle with automated parking functionality. This concept 

has been validated within the virtual environment together with the integration of the 

AUTOSAR runtime environment, which the communication between components and 

mode switching functionality in the CARLA simulation environment. 

The result of this project shows the benefit of integrating architecture and simulation, thus 

easing the development and testing of future autonomous systems. 

Key words: Autonomous Driving Systems, automated parking, safety standards, CARLA 

simulator. 
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1 Preface 

Open systems (of systems) run and interact in a physical world with unforeseeable 

uncertainties. Cognitive systems are software-intensive technical systems that imitate 

cognitive capabilities of human behaviour by processing the environment data, predicting 

upcoming changes, adapting to the context, while ensuring that safety is preserved.  

Fraunhofer Institute for Cognitive Systems IKS researches and develops methods and 

technologies that enable intelligent, autonomous systems to respond reliably and safely to 

unexpected or previously unknown situations. In doing so, they work at the interface 

between science and industry to bring innovative concepts for cognitive systems into 

practical application[1]. 

1.1 PreMotivation 

My short professional experience in a consulting company working in software architecture 

and at Ingenia (Novanta group) developing servo motors for robotics have been ideal as a 

basis to awaken my curiosity for the automotive world. I have never had the pleasure of 

working directly with automotive engineering and even less with autonomous driving, 

except for an optional subject in the master's degree. Directly thanks to this subject I had 

the chance to enjoy the opportunity to develop this thesis at Fraunhofer IKS. 

My main motivation for this master thesis has been to deepen into the automotive industry 

and to understand what approaches are being used to develop an autonomous vehicle. 

Along with this, to learn how to manage the development of vehicle systems using a 

systems engineering approach in order to improve design quality, robustness and resource 

optimisation. 

1.2 Previous requirements 

This thesis focuses on the design of engineering systems and autonomous driving systems. 

No special academic qualifications are required, but a background in automotive, software 

and engineering are recommended. 
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2 Introduction 

The project has been developed at the Fraunhofer Institute of Cognitive Systems, 

specifically in the department of Cognitive Software Systems Engineering, where one of 

the research focus is the modelling and research on autonomous vehicle systems. 

In the automotive industry, research and development departments are increasingly 

focusing on the concepts for autonomous driving systems. It is true that many companies 

already have their first own autonomous functions in series vehicles and that this trend is 

increasing constantly, however there is still a long way to go to achieve full autonomy for 

all possible known and unknown environments. Understanding the needs of ADS is the 

first step towards developing a new function/system for an autonomous vehicle. 

The results of a survey show that about 10,000 traffic accidents occur due to entering or 

leaving parking spots in 12 million traffic accidents[2]. In fact, the actual number of 

accidents is much more than the number of this traffic report. Because of the large number 

of traffic accidents and requirements of drivers, automatic parking system draws an infinite 

attention in the automotive engineering domain. 

Regarding the above statistics, an automatic parking system can optimise the density of 

traffic and the distribution of parked vehicles on the roads. 

2.1 Goals 

The main goal of this thesis is to define, develop and implement in a simulated environment 

an automated parking system fulfilling industry and safety standards. The software 

architecture of the Automated Parking System (APS) developed in this work is based on 

the guidelines proposed in the ‘Road vehicles — Safety and cybersecurity for automated 

driving systems — Design, verification and validation’, ISO/TR 4804, 2020 [3].  

This project has been developed simultaneously with another master thesis focusing on 

the design and implementation of the autonomous system (AS) mode manager component 

[4]. The software architecture has been modelled in AUTOSAR using the mode 

management methodology described in the AUTOSAR standard. The software 

architecture has been instantiated for the APS function developed in this master thesis. 

The final result is the software architecture of an autonomous vehicle with automated 

parking functionality. The concept has been validated in a virtual environment. The 

generated AUTOSAR run-time environment (RTE) has been integrated with the 

environment and the autonomous vehicle implemented by the CARLA simulator. 

2.2 Scope 

The scope of this work is to learn how to specify and model automated parking systems 

using first a system engineering classical approach, and second established industry safety 

standards to model the system architecture. Then, the integration an implementation of the 
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designed system inside a simulation environment proceeds. It is not in the scope of this 

master thesis the implementation of the AUTOSAR run-time environment. 

Chapter 3 provides an overview of all relevant topics needed to develop this thesis, namely 

systems engineering, safety standards, automated parking methodologies and simulation 

environments. Chapter 4 focuses on the description of the proposed automated parking 

system and on its development. The results of the project and the integration with the run-

time environment are presented in chapter 5. The breakdown of the costs is specified in 

the budged in chapter 6. An overview of the benefits inside environment and social impact 

are featured in chapter 7. Finally, the conclusions and future works can be seen in chapter 

8. 
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3 State of the art of the technology  

Our first step has been to review the current state of the art of the research areas that we 

will be working on. The topics we cover in this section include system engineering, 

automotive safety standards, parking manoeuvres for automated vehicles, and simulation 

environments. 

3.1 Systems Engineering 

Systems engineering is about studying and understanding reality as it is with the aim of 

optimizing and improving complex systems. It can be applied to any type of system; it is 

not committed to a concrete field. For example, it can be applied for studying the human 

digestive system or an informatics system, as an example of two different fields without 

anything in common[5]. 

Systems Engineering provides facilitation, guidance and leadership to integrate the 

relevant disciplines and specialty groups into a cohesive effort, forming an appropriately 

structured development process that proceeds from concept to production, operation, 

evolution and eventual disposal[6].  

In this thesis, we are going to focus on electronic systems, more specifically on automotive 

embedded systems and their control in terms of standards for the automated parking 

function.  

During system design there is always implicitly described all the information that is needed, 

for example: what functionality the system provides, how the system interacts, how many 

components are needed to realise our system, how the interaction between components 

is, what part of the functionality each component implements, etc. This set of information 

allows us to draw the hierarchy of the system, not only at the top level, and to detail the 

requirements to fulfil the total implementation. 

Developing a project based on a good system architecture provides a robust foundation. 

This implies that all the relationships with the different factors that make up the system are 

well defined and connected to each other. It allows all team members to know what, where 

and how things have to be done in a clear and simple way. In addition, everyone uses the 

same language, which improves communication and project management tasks, reducing 

the chance of failure.  

Systems engineering allows a challenging large system to be decomposed into smaller 

and easier-to-solve subsystems that can be classified and prioritised. The main benefits of 

it are increasing the performance of the overall system, reducing hidden project costs, 

improving the quality of the system platform, and allowing the system to be upgraded and 

expanded in a quick and easy way. 

Systems engineering is also an iterative process. First, it is sufficient to define the project 

architecturally. Subsequently, at the component level, with the further refinement of 
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requirements, communication and implementation details, the design gets more detailed. 

All in all, systems engineering provides a guided path for the successful design and 

implementation of an engineering project.  

In this report we will clearly see how we use this type of engineering for our development 

and its division into small subsystems. 

3.2 Safety standards for automated systems 

Before proceeding with the development of the architecture for automated driving systems, 

it is convenient to perform an overview of the different standards that currently exist and 

could be of interest to guarantee safety, which is one of the main objectives of this work. 

Currently there are several standards for safety applicable to the automated parking 

function. For the development of this project the following have been considered: 

- V-Model 

- SAE Automated driving levels 

- ISO 26262 

- ISO / TR 4804 

- ASAM 

The subsequent sections briefly explain each of them and what topics they intend to 

standardize. 

3.2.1 V-Model 

The V-Model is an approach model that was developed by commissioning of the State of 

Germany for planning and implementing system development projects. It considers the 

entire lifecycle of a system nicely fitting the line of thinking in systems engineering[7]. The 

V-model is a graphical representation of a system’s development lifecycle, and it is used 

to produce rigorous development lifecycle models and project management models. It is 

also known as Verification and Validation model. A graphical description of the V-Model is 

provided in Figure 1. 

The left side of the "V", called design phase, represents the decomposition of requirements, 

and creation of system specifications. Just in the middle of the process, at the vertex of the 

"V", we have the implementation of the project to be developed. When this phase is 

completed, we continue our way upwards where the test plans are put into action. The right 

side of the "V", called testing phase, represents the integration of each design part and 

their validation. 

The main advantages of this model are: simple and easy to use, planning and designing 

activities happens well before implementation, saves a spot of time (hence higher chance 

of success over the waterfall model), proactive defect and avoids the downward flow of 

the defects. The disadvantages are very rigid and lack of flexibility. Also, the project is 

developed during the implementation phase and no early prototypes are produced. if any 
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changes occur midway, then the requirements and test documents need to be updated. 

 

Figure 1. The V-model of the systems engineering process[8]. 

In this thesis we follow this model, the project flow is easily recognisable and comparable 

with the V-Model. 

3.2.2 SAE Automated driving levels 

As described by the Society of Automotive Engineers (SAE), transferring total control from 

humans to machines is a step-by-step process on a scale of 0 to 5 levels. Level 0 means 

no automation and level 5 means full-time performance by an automated driving system 

under all road and environmental conditions. 

The standard SAE J3016 [9] defines the multiple levels of driving automation. The Standard 

provides descriptive and broad information about this evolution but does not provide strict 

requirements. 

SAE classifications are designed to clarify the role of a human driver, if any, during vehicle 

operation. An environmental monitoring agent is the first discriminant condition. For levels 

0-2 of automation, a human driver monitors the environment; while for levels 3-5 of 

automation, the vehicle monitors the environment. 

As another discriminant criterion, dynamic driving task (DDT) fallback mechanisms are also 

taken into consideration. Intelligent driving automation systems (levels 4-5) embed the 

responsibility for automation fallback constrained or not by operational domains, while for 

low levels of automation (levels 0-3) a human driver is fully responsible. Figure 2 shows 

the remaining classification factors used to define each level [9], [10]. 
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Figure 2. Automated driving levels[10]. 

3.2.3 ISO 26262 

The ISO 26262 titled “Road vehicles – Functional safety” is a standard based on the 

functional safety for the electrical and electronics systems that the vehicles have installed. 

The scope of this standard was extended for passenger cars to all road vehicles except 

mopeds[11]. 

First edition of ISO 26262:2011 is based on current knowledge of automotive systems 

(such as steering, braking, airbag systems, etc.). However, it does not fully address very 

complex, distributed systems or how to meet availability requirements. It is necessary to 

interpret the second edition further in order to resolve some of these issues. 

The aim of functional safety is to prevent accidents or component failures as a result of 

changes in inputs, hardware or environmental conditions. Currently, it is unclear how 

autonomous vehicles shall behave if an accident cannot be avoided, or how risks can be 

minimized[10].  

In the ISO 26262 functional safety applies only to the static context in which the system is 

developed. As this standard is only applicable when the environment conditions are well 

known, it is not applicable to autonomous systems because the environment is no longer 

static. It is impossible to study all the possible scenarios. In this way, the standard cannot 
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ensure a total functional safety of autonomous systems, since it cannot know in detail the 

conditions they will face. 

This is address in the ISO PAS 8800 “Road vehicles – Safety and artificial intelligence” [12], 

currently under development that will be publicly available specification in late 2023. 

3.2.4 ISO/TR 4804 

This ISO/TR document titled "Road vehicles - Safety and cybersecurity - Design, 

verification, and validation" [3] outlines a framework for developing, verifying, validating, 

producing, and operating automated driving systems that are focused on safety and 

cybersecurity. According to SAE J3016:2018[9], the technical report discusses verification 

and validation methods for automated driving systems that focus on levels 3 and 4 (or lower 

if necessary). 

