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Abstract
Quad-K-d trees [Bereckzy et al., 2014] are a generalization of several well-known hierarchical K-
dimensional data structures. They were introduced to provide a unified framework for the analysis
of associative queries and to investigate the trade-offs between the cost of different operations and
the memory needs (each node of a quad-K-d tree has arity 2m for some m, 1 ≤ m ≤ K). Indeed,
we consider here partial match – one of the fundamental associative queries – for several families of
quad-K-d trees including, among others, relaxed K-d trees and quadtrees. In particular, we prove
that the expected cost of a random partial match P̂n that has s out of K specified coordinates in a
random quad-K-d tree of size n is P̂n ∼ β · nα where α and β are constants given in terms of K

and s as well as additional parameters that characterize the specific family of quad-K-d trees under
consideration. Additionally, we derive a precise asymptotic estimate for the main order term of Pn,q

– the expected cost of a fixed partial match in a random quad-K-d tree of size n. The techniques and
procedures used to derive the mentioned costs extend those already successfully applied to derive
analogous results in quadtrees and relaxed K-d trees; our results show that the previous results are
just particular cases, and states the validity of the conjecture made in [Duch et al., 2016] to a wider
variety of multidimensional data structures.
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1 Introduction

Considered as fundamental associative queries, partial match queries have been widely studied
in the literature, see for instance [18, 23]. More specifically, given a collection (or file) F of n

records, in which each record in F is an ordered K-tuple of values (the record’s attributes
or coordinates), a query in F retrieves the records satisfying certain given conditions. If
the imposed conditions deal with more than one attribute, then the query is considered
associative.

In particular, partial match (PM hereinafter) queries consist of retrieving from F all the
records with attributes matching some specified attributes of the given query record. Indeed,
the analysis of PM queries (either random or fixed) has been carried out in a wide variety
of hierarchical multidimensional data structures, see [6, 7, 8, 11, 14, 15, 21] and references
therein.

From the point of view of their analysis, it would be of great interest to unify all these
results in a comprehensive way. The general framework of quad-K-d trees (introduced in [4])
is an attempt in that direction. A quad-K-d tree is a multidimensional tree in which each
node discriminates with respect to some number m, 1 ≤ m ≤ K, of coordinates (and thus it
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8:2 Partial Match Queries in Quad-K-d Trees

has 2m subtrees). The number m and the subset of discriminating coordinates (the type) is
potentially distinct for each node. When all the K coordinates are used to discriminate at
each node, the tree is a quadtree [2], in contrast, when exactly one of the K coordinates is
used to discriminate at each node, the tree is a K-d tree [1].

In this work we follow the approach of Chern and Hwang [8] to prove (extending the
preliminary results in [11]) that the expected cost P̂n of a random PM query in a random
quad-K-d tree of size n is P̂n = β · nα + lower order terms (l.o.t.), with α and β given in
Theorem 3.

We also give (following the steps in [14] and [12]) a precise asymptotic estimate1 for the
main order term of of the expected cost Pn,q = ν · f(q) · nα + l.o.t. of a fixed partial match
with query q in a random quad-K-d tree of size n, where α is the same as for random PM
queries. This is formalized in Theorem 6 where we give the explicit form of the constant ν

and of f(q).
Our results apply to any family of quad-K-d trees whose nodes have types that are

independent from one another. This includes, indeed, random relaxed K-d trees and
quadtrees.

The paper is organized as follows. In Section 2 we give some preliminaries of quad-K-d
trees (Subsection 2.1) and partial matches (Subsection 2.2). We then derive, in Section 3, the
expected cost of a random and fixed PM queries in a random quad-K-d tree (Subsections 3.1
and 3.2, respectively). We finish in Section 4 with conclusions and a brief discussion around
further work in this research topic.

2 Preliminaries

2.1 Quad-K-d Trees
Quad-K-d trees generalize K-dimensional trees [1] and quadtrees [2]. In K-d trees each node
x has a discriminating coordinate i, 0 ≤ i < K: all keys y in the left subtree have their i-th
coordinate yi smaller than xi. Likewise all keys z in the the right subtree have their i-th
coordinate zi larger than xi. Each node thus is associated with a region (bounding box) of
the domain from which the keys are drawn, and divides that region into two, according to
the i-th coordinate being smaller or larger. The choice of which coordinate discriminantes
at each node leads to several variants of K-d trees. For quadtrees, each node x induces a
partition of its associated region into 2K quadrants, and it will have thus 2K subtrees, one
for each quadrant. If we label subtrees with a bitstring w of length K, the i-th bit of w
indicates if all keys y in the subtree have yi < xi (when wi = 0) or yi > xi (when wi = 1).

Quad-K-d trees, being a generalization of both K-dimensional trees and quadtrees,
store for each node a subset of m discriminating coordinates, with m ranging from 1 to K,
potentially different for each node. We say that such a node is of type m. Nodes in a K-d
tree are all of type 1, nodes in a quadtree are all of type K, and a general quad-K-d tree
may contain a mixture of nodes of all possible different types.