This technical report aims to provide a generic strategy for addressing the risks associated 

with automated vehicles. It is possible to use this basic approach as a starting point for safe 

automated driving, but it does not describe a complete and safe product. 

This standard supplements existing safety standards and publications. This document 

offers a more technical overview of recommendations, guidance, and strategies for 

avoiding unreasonable risk and cybersecurity related threats, emphasizing the importance 

of safety by design[3]. 

An automated driving safety and cybersecurity framework is presented, along with 

recommendations for developing, verifying, validating, producing, and operating the 

systems. Automotive and transportation industry stakeholders can benefit from it. 

3.2.5 ASAM 

The Association for Standardization of Automation and Measuring Systems, ASAM in short, 

is an incorporated association under German law. Its members are primarily international 

car manufacturers, suppliers and engineering service providers from the automotive 

industry. The association coordinates the development of technical standards, which are 

developed by working groups composed of experts from its member companies[13]. 

The relevant standard for this project is the OpenODD standard which is defined in the 

ASAM Simulation domain. This standard is not finalized; it is still a concept that will serve 

as a basis for the development of the future standard. The main objective is to provide a 

format capable of representing the Operational Design Domains (ODD) defined for 

Connected Automated Vehicles (CAVs) for simulation based testing[14]. 

An ODD must be valid for the entire lifecycle of the vehicle, as it is part of its safety and 

operating concept. The ODD chosen for the system greatly impacts the design of that 

function, both its capabilities and its respective validation. ODD is basically used to specify 

the functionality of connected automated vehicles, specifically the environment in which the 

CAV must be able to operate. The environment includes all traffic participants, the weather 
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conditions, the infrastructure, the location, the time of day and everything else that has an 

impact in one way or another on automated driving. An ODD always defines a well-closed 

and bounded region of the entire ontology, as seen in the Figure 3. 

 

Figure 3. Range of the ontology[14]. 

In this context, a standard to regulate and define all possible ODDs is necessary. This is 

where the ASAM OpenODD concept project initiative arises, which is being developed by 

all relevant automotive stakeholders. The ODD should be represented in a way that can be 

easily used for simulation and different machine processing environments. In order to be 

able to use an abstract ODD description of the vehicle for simulations and post-processing, 

the format shall meet the following requirements: searchability, exchangeability, 

extensibility, machine readability, measurability and verification and finally human 

readability[9]. 

A formal definition of ODD is found in the standard SAE J3016 (2018) which states that 

“Operating conditions under which a given driving automation system or feature thereof is 

specifically designed to function, including, but not limited to, environmental, geographical, 

and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or 

roadway characteristics"[9]. 

ASAM’s philosophy is not to do something that another standards organization is doing or 

to define new standards that contradicts the current ones, but only to fill the gaps that 

currently exists. In this case, the ASAM OpenODD standardization aims to complement the 

activities of BSI (BSI PAS 1883, which provides the taxonomy for ODD) and ISO (ISO 

34503 which uses the taxonomy to provide a high-level definition format for ODD). All three 

standards are in contact to avoid contradictions. 

The standard provides all possible attributes of the ODD that may be required by an 

automated driving system, and also gives different examples of what the taxonomy should 

look like. 
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Figure 4. ODD taxonomy according to BSI PAS 1883[14]. 

3.3 Automated parking  

In this section we focus on the factors necessary to execute a parking manoeuvre. The 

essential topic for a manoeuvre is the path planning. In what follows, we will discuss how 

this is done and different implementation approaches. 

Path planning is the means by which autonomous vehicles plan their movements and 

navigate through the environment. As stated in [15], there are multiple challenges in 

planning an autonomous vehicle’s path through a dynamic environment: 

• Build a map based on offline coordinates that provides a basis for the vehicle's real-

world position and planned trajectory. 

• Locate the vehicle's current position on the map and plan a short-term trajectory 

through these points. There may be multiple candidate points for the vehicle's next 

step. The best candidate should be decided based on the positions of obstacles 

detected by the vehicle sensors.  

• Find the best vehicle heading and acceleration to ensure a safe trajectory, possibly 

also considering comfort (favouring smoother trajectories with less abrupt 

accelerations). 

Path planning is an important subject to be considered in the automatic parking system. 

According to the acquisition of environmental information around the vehicle, trajectory 

planning can be divided into two categories[2]. Firstly, a global trajectory planning method 

based on known environmental information. Second, a local path planning method that is 

a key task for the motion planners of autonomous vehicles since it commands the vehicle 

across its environment while avoiding any obstacles. To perform this task, the local path 

planner generates a trajectory and a velocity profile, which are then sent to the vehicle’s 

actuators[16]. 
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For the scope of our project, we develop a local planner. Typical parking control theories 

have been evaluated as fuzzy control, neural network control, linear inequalities-based 

control method, etc. Also, the typically proposed types of path curves such as circular arcs 

with straight lines, clothoid curves, arc tangent curves, and cubic polynomial curves. The 

triangular function was also used by some researchers.  

Though other geometries of the parking path may be calculated based on simpler 

mathematical equations, a fifth-degree polynomial curve with continuous curvatures is 

going to satisfy the path’s smoothness and flexibility better. Since more different variables 

regarding initial and final conditions are involved in the calculation, it is better to choose a 

higher degree curve. A fifth degree polynomial is the least polynomial curve that can 

present parking motion[17]. 

For the reason explained above, we follow the quintic polynomial planning to generate the 

trajectory that will allow us to park forwards and park backwards. Of course, for each type 

of parking, it is not the same type of trajectory/driving and must be adapted by adjusting 

some parameters. After that, we will follow an optimal trajectory in a Frenet frame to 

recalculate during run-time the path to avoid obstacles. 

3.3.1 Quintic polynomial path planning 

The method presented in [17] and [18] has been chosen for our forwards path planning in 

the parking manoeuvre simulation. This method is based on the idea of quintic control 

function [19]. 

If you use two quintic polynomials along x axis and y axis, you can plan for two dimensional 

robot motion in x-y plane: 

𝑥(𝑡) = 𝑎0 +  𝑎1𝑡 + 𝑎2𝑡2  +  𝑎3𝑡3  +  𝑎4𝑡4  +  𝑎5𝑡5  

𝑦(𝑡) = 𝑏0 +  𝑏1𝑡 +  𝑏2𝑡2  +  𝑏3𝑡3  +  𝑏4𝑡4  +  𝑏5𝑡5  

Planning the local path is to determine the coefficients of the fifth polynomials, 

𝑎0~𝑎5, 𝑏0~𝑏5, by solving six simultaneous equations satisfying boundary conditions, see 

below: 

𝑥(𝑡 = 0) = 𝑋𝑠 

�̇�(𝑡 = 0) = 𝑉𝑥𝑠 

�̈�(𝑡 = 0) = 𝐴𝑥𝑠 

𝑥(𝑡 = 𝑇) = 𝑋𝑒  

�̇�(𝑡 = 𝑇) = 𝑉𝑥𝑒 

�̈�(𝑡 = 𝑇) = 𝐴𝑥𝑒 

𝑦(𝑡 = 0) = 𝑌𝑠 

�̇�(𝑡 = 0) = 𝑉𝑦𝑠 

�̈�(𝑡 = 0) = 𝐴𝑦𝑠 

𝑦(𝑡 = 𝑇) = 𝑌𝑒 

�̇�(𝑡 = 𝑇) = 𝑉𝑦𝑒 

�̈�(𝑡 = 𝑇) = 𝐴𝑦𝑒 

Where the boundary conditions are: 

• 𝑇: the time interval traveling along the path. 

• 𝑋𝑠, 𝑌𝑠: the position components at t = 0. 
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• 𝑉𝑥𝑠, 𝑉𝑦𝑠: the velocity components at t = 0. 

• 𝐴𝑥𝑠, 𝐴𝑦𝑠: the acceleration components at t = 0. 

• 𝑋𝑒 , 𝑌𝑒: the position components at t = T. 

• 𝑉𝑥𝑒 , 𝑉𝑦𝑒: the velocity components at t = T. 

• 𝐴𝑥𝑒 , 𝐴𝑦𝑒: the acceleration components at t = T. 

Based on the assumptions of the [18], the boundary conditions of initial time (t = 0) can be 

obtained, e.g. the current localization and motion values of the vehicle. The values of 

velocity and acceleration at the end of the path are predefined (t = T). Parameter T 

represents the time required for automated guided vehicle to travel along the local path. 

This parameter is inversely related to acceleration. Too much acceleration could take away 

from the comfort of the manoeuvre, therefore the maximum acceleration is the one that 

sets the minimum route time (T). 

The calculations of interest for the travelling along the local path, after x(t) and y(t), are the 

velocity (𝑣𝑠) and the desired curvature (𝑘): 

𝑣𝑠 =  √�̇�2 +  �̇�22
 

𝑘 =  
𝑎𝑑

𝑣𝑠
2 

𝑤ℎ𝑒𝑟𝑒  𝑎𝑑 =  |𝑎 −  
𝑣

|𝑣|
(𝑎

𝑣

|𝑣|
)| ;    𝑤ℎ𝑒𝑟𝑒 𝑣, 𝑎 𝑎𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑓𝑟𝑜𝑚 (𝑥, 𝑦) 

With these parameters it is then also possible to calculate the rotational speed of the wheels 

and the steering. 

Going into more detail, this method has a restraining trajectory error method implemented. 

In practice, the trajectory gets errors due to calculations caused by wheel slippage, the 

actual non-flat shape of the ground, etc. and is compensated at each driving calculation 

iteration in real time, see Figure 6.  

 

Figure 5. Calculation for traveling[18]. 

 

Figure 6. Restraining the trajectory error[18]. 

3.3.2 Optimal trajectory in a Frenet frame 

The method presented in [20] has been chosen for recalculate during runtime the path to 

avoid obstacles. 
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The Frenet Frame method, which asserts invariant tracking performance under the action 

of the special Euclidean group 𝑆𝐸(2) ≔ 𝑆𝑂(2) ×  ℝ2, is a well-known approach in tracking 

control theory. This method is used to combine different lateral and longitudinal cost 

functionals for diverse tasks, as well as to simulate human-like highway driving behaviour. 

The trajectory type that this control follows has many possibilities but, in our case, it will be 

a quintic polynomial too (explained in the previous section).  

First, we must know the change of coordinates in order to understand the behaviour. It is 

a change from Cartesian coordinates to Frenet coordinates, see images Figure 7 and 

Figure 8. 

 

Figure 7. Cartesian coordinates. 

 

Figure 8. Frenet coordinates. 

The next step is to determine de trajectory start state. Once this point and the main 

trajectory are known, several trajectories are generated within the maximum range in the 

d-axis at each run-time and in a limit range in the s-axis. These trajectories have a cost 

calculation referenced according to the lateral trajectory (controlling the steering) and 

longitudinal trajectory (controlling the speed) considering physical magnitudes. This cost 

has the objective of finding the most comfortable and beneficial trajectory. Then, static and 

dynamic collision checking takes place. Each set of trajectories is evaluated, and their total 

costs are modified according to whether they avoid static and dynamic collisions. After that, 

the collision-free trajectory with the lowest conjoint cost functionals of each active trajectory 

is compared to the other ones, and the trajectory with the smallest initial jerk value is finally 

put through to the tracking controller. Finally, the coordinates are change to the cartesian 

initial ones. Further mathematical explanations in [20] and [21]. 

The example below shows a plot of an optimal trajectory. The crosses are the obstacles, 

the blue line is the main path, the green lines are the possible paths, the red lines are the 

no collision-free paths, and the blue circles are the waypoints of the selected path. All this 

in an instant of time t.  
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Figure 9. PythonRobotics, optimal trajectory with Frenet frame example in cartesian coordinates. 

3.4   Simulation environment and virtual integration 

As an emerging technology, automated driving has been the subject of major research 

efforts over the past decades. Planning is an essential topic in the field of automated driving. 

It is a critical part of realising driving autonomy, embedded with perception and execution 

within the system architecture. It requires different software tools for its development, 

validation and execution. 

In this section of the state-of-the art we focus on different simulation software environments 

based on the classical sense-plan-act paradigm from robotics.  

 

Figure 10. Tools supporting planning[22]. 

A simulator must provide multiple information for the planning stack: road network, traffic 

data for route planning, sufficient data for perception to generate a scenario for behaviour 

planning, and environmental features for trajectory planning. As an automated driving 

system is a highly complex and coupled system, sensor data is also needed for sense and 

act. See Table 1 for the comparison between different simulator software’s than complain 

with. 
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Table 1. Comparison of simulators supporting planning methodology[23]. 

  

About the Table1: open-source software’s in bold, the symbols means: (--) very poor, (-) 

poor, (o) irrelevant, (+) good, (++) very good, (i) some efforts to implement, TF – Traffic 

flow simulation, DM – Driver model for non-ego objectives, SE – detail and variety of 

sensors, VI – detail of the rendered graphics, VD – detail of vehicle dynamics. 

For this thesis, the simulator chosen is CARLA simulator. The main reason for choosing 

this simulator is that it is open source software. Furthermore, based on the above 

comparison and looking at all open source simulators, we can easily see that CARLA 

performs well in all specifications. It is true that it is not suitable for V2X, but we will not 

need it in our thesis. A more detailed explanation of the software can be found in appendix 

A. 
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4 Development 

The case study of this master thesis is an Automated Parking System (for now on APS), 

which provides automated parking and pick up functionalities to the users (Park now and 

Get car, respectably in section 4.1). In contrast to parking assistance systems, where the 

driver is only supported by the system, but it is still responsible for the parking manoeuvre, 

APS is a fully automated function with SAE autonomous level 4.   

The focus of this work is to design a complete automatic parking system using a systems 

engineering approach. We define the vehicle components, the environment and system 

management components. Subsequently, simulate and recreate this function in the CARLA 

simulator.  

The Automated Parking System functionality has been modelled taking into account the 

different situations that our system will face. From a systems engineering point of view, this 

methodology starts with the definition of the main use cases, so that we identify the needs 

of the system. This guides us in differentiating the main operational modes and 

dependencies on the context that influence on the parking functionality and, therefore, have 

to be considered in the system architecture. 

4.1 Overview and system under design 

The automated parking system designed in this master thesis consists of the autonomous 

vehicle for parking management, where the functionalities for parking and unparking the 

vehicle are implemented. The components involved are the autonomous vehicle, a 

dedicated mobile app and an external cloud services. The external cloud service 

component is out of the scope in this thesis but is needed to behave the system. The 

autonomous vehicle and the dedicated mobile app are the system under design for the 

APS, see Figure 11. The system is further described in the next three sections where the 

use cases, constraints and system requirements are covered. As mentioned, the external 

cloud service is a part of this study but is not part of the system itself. 
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Figure 11. System under design. 

We define briefly how the system under design works: 

• APS parking functionality. When parking is requested, the user has to get out of the 

vehicle and through the mobile application (from now on APS App) search for the 

desired spot and activate the parking functionality. 

• APS unparking functionality. When it is requested to pick up the vehicle, the user 

must activate the unparking functionality through the APS app indicating where he 

wants to receive the vehicle and when (it can be immediately). 

In the Figure 12 we have a small simulation of the start of the APS parking functionality. 

The user gets out of the red vehicle and wants to park in the parking area that can be seen 

in the background of the image. 

 

Figure 12. CARLA simulator in an example case. 
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4.1.1 User cases  

As mentioned in the previous section, we use a systems engineering approach and start 

first defining use cases, see Table 2. 

Table 2. Uses cases 

USE-CASE Description Realized 

UC-1 
APS is an automated parking system for a vehicle that replaces the 
driver for the driving manoeuvre of the vehicle. 

SYS-4, SYS-6, 
SYS-11 

UC-2 

APS supports the following parking manoeuvre: 
o Parallel parking 

o Angular parking 

o Perpendicular parking 

SYS-2, SYS-4, 
SYS-15 

UC-3 

APS supports the following drivable area types: 
o Indoor parking 
o Outdoor parking 
o Urban road 
o Interurban road 

SYS-3, SYS-4, 
SYS-15 

UC-4 
The user manages the APS function through a dedicated application 
on a mobile phone (APS App). 

SYS-1, SYS-5 

UC-5a 
 

The APS App: 
- Shows the available parking space. 
- Reserves the parking space selected by the user. 
- Activates APS for parking when selecting “Park now” 
- Activates APS for unparking when selecting “Get car” 
- Allows to stop the APS function. 
- Activates “safe mode” if the parking manoeuvre has not 

been completed. 
Notifies if the result of the parking manoeuvre: completed or “safe 
mode”. 

SYS-1, SYS-5, 
SYS-7, SYS-

10 

UC-5b 

The APS App Communicates with the external cloud service (ECS). 
The ECS: 

- manages parking spots, including reservations 
- provides location of parking spots 

 

UC-6 

The APS App shows the following information: 
o The status of the function: active or inactive. 
o The menus to select the parking spot. 
o The notifications about the APS status: parked, safe mode 

or stop. 

SYS-1, SYS-5, 
SYS-7, SYS-

10 

UC-7 

The APS App offers a "Park now" button to start the vehicle park 
function. This function allows the user to select the desired parking 
spot and start the manoeuvre. 

SYS-10 

UC-8 

The user selects the parking spot and accepts the parking spot to 
start the parking manoeuvre of the vehicle. The APS function will not 
proceed if the user does not select any spot or rejects the selection. 

SYS-3, SYS-
10 

UC-9 

If there is no parking space in the area, the user will not be able to 
select any parking spot, and therefore will not be able to start the 
APS functionality.  In this case the vehicle will never take 
autonomous control. 

SYS-1 
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UC-10 

The APS App offers a "Get car" button to start the vehicle unpark 
function. This function allows the user to set the meeting point and 
pick up time. 

SYS-10 

UC-11 

The ECS provides the exact address and coordinates of the parking 
spot to the vehicle. Both parking or pick up locations are displayed 
and recorded in the APS App. 

 

UC-12 APS drives to the parking spot provided by the APS App. 

SYS-1, SYS-5, 
SYS-8, SYS-9, 
SYS-11, SYS-

12 

UC-13 

The user is liable for persons and objects left inside the vehicle. The 
APS function assumes that there are no users inside the vehicle, but 
it is not their responsibility to comply with it. 

 

UC-14 

When the APS detects an obstacle that prevents it from finishing 
parking (e.g., a pedestrian walking in the spot) it will not complete 
its manoeuvre until the obstacle leaves the space. 

SYS-6, SYS-9, 
SYS-12 

UC-15 

APS goes to “safe mode” manoeuvring if any of the following 
situations happen during the parking manoeuvre: 

o Collision risk with any element outside the vehicle. 
o The user stops the manoeuvre through the APS App to abort 

the APS. 
Other risks are excluded and referenced as constrains. 

SYS-4, SYS-6, 
SYS-8, SYS-9, 

SYS-12 

UC-16 
APS finishes the parking manoeuvre when the vehicle is completely 
parked in the parking spot selected by the user.  

SYS-1, SYS-5, 
SYS-7 

UC-17 
APS locks the vehicle whenever the system is active, or the vehicle is 
parked. 

SYS-14 

UC-18 

APS announces the parking manoeuvre successfully finished by 
blinking the emergency lights and sending a notification through the 
APS App. This notification contains a confirmation and the 
coordinates of the parked vehicle. 

SYS-1, SYS-5, 
SYS-7 

 

4.1.2 Constrains 

For simplicity and satisfaction on safety demands, this work assumes the following 

constrains: 

Table 3. Case study constrains 

CONSTRAINS Description Realized 

CON-1 

Misuse of the APS function is not considered. UC-1, UC-7, 

UC-10, UC-12, 

UC-13, UC-17 

CON-2 
Technical failures of the vehicle, sensors, actuators are not to be 
considered during the parking manoeuvre. 

UC-12, UC-15 

CON-3 
The vehicle is able to fulfil the parking manoeuvre and return to 
the initial location with sufficient amount of energy. 

UC-12 

CON-4 
Indoor and outdoor parking areas only provide perpendicular 
parking spots.” 

UC-2 

CON-5 The parking floor for street is 0.  
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CON-6 
Failures in the connection between the vehicle and the mobile 
app are not considered. 

UC-6, UC-15 

CON-7 
The ECS providing free parking spots is always available. UC-5a, UC-5b, 

UC-9 

CON-8 
The ECS reliably provides parking spaces. UC-8, UC-9, 

UC-11 

CON-9 
Once a parking spot has been selected, it is reserved and will not 
be offered to another vehicle. 

UC-5, UC-8, 

UC-14, UC-16 

CON-10 

The vehicle always fits in the assigned parking spot. The vehicle 
has standardised measurements in order to be able to be 
compared with parking spaces. 

UC-5a, UC-5b, 

UC-11 UC-16 

CON-11 

The user must be reachable at any time during APS operation, 
starting when the user selects “Park now” / “Get car” in the APS 
App until received the terminated notification. 

UC-9, UC-15, 

UC-18 

CON-12 

The drivable areas must have traffic lane type for identifying the 
parking area spot. The APS can’t park in a scenario where the 
surroundings cannot be recognised (e.g., a land car park). 

UC-3 

CON-13 The APS must respect the traffic rules (e.g., speed limit).   

 

4.1.3 System requirements 

The full functionality must be guaranteed. The following requirements shall be fulfilled by 

the system under design, which, as is known, is composed of the autonomous vehicle and 

the mobile application. 

Table 4. System requirements. 

SYS. REQUIREMENTS Description  

SYS-1 
The system shall provide the state of the parking manoeuvre to the APS 
App. 

SYS-2 

The system shall support the following parking modes:  
o Parallel mode  
o Angular mode 

o Perpendicular mode  

SYS-3 
The system shall be able to drive to the location provided by the APS 
App.  

SYS-4 
The system shall calculate and manage all possible routes in real time. If 
needed, the system aborts the manoeuvre when high risk detected.  

SYS-5 The system shall communicate its status to the APS App in real time.  

SYS-6 
The system is the only one that can change the route of the parking 
manoeuvre once started the APS.  

SYS-7 
The system shall send a parking manoeuvre completed to the APS App 
to notify that the vehicle is parked correctly and safe.  

SYS-8 
The APS vehicle automatically recognises obstacles while manoeuvring 
into or exiting a parking spot.  

SYS-9 
 The APS must avoid collisions with any dynamic or stationary object 
while manoeuvring into or exiting a parking spot.  

SYS-10 

 The APS app shall provide: 
o Localization of the spot 
o Park or unpark mode 
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o Type of parking mode 
o Angle of parking, in angular parking mode case 

SYS-11 

The parking speed is limited to 10 km/h forward and backwards. the 
speed can be decreased up to 5 km/h in the last metres of the 
manoeuvre.  
However, this speed limit must conform to local regulatory 
requirements, such as internal law and technical guidance.  

SYS-12 The APS shall abort if any collision occurs.  

SYS-13 
The APS shall abort if the user stops the function via APS App and follow 
the new route provided by the APS App.  

SYS-14 
APS shall lock the vehicle whenever the system is active, or the vehicle 
is parked. 

SYS-15 

The APS App shall manage the parking location modes specified below: 
- Street_parallel (spot on the street) 
- Street_angular (spot on the street) 
- Parking_outdoor (spot inside car park) 
- Parking_indoor (spot inside car park) 
- Parking_road (spot on the road) 

 

4.2 Modelling of the APS function 

The system needs to be modelled to fulfil the use cases and system requirements 

described above. Considering that the vehicle is autonomous and the APS function safety 

relevant, we model our function making use of the industry standards described in section 

3.2. The ISO TR-4804[23] is used for the modelling of the logical architecture, whereas the 

ODD’s is based on the ASAM specification. 

4.2.1 Logical architecture for safety  

The ISO technical report 4804 deals with safety for autonomous driving systems[3]. It 

defines that the overall system is considered safe according to its capabilities. 

During the time the system is nominally operating, the performance of the system can be 

understood using the classical sense-plan-act design paradigm of the robotics and 

automation literature. In this model, sensing and perception (including localization), 

planning and control, and actuation and stability provide a general, implementation-

independent view of the automated driving system. Figure 13 shows it at a very high level. 

 

Figure 13. Sense - plan - act design paradigm. 
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The capabilities are divided into fail-safe capabilities (FS) and fail-degraded capabilities 

(FD). Based on the allocation of capabilities to the basic functions for sense – plan – act, it 

is possible to allocate requirements for elements that the automated vehicle is reasonably 

safe as depicted in Figure 14. 

 

Figure 14. fail-safe & fail-degraded capabilities. 

The classical architecture discussed above is outdated in the presence of the autonomous 

systems that are currently being developed, this architecture is only useful in a highly 

controlled environment. If the system's context is continuously changing, a more complex 

structure is needed. The environment is dynamic, and it is impossible to define all the 

contexts in which an autonomous vehicle will operate, therefore ISO 26262 is not 

applicable. 

In order to ensure safety, the system should check and monitor if everything around it 

behaves as expected, look at the system's state, and manage the system to ensure safety. 

In any context (ODD) where it is defined, the system must work safely. As a result, the 

system is more complex than it already is, but it is also safer and more reliable. 

To develop this kind of systems and explore new architectures, it is important to see the 

recommendations and standards defined by some organizations, such as [3]. 

The ISO technical report 4804 proposes a generic architecture for an autonomous vehicle. 

In this thesis we focus on a reduced scope of the proposed logical architecture. Our minimal 

autonomous driving system for automated parking is aligned with the Sense - Plan - Act 

paradigm and the capabilities defined in the standardisation. However, we consider only 

the set of components shown in Figure 15: perception, localization, path planning and 

vehicle motion. 
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Figure 15. Safety-based architecture for the minimal autonomous driving systems. 

To define the ODD’s we have used the ASAM standard. Because of the safety 

requirements of the ADS mode manager, the architecture of the vehicle has been modelled 

using the standardized AUTOSAR architecture. The software architecture and the 

implementation of the ADS mode manager have been developed as part of another master 

thesis [4]. Although they are out of the scope of this thesis, the code has been jointly 

integrated and tested together with the implemented parking manoeuvrers in the CARLA 

simulator. 

4.2.1.1 Components 

Now let's talk about each of the components of the architecture with a focus on the role 

they play in our development. 

The first component is the Perception, responsible for the identification of the environment 

around the vehicle sensors that produces objects (data). Perception is where the various 

inputs from the on-board sensors and the optional V2X information are captured to 

generate the actual world model. 

The model includes a central lidar sensor, front and rear camera sensors, central GNSS 

sensor for localization and two radar sensors on each side at the front, centre and rear part 

of the vehicle. All these sensors are necessary to satisfy safe autonomous driving and will 

be used to drive the vehicle whenever necessary in our APS function. Additionally, some 

of them are essential for parking manoeuvres. The model also includes a V2I infrastructure 

for the connexion between the vehicle and the APS App described in section 4.1. 
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Figure 16. Sensor’s location on the vehicle for the APS.  

The Localization component focuses on the identification of the vehicle's environment. It 

is important that the automated driving vehicle localises itself appropriately, using 

information from environmental sensors, and identify objects in the environment. 

Furthermore, possible linking of additional a-priori information from outside the on-board 

perception performance (e.g., through mapping information, referencing detected events 

to a unique coordinate system), and considering egomotion information to predict whether 

the automated vehicle is about to exceed an ODD limit. 

For the implementation in the simulator, it is very important to know the location of the 

vehicle. Also, knowing the environment for the localization is relevant and is acquired 

through ground truth, not from sensor data. 

The Path Planning component sets out the manoeuvre to be performed to achieve the 

next driving step. This component must handle location information, follow traffic rules, 

consider egomotion and adapt the functionality according to the switches provided by the 

mode manager. The automated driving system obeys traffic rules for the drive planning 

element to produce a lawful driving plan unless crash avoidance manoeuvres can be 

prioritized over traffic rules to prevent collisions. 

The model features two different parts in its motion, which are the autopilot and the parking 

manoeuvre. Autopilot mode is responsible for driving the vehicle to the parking spot. In this 

part, we use route planner of CARLA's autonomous pilot. For the parking manoeuvre mode, 

we have to define the type of parking, the different possible manoeuvres and the type of 

path planning. 

As shown in Figure 17 to Figure 19, we distinguish three types of parking: vertical, parallel 

and angular. We define the parking angle as the angle between the parking spot and the 

side of the road. Therefore, parallel parking corresponds to 0°, perpendicular parking to 

90° and angular parking can typically vary between 30°, 45°, 60° and 75°[24]. As 

manoeuvres we define two types of parking manoeuvres, two types of unparking 
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manoeuvres and one emergency manoeuvre to ensure a safe mode. All manoeuvres have 

been developed as part of this master thesis and are explained in section 4.3.3.3. 

 

Figure 17. Perpendicular 

parking [25]. 

 

Figure 18. Parallel parking 

[25]. 

 

Figure 19. Angular parking [25]. 

The last component is Vehicle Motion and refers to its translation along and rotation about 

all three axes (e.g., longitudinal, lateral, and vertical). Rotations of a vehicle around these 

three axes correspond to angular momentum of the car body in roll, yaw, and pitch[26]. 

Shortly, the movement of the vehicle to achieve the path planed.  

Using the CARLA simulator, the control of the actor (vehicle under test) is defined by the 

constants acceleration, braking and steering according to the function and mode of 

operation. 

4.2.1.2 ADS Mode Manager 

The ADS Mode Manager fulfils the task of safely switching between manual driving modes 

and the different automated driving modes. For the activation of an automated driving mode, 

this means getting all information to check if all prerequisites such as ODD are fulfilled (e.g. 

if the automated vehicle is on the right type of road, check weather conditions)[3]. This 

module is out of scope of this master thesis. The AS Mode Manager has been designed 

and implemented in the my co-worker's thesis[4]. 

4.2.1.3 ODD Handling 

The ODD Handling component in Figure 15 is in charge of managing in which ODD the 

vehicle is driving. In this thesis, we only implement the operational domains that are 

supported by the CARLA simulator and apply them to the APS. For details, see section 

4.2.2. 

4.2.2 Operational Design Domain 

The first step in establishing the capability of an automated driving system is the definition 

of its the operational design domain. The ODD represents the operating environment within 

which an ADS can perform the DDT safely, as we have seen in section 3.2.5. We follow 
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the PAS 1883:2020 standard which provides requirements for the minimum hierarchical 

taxonomy for specifying an ODD to enable the safe deployment of an ADS. The ODD 

comprises the static and dynamic attributes within which an ADS is designed to function 

safely. This PAS is applicable to Level 3 and Level 4 ADS[27]. 

Table 5, which follows the ASAM standardisation and PAS 1883, defines the ODDs of our 

APS focusing on the parking manoeuvres. The capability of the different attributes defines 

whether they are applicable for the simulator and whether they are relevant for our function. 

Table 5. Supported ODDs for the APS. 

  Attribute Sub-attribute Capability 

Scenario 

Zones 

Geo-fenced areas Yes 

Traffic management zones No 

School zones No 

Regions or states No 

Interference zones No 

Drivable 
area 

Type 

Indoor parking Yes* 

Outdoor parking Yes 

Shared space No 

Motorways No 

Urban roads Yes 

Interurban roads Yes 

Line type 

Bus Lane No 

Traffic lane Yes 

Cycle lane No 

Emergency lane No 

Road lane Yes 

Direction of travel - Only left-hand traffic Yes 

Geometry - 
Longitudinal plane 

Up-slope Yes 

Down-slope Yes 

Level plane Yes 

Surface type 

Loose (gravel, sand, etc.) No 

Segmented No 

Uniform (Asphalt) Yes 

special 
structures 

Pedestrians’ crossings Yes 

Bridges No 

Rail crossings No 

Tunnels No 

fixed road 
structures 

Buildings Yes 

Streetlights Yes 

Street furniture No 
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Vegetation No 

Environmental 
conditions 

weather 

Wind Yes 

Rainfall Yes 

Snowfall No 

Sunny Yes 

Illumination 

Day Yes 

Night / low ambient lighting Yes 

Cloudiness 

Clear Yes 

Partly cloudy Yes 

Overcast Yes 

Artificial illumination Yes 

Dynamic 
elements 

traffic 

Parked vehicle Yes 

Pedestrians Yes 

Presence of special vehicles Yes 

On road vehicles Yes 

*Yes: To integrate it in our simulation it is necessary to create a new map, which is out of scope of 
this thesis. 

4.3 Detailed design 

After the system description and the modelling of the architecture, now we can proceed 

with the detailed design of the APS function. From now on, the architectural model of the 

function will be adapted to the terminology of the CARLA simulator. We will cover in 

different sub-sections the CARLA environment, the functions, how they work in detail and 

how to change ODD’s. 

4.3.1 CARLA environment 

CARLA is the simulation environment on which we integrate the APS for testing and 

validation. As already seen in appendix A, the simulation runs in a simulation world. In each 

simulation world, a single map is loaded with the possibility of placing different buildings, 

vehicles, pederasts, etc. 

4.3.1.1 CARLA world and sensors 

CARLA has 10 default maps created for the use of the simulator. Map 5 has been chosen 

for the APS simulation. The main reason is that it has space for parallel on-street parking 

and an outdoor car parking area for perpendicular parking. Figure 20 is the road layout of 

map 5, where the green area marks the on-street parking area and the orange area the 

outdoor parking. Figure 21 shows how the map environment looks like. 
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Figure 20. Map 5 layout in CARLA 

simulator. 

 

Figure 21. Simulation environment in map 5. 

For our implementation of the APS, we use specific CARLA classes to emulate the 

behaviour expected from the model. CARLA provides a number of sensors: a complete 

use of all sensors for our functions is out of scope, would lead to a huge workload and a 

new thesis. Next, we provide a short description of the Gnss sensor and the Obstacle 

sensor that have been used in this work. 

The Global Navigation Satellite System (Gnss) sensor is attached to an actor to show 

its current position. This location is the geographical reference defined by the map definition, 

it shows longitude, latitude or altitude position of the actor. In this thesis, Gnss was used to 

emulate the GPS signal and get the localization on time of our vehicle. With this sensor we 

want to fulfil the APS use cases and simulate the use of parking spot and vehicle pick-up 

locations. 

The Obstacle sensor is a sensor that detects obstacles during simulation. Detection 

depends on the view and range of the sensor. This sensor provides the distance to the 

detected obstacle. In this thesis, the Obstacle sensor was used to emulate the behaviour 

of a radar and to know how close our vehicle is with respect to other actors (vehicles, etc) 

to avoid collisions. 

4.3.1.2 Custom CARLA classes 

A Python API is used to access the CARLA simulator. We used open-source code provided 

by CARLA in [28], modified classes, and implemented our own classes to develop the APS 

function.  

For instance, an individual file has been created for each of the sensor classes to be 

consistent with the software component types in [4]. This change includes the following 

sensors: camera, Gnss, IMU, LIDAR, radar and semantic LIDAR.  
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To better understand how our simulation's code works, we describe four custom classes 

and what they are used for. 

Waypoint class 

The first custom class is for waypoints. A Carla.Waypoint, no open-source code, is a 3D-

directed point in the CARLA world that represents a directed point in the road. Each 

waypoint contains a Carla.Transform which states its location on the map and the 

orientation of the lane containing it. It also contains the variables road_id, section_id, 

lane_id and s corresponding to a road. These waypoints only exist and can be used along 

the routes defined on the map. This is a major drawback because it limits their use, and 

this is the reason why we must create our own class to allow us to use waypoints freely. 

Our waypoint class only contains the location and orientation. 

 

Figure 22. Waypoint in the road. 

Controller class 

The second custom class is the controller class, which is engaged in the vehicle’s motion. 

Carla.VehicleControl class manages the basic movement of a vehicle using typical driving 

controls such as throttle, steer, brake, hand brake, reverse, manual gear shift, gear. This 

class will be the output of the controller. The vehicles follow a route defined by waypoints 

and the controller is in charge of controlling these variables. To manage the movement of 

the vehicle it is necessary to calculate the variables brake, accelerator and steering. Always 

drive with automatic gears. The control is divided in longitudinal and lateral types. 

For longitudinal control we implemented a PID Controller. This controller will take the 

desired speed as the reference and outputs throttle and brake. A PID controller consists of 

three components: 

• Kp: A pure gain Kp that scales the vehicle acceleration based on the speed error 

which ensures that the vehicle is accelerating in the correct direction with the 

magnitude proportional to the error. 

• Ki: The integral term Ki sets up the output based on accumulated past errors, which 

ensures the steady steed errors are eliminated for ramp referencing. 

• Kd: The derivative term Kd dampens the overshoot caused by the integration term. 
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The controller follows the next equation where the parameters are desired speed (𝑣𝑑), 

vehicle speed (𝑣), acceleration (𝑢), proportional gain (𝑘𝑝), integral gain (𝑘𝑖), derivative gain 

(𝑘𝑑). 

𝑢 =  𝑘𝑝(𝑣𝑑 − 𝑣) +  𝑘𝑖 ∫ (𝑣𝑑 − 𝑣)
𝑡

0

 𝑑𝑡 +  𝑘𝑑

𝑑(𝑣𝑑 − 𝑣)

𝑑𝑡
 

It is necessary to convert the acceleration from the PID controller into throttle and brake 

commands in order to complete the longitudinal control. Positive outputs correspond to 

throttle, while negative outputs correspond to break. 

For lateral control is the same idea but controlling the steering of the vehicle instead of the 

speed. This steering is based in the rotation between the next reachable waypoint and the 

vehicle. The variables desired speed (𝑣𝑑), vehicle speed (𝑣), acceleration (𝑢) from the 

previous formula are changed into desired steer (𝑠𝑑), vehicle steer (𝑠), steering (𝑢). Positive 

outputs correspond to right steer, while negative outputs correspond to left steer. 

Agent class 

An agent in CARLA allows a vehicle to follow a random and endless route or to take the 

shortest route to a given destination. Agents obey traffic lights and react to other obstacles 

on the road. Parameters such as target speed, braking distance, following behaviour and 

others can be modified.  

From the default agent, we have created an agent that contains the possibility to move all 

over the map (inheritance of the mother class behaviour agent), move inside the car park 

and manoeuvre for parking. As explained above, waypoints are only defined on the roads 

on the map, and we must create our own paths to drive into the car park and manoeuvring. 

More detail on this path planning will be given in section 4.3.3.3. In addition, a safe mode 

has been defined in the APS functionality and we must include it in the agent. An overview 

of the parking agent through pseudocode is shown below. 

from my_controller import VehiclePIDController as MotionController 

class CustomAgent(BehaviorAgent): 

    # variable initialisation 

    my_car_controller = MotionController() 

    others 

    # functions 

    set_autopilot_destination(destination): 

    set_parking_destination(destination): 

    set_manoeuvre_destination(destination): 

    run_step_autopilot(): 

        return run_step from BehaviourAgent inheritance class 

    run_step_parking(target_speed = 10 (km/s)):              

        if distance(my_vehicle & next_waypoint) > 0.5 m:       

            return motion_stop() 

        else: 

            return controller.run_step(target_speed, next_waypoint) 

    run_step_manoeuvre(target_speed = 5 (km/s)): 

        if distance(my_vehicle & next_waypoint) > 0.2 m:       

            return motion_stop() 

        else: 

            return controller.run_step(target_speed, next_waypoint) 

    set_waypoints_queue(waypoints_queue): 
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        save waypoints_queue 

    done_autopilot(): 

        return boolean if it's done 

    done_parking(): 

        return boolean if it's done 

    done_manoeuvre(): 

        return boolean if it's done 

    emergency_lights(): 

        set emergency light state active 

    motion_stop(): 

        return control with max brake 

    safe_mode(): 

        emergency_lights() 

        motion_stop() 

 

SpotsMap class 

This class has been created to manage all the parking spots that we have inside the 

simulation map, town 5, as seen in Figure 20. When instantiating the SpotsMap, a 

percentage of occupancy of the parking spaces is selected to occupy them randomly. 

Within this class there is another class called Spot that contains the information of the 

location and if the spot is occupied. The spot management functions are:  

- get_all_spots  

- get_occuped_spots  

- get_free_spots  

- get_street_free_spots 

- get_parking_free_spots 

4.3.2 APS functions  

As described in section 4.1 and 4.2.1, we need to implement functions to park and unpark 

the vehicle for different types of parking spots. These functions must be able to reach their 

destination in autonomous driving and proceed with the parking (and unparking) 

manoeuvres. These functions are the following: 

Table 6. Forwards parking manoeuvre description. 

Function name PM_Forwards 

Input 
Carla.Localization(x,y,z) Parking spot 

Float: angle  Angle of parking  

Description 
Parking manoeuvre for perpendicular and angular type of parking. If the 

angle is 90° it corresponds to perpendicular, otherwise to angular. 

Table 7. ForwardBackwards parking manoeuvre description. 

Function name PM_ForwardBackwards 

Input Carla.Localization(x,y,z) Parking spot 

Description 
Parking manoeuvre for angular parking type. This manoeuvre needs to 

drive in reverse. 
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Table 8. Backwards unparking manoeuvre description. 

Function name UM_Backwards 

Input 
Carla.Localization(x,y,z) Pick-up point 

Float: angle  Angle of parking  

Description 
Perpendicular and angular type of unparking manoeuvre. This 

manoeuvre needs to drive backwards out of the parking spot. 

Table 9. BackwardForwards unparking manoeuvre description. 

Function name UM_BackwardForwards 

Input Carla.Localization(x,y,z) Pick-up point 

Description 
Parallel type of unparking manoeuvre. This manoeuvre leaves the 

parking spot in a forward direction. 

Table 10. Safe mode function description. 

Function name Safe_Mode 

Description 
Safe mode manoeuvre to avoid collisions or when the APS is aborted for 

any reason. This manoeuvre is activated automatically when necessary. 

Behaviour 

When this function is activated, the vehicle must stop and turn on the 

emergency lights (4 flashers, rear brake and dipped headlights). Out of 

simulation, but within the system under design, the user is informed 

through the APS App consequently. 

 

Important details for these functions are highlighted. The angle is an important variable for 

the path planning in the manoeuvre and to ensure that the vehicle is parked in the right 

orientation. It is not relevant to know on which side of the road the parking space is located, 

with the location of the vehicle and the location of the space we already know where it is. 

If it is a two-way street, we will always arrive on the side of the road closest to the parking 

space, avoiding having to invade the oncoming lane. The simulation map does not allow 

driving inside an indoor car parking. Hence, we assume that the parking spot is always 

located on the ground floor. 

4.3.3 Three phases of the APS functionalities 

The implementation of the manoeuvre functions of the previous section follows a workflow 

consisting of three phases.  

Our vehicle under test (VUT) is an agent that has the capabilities of navigating the map, 

driving into the car parking area and manoeuvring for parking. These three capabilities are 

the three phases that the APS follows to proceed with its functions: autopilot, car parking 

route and parking manoeuvre. For unparking, the autonomous vehicle follows a reverse 

workflow: unparking manoeuvre, car parking route and autopilot to the final destination. 
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An example of these three phases for perpendicular parking in a car parking area is shown 

in the next figure: blue path for the autopilot, orange path for driving the car in the parking 

and red path for the parking manoeuvre. All three phases are implemented in the parking 

agent's functions. 

 

Figure 23. Example of the three motion planning phases for parking inside the car park. 

In the case of the parallel parking manoeuvre (and unparking) we have the autopilot and 

manoeuvre phases, as we do not have to drive into the car park. 

 

Figure 24. Example of two motion planning phases for street parking. 

4.3.3.1 Autopilot phase 

In this phase we take advantage of the autonomous pilot provided by CARLA's open-

source code. Without going any further, we only have to indicate the location where we 

want to go and the VUT drives in autonomous vehicle to the place. It follows the traffic rules, 

the traffic lights and avoids collisions. We do not take care of the lidar sensors and cameras 

for this drive; hence we will not attach them to the VUT in the simulation. 
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4.3.3.2 Car parking route phase 

To move the autonomous vehicle within the car parking area of our simulation map, we 

must create the route to reach our destination. To achieve this, we have created a graph-

based method. The car parking coordinates are connected, the streets are given unique 

directions, and a direct graph is then generated. In the Figure 25 we see an aerial photo of 

the car parking area of map 5, where the orange lines mark the directions of each lane. 

These lanes are extracted from the implemented graph-based method. 

 

 

Figure 25. Car Park overview of map 5 with road directions. 

To achieve this functionality, another custom class has been implemented in our project. 

In this class, we generate first a graph with the parking coordinates; a function to compute 

the shortest path in the graph has been implemented. This function, as a path planning 

method, returns the list of waypoints between the start point and the end point. These 

points should not be contained in the graph itself as we have also implemented an algorithm 

to translate the coordinate we pass through the function to the nearest coordinate on the 

graph. Figure 26 shows the routes of the car park (Figure 25). Each value within the blue 

circles corresponds to a coordinate on the map. Note that the arrows do not have the same 

direction in both figures, but this is due to having a different order of coordinates in CARLA's 

world. 
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Figure 26. Directed graph of the car park. 

 

To drive the car, we use the functions of our parking agent. First, we generate the trajectory 

inside the car park as explained above, and then iterate this trajectory (list of waypoints) to 

move the vehicle. If we detect any kind of obstacle through obstacle detector sensors (radar 

emulators), we stop the motion until we can continue. 

4.3.3.3 Parking (and unparking) manoeuvre 

The last phase is the parking manoeuvre. Here we apply the methodology explained the 

state of the art, in section 3.3, where we deal with a path planning of the fifth grade path 

because it is the one that best fits the desired manoeuvres. 

For the reason explained in section 3.3, we follow the quintic polynomial planning to 

generate the trajectory that will allow us to park forwards and park backwards. Of course, 

for each type of parking, it is not the same type of trajectory/driving and must be adapted 

by adjusting some parameters. After that, although the optimal trajectory in a Frenet frame 

was the most promising approach, the integration into CARLA showed us that it would be 

demanding on the implementation side. For that reason, we decided to not use this 

approach for the path planning. 

Thanks to the vehicle controller that follows a series of waypoints for driving (see section 

4.3.1.2) we only need to focus on path planning.  

Once we have the VUT ready to park, we calculate the reference path it should follow. The 

path is based on a quintic polynomial path planning. For the calculation of this path, we 

must set boundary conditions. In our implementation we have used a library called 

PythonRobotics[29], which contains the implementation of the quintic polynomial path 

planner. We provide the location of the VUT as the starting point, the location of the spot 

as the end point, the maximum acceleration and jerk, and the initial and final velocities and 

accelerations. These last variables we could think that they should be 0 in both cases, but 

for reasons of optimizing the path design we have to set the velocities to 1 m/s, because 

otherwise the orientation of the points is not respected. 
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Furthermore, for the trajectory adjustment, the maximum jerk is the most restrictive variable, 

hence we must study its behaviour. The Figure 27 is an example when the car is ready to 

manoeuvre towards the car park (orange cross destination). 

 

Figure 27. Previous scene of parking manoeuvre. 

Figure 28 is the representation of the trajectory of this example with different values of 

maximum jerk for the polynomial trajectory calculation. To choose the optimal value we 

should focus on having as realistic path as possible without crossing into other parking 

spaces. For large values the VUT may violate other parking spaces and collide with parked 

vehicles, and for too small values the VUT makes an atypical trajectory and deviates too 

much in the opposite direction of the parking space. Maximum jerk values between 0.01  

𝑚/𝑠3 and 0.1 𝑚/𝑠3 are ideal, choice subject to testing in the simulation. A jerk value of 2 

𝑚/𝑠3 models the behaviour of an aggressive driver, while the comfortable jerk value of 0.9 

𝑚/𝑠3 refers to normal driving behaviour[30]. Our manoeuvre respects these values and 

proceeds to a smooth driving behaviour. 

 

Figure 28. Quintic polynomial representation of the perpendicular parking path with different max jerk values. 
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Other interesting plots are the figures for the speed, yaw, acceleration and jerk of the 

example in Figure 27 with a maximum jerk of 0.01 𝑚/𝑠3 . The time base is not scaled in a 

real simulation, rather scaled for experimentation and pre-study of trajectories. 

 

Figure 29. Speed vs time study. 

 

Figure 30. Yaw vs time study. 

 

Figure 31. acceleration vs time study. 

 

Figure 32. jerk vs time study. 

In the appendix section 0 we can see the study for the parallel parking manoeuvre. 

The flow that follows a manoeuvre is summarised in the following pseudocode. We first 

generate the reference path to follow (path planning) and then we iterate to move the 

vehicle. If we detect any kind of obstacle during parking through obstacle detector sensors 

(radar emulators), we stop the motion until we can proceed. We do not detail the distance 

because there are different casuistry depending on the position of the vehicle and the 

position of the sensor. This code is implemented inside the parking agent. 

# set manoeuvre destination 

target speed = 5 km/h 

waypoints_queue = quintic_polynomials_planner(vehicle location, parking spot) 

# do the manoeuvre 

while (parking not done): 

    if (distance with obstacle detected less than permitted): 

        run step of the controller motion 

    else: 

        stop motion 

stop motion and finish the APS functionality 
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4.3.4 Implementation of the functionality 

The following pseudocode aims to show in more detail how the 5 different functions are 

implemented in the simulator. important, this is not the final flow of this implementation 

because it is not integrated with the AUTOSAR run-time environment. This implementation 

can be found in section 5. According to which APS functionality the simulation follows some 

steps or others. You can see that the functions PM_Forwards, PM_ForwardBackwards, 

UM_Backwards, UM_BackwardForwards are differentiated, but within each one you can 

see how the safe mode function is ready to act when necessary. 

#Inicializations 

simulation_world = world() 

simulation_world.load_map(Town_5) 

simulation_world.load_weather() 

simulation_world.spawn(parked_vehicles) 

VUT = ParkingAgent() 

sensors = list of obstacle_detector_sensor 

VUT.attach(sensors) 

VUT.spawn(location) 

state = (autopilot, parking, manoeuvre) 

APS_function = (PM_Forwards, PM_ForwardBackwards, UM_Backwards, 

UM_BackwardForwards) 

 

#Main behaviour 

switch (APS_function): 

    case PM_Forwards: 

        VUT.set_autopilot_destination(parking_location) 

        state = autopilot 

        while True: 

            if any critical situation: 

                VUT.safe_mode() 

            else: 

                switch (state): 

                    case autopilot: 

                        if (VUT.done_autopilot()) 

                            VUT.set_parking_destination(parking_lot) 

                            state = parking 

                        else 

                            VUT.run_step_autopilot() 

                    case parking: 

                        if (VUT.done_parking()) 

                            VUT.set_manoeuvre_destination(parking_lot) 

                            state = manoeuvre 

                        else 

                            VUT.run_step_parking() 

                    case manoeuvre: 

                        if (VUT.done_manoeuvre()) 

                            VUT.motion_stop() 

                            break 

                        else 

                            VUT.run_step_manoeuvre() 

    case PM_ForwardBackwards: 

        VUT.set_autopilot_destination(parking_location) 

        state = autopilot 

        while True: 

            if any critical situation: 

                VUT.safe_mode() 

            else: 

                switch (state): 

                    case autopilot: 

                        if (VUT.done_autopilot()) 

                            VUT.set_manoeuvre_destination(parking_lot) 

                            state = manoeuvre 
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                        else 

                            VUT.run_step_autopilot() 

                    case manoeuvre: 

                        if (VUT.done_manoeuvre()) 

                            VUT.motion_stop() 

                            break 

                        else 

                            VUT.run_step_manoeuvre() 

    case UM_Backwards: 

        VUT.set_manoeuvre_destination(parking_lane_location) 

        state = manoeuvre 

        while True: 

            if any critical situation: 

                VUT.safe_mode() 

            else: 

                switch (state): 

                    case manoeuvre: 

                        if (VUT.done_manoeuvre()) 

                            VUT.set_parking_destination(parking_exit_location) 

                            state = parking 

                        else 

                            VUT.run_step_manoeuvre() 

                    case parking: 

                        if (VUT.done_parking()) 

                            VUT.set_autopilot_destination(pick_up_location) 

                            state = autopilot 

                        else 

                            VUT.run_step_parking() 

                    case autopilot: 

                        if (VUT.done_autopilot()) 

                            VUT.motion_stop() 

                            break 

                        else 

                            VUT.run_step_autopilot() 

    case UM_BackwardForwards: 

        VUT.set_manoeuvre_destination(street_lane_location) 

        state = manoeuvre 

        while True: 

            if any critical situation: 

                VUT.safe_mode() 

            else: 

                switch (state): 

                    case manoeuvre: 

                        if (VUT.done_manoeuvre()) 

                            VUT.set_autopilot_destination(pick_up_location) 

                            state = autopilot 

                        else 

                            VUT.run_step_manoeuvre() 

                    case autopilot: 

                        if (VUT.done_autopilot()) 

                            VUT.motion_stop() 

                            break 

                        else 

                            VUT.run_step_autopilot() 

4.3.5 Consistency with the ODD's 

In order to be consistent with the defined ODD's, and with the master thesis in [4], we have 

a function in the simulation to be able to change the simulation environment. Moreover, we 

are able to get this environment. This is important to finally integrate this implementation 

with the AUTOSAR generated RTE from [4]. These functions are used to communicate the 

simulation environment / context, see in section 5. 
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Table 11. CARLA functions to define specific ODDs. 

Sub-attribute Type Object / Function Variable 

Urban roads Getter  world.get_environment_objects Road Lines 

Up-slope Getter carla.IMUMeasurement Compass 

Down-slope Getter carla.IMUMeasurement Compass 

Level plane Getter carla.IMUMeasurement Compass 

Loose (gravel, earth) Getter world.get_environment_objects Terrain 

Uniform (Asphalt) Getter world.get_environment_objects Terrain 

Buildings Getter world.get_environment_objects Building 

Street lights Getter world.get_environment_objects Traffic Light 

Pedestrians crossing Getter world.get_environment_objects Pedestrians 

Water retentions on 

the spot 
Getter & setter carla.WeatherParameters 

Precipitation 

deposits 

Wind Getter & setter carla.WeatherParameters Wind intensity 

Rainfall Getter & setter carla.WeatherParameters Precipitation 

Fog Getter & setter carla.WeatherParameters Fog density 

Sunny Getter & setter carla.WeatherParameters Sun altitude angle 

Day Getter & setter carla.WeatherParameters Sun altitude angle 

Night / low ambient 

lighting 
Getter & setter carla.WeatherParameters Sun altitude angle 

Sky clear Getter & setter carla.WeatherParameters Cloudiness 

Partly cloudy Getter & setter carla.WeatherParameters Cloudiness 

Overcast Getter & setter carla.WeatherParameters Cloudiness 

Artificial illumination Getter & setter 
world.get_turned_on_lights / 

world.get_lightmanager() 
Streetlight 

Parked vehicle Getter & setter 
world.get_environment_objects 

/ world.spawn() 
Vehicles  

Pedestrians Getter & setter 
world.get_environment_objects 

/ world.spawn() 
Pedestrians 

On road vehicles Getter & setter 
world.get_environment_objects 

/ world.spawn() 
Vehicles 
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5 Results 

This section aims to present the final result of this thesis, the software architecture of an 

autonomous vehicle with automated parking functionality, as mentioned in section 2.1. It 

integrates the results obtained from the Run-Time Environment of the modelled 

architecture and the implementation in the CARLA simulation environment. The RTE, 

which implements the communication between the application layer and the basic software 

services, must be generated to run the modelled architecture on hardware. 

5.1 AUTOSAR Run-Time Environment 

The system architecture and implementation of the AUTOSAR Runtime Environment 

(RTE) belongs to [4], so it is out of our scope. However, we provide a short overview on 

what it is about in order to understand the integration of both parts.  

The key aspect of the architecture has been the design and implementation of the 

Autonomous Driving System (ADS) mode manager, which is responsible for ensuring 

safety in any context. The software architecture has been modelled in AUTOSAR using the 

mode management methodology described in the AUTOSAR standard. An RTE generator 

has been used to implement AUTOSAR Runtime Environment for the designed 

architecture, which provides the standardized APIs for setting/getting data and allocates 

the memory for the data layer. 

The RTE does not only implement the communication between software components, but 

also the sequence how the runnables have to be executed. For instance, the 

OsTask_100ms.c file specifies the order of execution of the runnables, which will be 

cyclically called every 100-millisecond as specified in the configuration. The runnables 

must be ordered logically such that all necessary information is available before the next 

execution step. 

The following code shows the sequence of every runnable specified in the architecture. 

First, the system performs the localization of the vehicle and its surroundings. Second, it 

collects data from the specified ODDs. Third, it updates the modes groups using all these 

received data. Fourth, it executes one of the five defined in section 4.3.2. Finally, it performs 

the motion specified by the selected function.  

TASK(OsTask_100ms) 

{ 

   {  GetSorrounderObjects();                } 

   {  Get_ODD_Context();                     } 

   {  SetCurrentModes();                     } 

   if (Condition)  { PM_Forward();           } 

   if (Condition)  { UM_Backward();          } 

   if (Condition)  { UM_BackwardFordwards(); }  

   if (Condition)  { PM_ForwardBackward();   } 

   if (Condition)  { M_Safe();               } 

   {  Set_VehicleMotionFunction();           } 

   TerminateTask(); 

} /* OsTask_100ms */ 
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The Rte.c file is the most interesting as it lists all the APIs that are used to write or read the 

internal variables defined in the architecture, consistent with section 4.3.5. These variables 

are the information needed to integrate it with the simulation environment. For example, 

the precipitation variable that is given by the CARLA simulator when reading the weather. 

5.2 Integration environment 

To ensure communication between the Run-Time Environment and the vehicle (simulation 

environment), a virtual communication protocol must be established. RTE is coded in C 

and simulation environment in Python, there must be compatibility between both 

development codes. For communication, a Transmission Control Protocol socket is used. 

TCP socket is defined by the IP address of the machine and the ports it uses. In our case, 

the IP utilized is the Localhost, which is 127.0.0.1, because the RTE and the CARLA 

simulator operate on the same working station. The ports 4455 has been used, since this 

port is one of the used for the Transmission Control Protocol [31]. 

Servers and clients typically use TCP sockets. By listening on a well-known port (or IP 

address and port pairs), a TCP server accepts connections from TCP clients. To establish 

a connection with a TCP server, a TCP client must send a connection request to the server 

[32]. For the APS implementation, the architecture (RTE) is referred to as the server and 

the CARLA simulator as the client, see Figure 33. In addition, the combination of this thesis 

with [4] thesis can be clearly differentiated. 

 

Figure 33. TCP socket communication protocol. 
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In order to execute the RTE tasks, an extra file has been created where the APS server is 

considered. As the TCP channel server, the file starts listening on the specified port to see 

if any client requests to establish a connection. Once the client sends the request to 

establish the connection, from the CARLA side, the server accepts it and both parties are 

connected. 

The operation that follows the channel data flow is: server-client-server connection is 

established, the client sends the context information, the server gets the information, 

processes the information and provide the manoeuvre function to the simulation. All server 

work is the infinite loop execution of the Os_Task_100ms. The type of manoeuvre is 

encoded as shown in Table 12, related to section 4.3.2. 

Table 12. APS functions codification for the TCP communication. 

Value Function manoeuvre 

0 PM_Fordwars 

1 PM_ForwardBackwards 

2 UM_Backwards 

3 UM_BackwardFordwards 

4 Safe_Mode 

5.3 Simulation environment adaptation 

First, in order to integrate our work in the CARLA simulator in an easier and simpler way, 

we condense the implementation of the parking manoeuvres, seen in section 4.3.4, into a 

single function for each one. These functions will be collected by the agent, where they can 

then be easily called, and it looks like this: 

class CustomAgent(BehaviorAgent): 

    # variable initialisation 

    ... 

    # functions 

    ... 

    PM_Fordwards(destination) 

    PM_FordwardBackwards(destination) 

    UM_Backwards(destination) 

    UM_BackwardFordwards(destination) 

    Safe_Mode() 

With this modification, the main file only has to choose which function to proceed according 

to the mode we are in. 

Second, from the client side of TCP communication, the CARLA simulation, we must also 

emulate the mobile application. This refers to sending data from the external service, the 

mobile application. For this purpose, we have created a series of static constants in a 

settings file to simulate different situations, in consensus with the mode manager 

implementation on the server, see Table 13. 

 



   

53 
 

Table 13. Constants defined for the correct communication integration. 

# PM OR UM # APS ACTIVE OR NOT # DESTINATION REACHED 

PARKING = 0 

UNPARKING = 1 

APS_DESACTIVATION = 0 

APS_ACTIVATION = 1 

DESTINATION_NO_REACHED = 0 

DESTINATION_REACHED = 1 

# PARKING LOCATION MODE # APS FUNCTIONS  

STREET_PARALLEL = 0 

STREET_ANGULAR = 1 

PARKING_OUTDOOR = 2 

PARKING_INDOOR = 3 

PARKING_ROAD = 4 

PM_FORDWARDS = 0 

PM_FORDWARDBACKWARDS = 1 

UM_BACKWARDS = 2 

UM_BACKWARDFORDWARDS = 3 

SAFE_MODE = 4 

 

 

Finally, we create the client for the communication. The following pseudocode shows the 

client class we have created, where it includes a compact function for the required context 

information to send to the server. 

import socket 

class TCPClient: 

     

    def __init__(): 

        port = 4455 

        ip = "127.0.0.1" 

        adrr = (ip, port) 

        format = "utf-8" 

        size = 1024 

        client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

        close_message = "200" #OK status http 

 

    def connect(): 

        client.connect(adrr) 

 

    def send(message): 

        client.send(message.encode(format)) 

 

    def send_rte_message( wheather, destination_reached, compass, APS_activation, 

parking_unparking, parking_location_mode): 

        message = wheather.cloudiness + wheather.fog_density + wheather.precipitation  

                + wheather.precipitation_deposits + wheather.sun_altitude_angle  

                + wheather.wind_intensity + destination_reached + compass 

                + APS_activation + parking_unparking + parking_location_mode 

        send(message) 

 

    def recive(): 

        return client.recv(size).decode(format) 

 

    def close(): 

        send(close_message) 

        client.close() 

The TCPClient class contains the function send_rte_message(...) which includes all the 

necessary information to send. We transfer the weather information (cloudiness, fog 

density, precipitation, precipitation deposits, sun altitude angle and wind intensity), the 

inclination of the vehicle through the IMU information (compass variable) and the constants 

defined above. The constants parking / unparking and parking location mode refer to the 

necessary information of the APS App Mobil, the constants active / not active, destination 

reached / not reached are status constants, and the APS functions constants are used for 

decoding the message from the TCP channel to the manoeuvre in the simulation. 
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5.4 Developed prototype (MVP) 

Once the architecture and simulation environment are fully integrated for the Automated 

Parking System, by including enough features to attract early clients and allow the product 

idea to be evaluated, the complete system is a Minimum Viable Product (MVP).  

The overall concept of the MVP has been represented in a diagram to simplify the 

understanding of the data flow shown in Figure 34.  The diagram represents the data flow 

of the TCP socket communication and the data flow between the blocks of the architecture. 

CARLA vehicle simulation flow not detailed, for further details see section 5.2. 

The mode manager will only manage the different ODDs for weather changes. Appendix 

A.II contains several examples of weather condition contexts in the simulation environment. 

Information from sensors, environment objects and lights are not used in this MVP. This 

has been integrated to be consistent between architecture and CARLA simulator. 

The components highlighted at the top of Figure 34 refer to the simulator (CARLA vehicle) 

and the architecture (Localization, ODD Handler, ADS Mode Manager, Drive Planning & 

Vehicle Motion). Since the ADS mode manager and the CARLA simulation have shared 

the same standards, the components defined in the safety-based architecture can be 

named identically, see again Figure 15. This completes the MVP with concurrency. 

The CARLA vehicle component is the VUT in the simulation. Each component is described 

briefly; for further details get into [4]. The localisation component collects all sensor data. 

The ODD Handling component identifies in which context (ODD) the system is located by 

analysing the different information provided by the perception. The mode manager 

component manages the information received from the ODD handler and switches modes 

to satisfy safety. The drive planning component chooses the manoeuvre function according 

to the information from the localisation and the mode manager. The vehicle motion function 

component sends us the value according to the Table 12. Two examples of real simulation 

scenarios can be found in appendix C. 

One technical problem we face is the tick rate of both servers. The TCP synchronous 

communication server follows a tick rate of 100 milliseconds which is set by the run-time 

environment task. The server where we simulate the vehicle, CARLA simulation, the tick 

rate is 5 milliseconds. If we violate the tick of the server we enter in undesired states, and 

in the case of the simulator we would lose FPS by visualizing the screen badly. As we know 

the integration works in an infinite loop, but the simulator does too (to be able to create 

each display frame in time). To solve the possible tick violation, the TCP communication 

will only be called every 20 times within the infinite loop in the simulation. 
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Figure 34. Generalist sequence diagram of the APS integration. 
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6 Budget 

In this section are showed the cost related to the design of the Automated Parking System. 

This would be a representative case of a first employed year of a software architect 

engineer already formed. 

6.1 Equipment 

The costs of machinery and digital tools for in the project development appear in Table 14. 

Table 14. Equipment costs. 

Concept Unit cost (€) Quantity Total (€) 

Personal computer 800 0.75 600 

CARLA simulator software 0 0.50 0 

Working station (GPU) 3900 0.50 1950 

Microsoft Office 30 0.30 9 

Total 2559 

6.2 Human resources 

Table 15 lists the number of working hours dedicated to the thesis and related tasks. The 

expense associated with the supervisory procedure is also included. 

Table 15. Human resources costs. 

Concept Unit cost (€/h) Quantity Total (€) 

Research 30 300 9000 

Topic modelling 30 150 4500 

implementation 30 300 9000 

Writing 30 150 4500 

Supervision 100 50 5000 

Total 32000 

6.3 Total budget 

Table 16 presents the total budget that results equipment and human resources. 

Table 16. Total budget costs. 

Concept Total (€) 

Research 2559 

Topic modelling 32000 

Total 34599 
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7 Environment and Social Impact 

The automotive sector is one of the biggest in the world and a sector on which almost 

everyone is dependent in their daily lives. There are many means of transport, both public 

and private, but it is true that many users rely on their own vehicles to get around on a daily 

basis. 

The APS function is conceived and designed to bring benefits to users, but also to bring 

sustainability to our planet. The main benefits are[33]: 

• Safe driving. According to the US Department of Transportation, nearly 94% of fatal 

crashes are due to human error. That’s why major automobile companies are 

pushing toward self-driving cars[34].  

• Increase users’ satisfaction. As an interesting fact, for example, with at least 293.6 

million motor vehicles estimated to be on the road in the United States in 2021, 

parking will remain a challenge for a long time to come. With automation, drivers 

will not have to waste time looking for parking. In addition, the implementation of 

easy user interfaces, such as mobile apps, can make the user experience a 

convenient and memorable one that they will be willing to pay for. 

• Reduce your environmental impact. With automated parking, cars don't waste time 

looking for a parking space and go straight to their spot, which reduces the amount 

of exhaust emissions compared to a driver's search. 

• Save space and money. In an autonomous parking system, users no longer remain 

in the vehicle and can park in narrower spaces. This advantage allows to reduce 

the size of parking spaces and even to reuse this space. 
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8 Conclusions and future development 

As the automotive industry shifts towards automated driving systems, the architecture of 

such systems shall adapt to the new challenges. This thesis presented a broad overview 

of the current standards that apply to the safety of autonomous systems. Different 

standardisations of software architectures and methods of operational design domains 

management have been evaluated in order to develop the autonomous parking system 

functionality. This functionality has been specified using a systems engineering approach. 

With the goal of merging well-stablished and new technologies, an AUTOSAR modelled 

architecture and the implementation of an autonomous function in the CARLA simulator 

were combined. In contrast to the CARLA simulator, which is a simulation tool under 

development, AUTOSAR is a fully developed and mature industry standard.  

The implemented use case, the automated parking system (APS), is based on the 

guidelines proposed in the document "Road vehicles - Safety and cybersecurity for 

automated driving systems - Design, verification and validation", ISO/TR 4804, 2020. The 

development in the simulator is exclusively focused on this functionality, from the setup of 

the map town to the path planning of the different proposed manoeuvres. However, several 

components of the simulator, such as the sensor instances, have been adapted to be 

consistent with the AUTOSAR architecture that has been developed with a generic 

overview. The developed system is scalable and generic. By adapting the system 

requirements, additional autonomous functions can be added. 

The results presented in this thesis demonstrate that the implementation of a functionality 

based on the presented standards is affordable. Also, the simulation is able to successfully 

accomplish the validation of our autonomous parking system, both as a concept and as a 

simulation validation. 

8.1 Future works 

The main objective of developing an automated parking system in a simulated environment 

fulfilling industry and safety standards is achieved. However, there are potential 

improvements and extensions to this project. Some of possible future works is listed below: 

- Expand the world environment with a customized map containing the three types 

of manoeuvres, indoor parking and outdoor parking. 

- Deepen the integration of the optimal trajectory by Frenet frame in the CARLA 

simulator in order to reach a safer trajectory. 

- Evaluate standardized robotics architectures (e.g., ROS2) against our simulation 

environment - AUTOSAR architecture to identify features that would improve the 

results of our work. 

- Create a tool to generate the necessary code to adjust the vehicle in CARLA 

according to the specifications of the AUTOSAR architecture, e.g., sensors and 

their positions on the vehicle. 
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Appendices  

A. CARLA 

This software is recognised by many leading companies in the industry and is highly valued 

and respected. Among these companies are Intel, Toyota, Samsung Europe, CVC, Valeo 

/ KI Delta, Baselabs, various Fraunhofer institutes, and more.  

 

Figure 35. CARLA sponsors[35] 

On the other hand, the main reason for choosing this simulator is that it is open source 

software. Furthermore, based on the above comparison and looking at all open source 

simulators we can easily see that CARLA performs well in the different specifications. It is 

true that it is not suitable for V2X, but we will not need it in our thesis. 

CARLA covers the research topics of this thesis, providing the full range of ODDs needed 

to develop the defined APS functions. It is very useful as it allows a fast, scalable and 

complete visualisation of the algorithms. This software is under active development, near 

five releases per year, good documentation and tutorials. Last but not least, it is widely 

distributed in academia and industry. 

A.I What is CARLA? 

CARLA is an open-source autonomous driving simulator. It has been developed from 

scratch to support the development, training and validation of autonomous driving systems. 

CARLA provides open digital assets (urban layouts, buildings, vehicles) created for this 

purpose that can be freely used. The simulation platform supports flexible specification of 

sensor sets, environmental conditions, full control of all static and dynamic actors, map 

generation and much more. 

CARLA is based on Unreal Engine to run the simulation and uses the OpenDRIVE standard 

(currently 1.4) [36] to define roads and urban environments. The control of the simulation 

is done through an API managed in Python and C++ that is constantly growing as the 

project grows [35].   
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The Simulator 

The CARLA simulator consists of a scalable client-server architecture (illustrated in Figure 

36) that communicates via TCP. The client connects CARLA to the server, which with the 

help of the Unreal Engine 4 and the CARLA plugins runs the simulation. The simulator 

takes care of computing the physics and rendering the simulation scenes.  

Once the client is connected to the server, it can retrieve data and send commands using 

scripts through the CARLA API. All functionalities are available for Python and C++. Python 

offers easy-to-use communication, which is what we will rely on for the simulation in this 

thesis. 

One of the central concepts of CARLA is the world and the client. Once the client has 

connected to the server, it is necessary to load a simulation world in which the client can 

generate different actors (e.g., vehicles). From there, the client can constantly retrieve data 

and send commands with the help of the world object. The client contains the TM, which 

aims to recreate urban traffic to mimic real scenarios[37]. 

 

Figure 36. CARLA Simulator System Architecture Pipeline[35]. 

Understanding CARLA is much more than that, as many different features and elements 

coexist in it. Some of the most important ones are listed below: 

➢ Traffic manager (TM). An integrating system that takes control of vehicles. It acts 

as a driver provided by CARLA to recreate urban-like environments with realistic 

behaviour. 

➢ Sensors. They are a specific type of actor attached to the vehicle where the data 

they receive can be retrieved and stored to ease the process. Vehicles rely on them 

to dispense information from their environment. 

➢ Recorder. This feature is used to recreate a step-by-step simulation for each actor 

in the world. It allows access to any moment in the timeline anywhere in the world, 

providing a great tracking tool. 
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➢ Open assets. CARLA provides different maps for urban environments with weather 

control and a library with a wide set of actors to use. However, these elements can 

be customized, or new ones can be generated from scratch. 

➢ Scenario runner. In order to ease the learning process for vehicles, CARLA 

provides a series of routes describing different situations to iterate on. 

By default, CARLA runs in asynchronous mode, server runs as fast as it can. In 

synchronous mode the client, running your Python code, takes the reigns and tells the 

server when to update. 

The World 

The world is an object that represents the simulation. It acts as an abstract layer that 

contains the main methods to generate actors, change the weather, get the current state 

of the world, etc. For each simulation only one world exists. Every time the map is changed, 

the world is destroyed and a new one is created. 

 

Figure 37. Cloudy road junction on map 5 of CARLA simulator. 

Maps 

A map includes both the 3D model of a city and its road definition. The road definition of a 

map is based on an OpenDRIVE file, a standardised and annotated road definition format. 

The way roads, lanes, junctions, etc. are defined determines the functionality of the Python 

API and the reasoning behind the decisions made. 

There are eight cities in the CARLA ecosystem and each of them has two types of map, 

non-layered and layered. Layers refer to the objects grouped within a map (buildings, 

decals, stickers, foliage, ground, parked vehicles, particles, props, street lights, walls). 

It is also possible to create customised maps or to use licensed maps of real cities. 

Actors 

Actors in CARLA are the elements that perform actions within the simulation, and they can 

affect other actors. Actors in CARLA includes vehicles, walkers, sensors, traffic signs, 

traffic lights and the spectator. 



   

65 
 

The life cycle of the actors consists of spawning, handling and be destroyed. 

Sensors and data 

Sensors are actors that retrieve data from their surroundings. They are crucial to create 

learning environment for driving agents. 

The step-by-step process of a sensor within the simulator is: setting, spawning, listening 

and data. 

There are three types of sensors: 

1. Cameras: Take a shot of the world from their point of view. The types of cameras: 

depth, RGB, optical flow, semantic and instance segmentation and DVS. 

2. Detectors: Retrieve data when the object they are attached to registers a specific 

event. The types of detectors: collision, lane invasion and obstacle. 

3. Other: Different functionalities. Other types: GNSS, IMU, LIDAR, radar RSS and 

semantic LIDAR. 

A.II Weather Operational Design Domains 

This section shows different weather contexts where the Automated Parking System is 

simulated. Section 4.3.6.3 shows which modes can be selected according to the ODD 

selected.  

Figure 38 illustrates a sunny day. All weather variables must have values of 0 to establish 

this ODD, except for the sun latitude, which must have a value of 75 degrees. This context 

is appropriate for all the defined APS modes specified, as it does not cause any problem 

for sensor components. 

 

Figure 38. Sunny day. 
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Figure 39 depicts a night environment. In parking spaces where there is a low light level, 

the automated parking system cannot be performed since the system is not able to identify 

the surrounding objects. The APS's capacity to determine ambient light level is essential. 

 

Figure 39. Low ambient lighting. 

Figure 40 presents a sunny day with water deposits on the floor. In this condition, APS 

manoeuvres can only be performed when indoor park mode is activated, as this are 

prepared with scrapyards. Water deposits on the floor might cause line identification to be 

compromised. 

 

Figure 40. Sunny day with water deposits. 

Figure 41 illustrates a low light environment with water deposits on the ground. Like the 

previous one, it will only be possible to park indoors, as it is not affected by weather 

conditions. 
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Figure 41. Night ambient with water deposits. 

Finally, Figure 42 shows a foggy day. For this ODD, the APS should only work for indoor 

parking lots, just like the previous two contexts. 

 

Figure 42. Foggy day. 
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B. Quintic polynomial representation of the parallel 

parking path  

In the same way as for the perpendicular parking manoeuvre, we must study the trajectory 

for the parallel manoeuvre. The Figure 43 is an example when the car is ready to 

manoeuvre towards the car park (red cross destination). 

 

Figure 43. Previous scene of parallel parking manoeuvre. 

Figure 44 is the representation of the trajectory of this example with different values of 

maximum jerk for the polynomial trajectory calculation. To choose the optimal value we 

should focus on having as realistic path as possible without crossing into other parking 

spaces. For smaller values the VUT may violate other parking spaces and collide with 

parked vehicles, and for larger values the VUT performs a more direct trajectory. Maximum 

jerk values between 0.5 m/s^3 and 0.8 m/s^3 are the ideal values, which can be proved in 

the simulation. To comply with the values referenced in [30], any value below 0.9 m/s^3 

refers to normal driving behaviour. 

 

Figure 44. Quintic polynomial representation of the parallel parking path with different max jerk 

values. 
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Other interesting plots are the figures for the speed, yaw, acceleration and jerk of the 

example in Figure 43 with a maximum jerk of 0.8 𝑚/𝑠3 . The time base is not scaled in a 

real simulation, rather scaled for experimentation and pre-study of trajectories. 

 

Figure 45. Speed vs time study. 

 

Figure 46. Yaw vs time study. 

 

Figure 47. acceleration vs time study. 

 

Figure 48. jerk vs time study. 
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C. Sequence diagrams for an example situation  

In the following, some cases of simulation situations are presented to demonstrate the real 

data flow that the product should carry, in order to validate the MVP. 

Figure 49  indicates the data transmission required to activate the PM_Forward function. 

The diagram shows that the weather conditions are suitable (sunny day), and no obstacle 

is detected. The manoeuvre can be performed without compromising safety. 

 

Figure 49. Case situation of the sequence diagram for the activation of the PM_Forward 

manoeuvre. 
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With the aim of ensuring safety, the MVP must react to a change in context and confirm 

that the specified modes are still operable under the new ODDs. In the above scenario, a 

storm with wind, rain and water on the ground breaks out during the chosen parking 

manoeuvre, see Figure 50. Due to the new conditions, the system switches to 

APS_SafeMode and executes the safe mode function.  

 

Figure 50. Case situation of the sequence diagram for the activation of safe mode. 
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D. Time planning 

 

Figure 51. Gantt diagram of time planning. 
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Glossary 

ADS: Autonomous Driving System. 

ADAS: Advanced Driver Assistance Systems are electronic systems that help the vehicle 

driver while driving or during parking[38]. 

AGV: Automated Guided Vehicle. 

API: Application Programming Interface. 

AUTOSAR: Standardized AUTomotive Open System Architecture. 

DDT: Dynamic Driving Task. All of the real-time operational and tactical functions required 

to operate a vehicle in on-road traffic. 

Egomotion: describes the actual state of the vehicle in terms of yaw rate, longitudinal 

acceleration, lateral acceleration and more. 

Fail-safe capability: property of an automated driving system to achieve a minimal risk 

condition and to achieve a safe state in the event of a failure. 

Fail-degraded capability: property of the item to operate with reduced functionality in the 

presence of a fault. 

Gnss sensor: Global Navigation Satellite System sensor. 

LIDAR: Light Imaging Detection and Ranging. 

MVP: Minimum Viable Product. 

ODD: Operational Design Domain under which a given automated driving system is 

specifically designed to function, including, but not limited to, environmental, geographical, 

and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or 

roadway characteristics. 

RTE: Run-Time Environment. 

Runnable: Capable of being run. 

TCP: Transmission Control Protocol. 

VUT: Vehicle Under Test. 