The subset of discriminating coordinates of a node is represented by its characteristic
function or coordinate split vector δ: if δi = 0 then the corresponding node does not discrimi-
nate with respect to the i-th coordinate, otherwise δi = 1 and the node will discriminate

1 Our result applies under the reasonable but technically hard to establish assumption that the limit of
Pn,q/nα when n → ∞ exists.
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#0# #1#

#0# #1# 00# 01# 10# 11#

000 001 010 010 100 101 110 111

Node Coordinates Split vector
1 (0.35,0.5,0.17) 010
2 (0.31, 0.45, 0.47) 010
3 (0.29, 0.6, 0.9) 110
4 (0.3, 0.3, 0.3) 001
5 (0.4, 0.47, 0.3) 110
6 (0.2, 0.7, 0.5) 111
7 (0.38, 0.8, 0.89) 011
8 (0.25, 0.68, 0.4) 100

1

Figure 1 An example of a 3-dimensional quad-K-d tree, omitting some empty subtrees as well as
the partition induced by the tree in [0, 1]3.

with respect to that coordinate. Thus a node of type m has 2m subtrees and partitions its
associated region of the domain of the keys into 2m subregions, each subregion associated to
a subtree.

Figure 1 shows an example of a 3-dimensional quad-K-d tree. Inside each node appears
its label and in the table therein is the 3-dimensional key associated to the node together
with its split vector. Next to every edge appears the label (the string w) of the subtree where
it points to. When wi = 0 it means that i is a discriminating coordinate (δi = 1) and all
keys y in the subtree have yi < xi. If wi = 1 then i is a discriminating coordinate (δi = 1)
but now all keys y in the subtree have yi > xi. When i is not a discriminating coordinate
(δi = 0) we indicate so in the subtree/subregion label w by setting wi = #.

More formally, a K-dimensional record (or key) is a K-tuple of values x = (x0, . . . , xK−1)
where each xi is drawn from a totally ordered domain Di. The domain D = D0 × · · · × DK−1
is known as the search space and without loss of generality it is usually assumed to be
D = [0, 1]K . Then, the formal definition of quad-K-d trees is as follows.

▶ Definition 1 (Bereckzy et al. [3]). A quad-K-d search tree T of size n ≥ 0 stores a set
of n K-dimensional records, each holding a key x = (x0, . . . , xK−1) and a coordinate split
bitvector δ = (δ0, . . . , δK−1) ∈ {0, 1}K . The quad-K-d tree T is such that

either it is empty if n = 0, or
its root r stores a record with key x, a coordinate split vector δ that contains exactly m

ones (i.e., the root node is of order m), with 1 ≤ m ≤ K, and pointers to its 2m subtrees
that store the n − 1 remaining records as follows: each subtree, let us call it Tw, is itself a
quad-K-d tree and its associated string w = w0w1 . . . wK−1 ∈ {0, 1, #}K , is such that for
all j, 0 ≤ j < K, δj = 0 =⇒ wj = #, and for any key y ∈ Tw,

if δj = 1 and wj = 0, then yj < xj

if δj = 1 and wj = 1, then yj > xj.

It is worth noting that with this definition, as is the case of binary search trees and
other search trees, we do not consider cases in which two or more keys have some identical
coordinates; however the definition above can be adapted (and hence the algorithms supported
by the data structure) to cover these cases. However, because of our assumptions in the
analysis, we can safely disregard this situation since the probability that two records share a
coordinate value is 0.

AofA 2022



8:4 Partial Match Queries in Quad-K-d Trees

As we have already mentioned, both K-d trees and quadtrees are special cases of quad-K-
d trees. In fact, for any quad-K-d tree T of size n, if the split vector δ associated with every
node of T contains all the K coordinates (δj = 1 for all j) then T is a quadtree, and if it
contains exactly one for every node then T is a relaxed K-d tree [10]. We use here the term
relaxed K-d trees to stress that the discriminating coordinate of each node is arbitrary, in
contrast with standard K-d trees [1], squarish K-d trees [9], and other families of K-d trees
where the discriminating coordinate of each node is determined by some fixed rule. Thus
relaxed K-d trees are the most general family of K-d trees, of which all other are particular
instances. We can have a similar situation with quad-K-d trees: we can define families of
quad-K-d trees in which some fixed rule prescribes the types of the nodes and which are the
discriminating coordinates of each node. We therefore will use the term relaxed quad-K-d
trees to emphasise that we consider the most general family of quad-K-d trees, as implied by
Definition 1. All over this work, unless otherwise stated, we will refer to relaxed quad-K-d
trees as simply quad-K-d trees.

A node holding key x and split vector δ in a quad-K-d tree is of type m if and only if δ

is of order m, 1 ≤ m ≤ K. Every node of type m has 2m children. A m-regular (or m-ary)
quad-K-d tree is a quad-K-d tree that has all its internal nodes of type m. Indeed, quadtrees
of dimension K are K-regular quad-K-d trees and all variants of K-d trees are 1-regular
quad-K-d trees.

The probabilistic analysis of PM queries in quad-K-d trees works under the assumption
that the trees under consideration are random.

▶ Definition 2. A random relaxed quad-K-d tree of size n is a quad-K-d tree built by n

random insertions2 into an initially empty tree, and it additionally satisfies the following two
conditions:
1. The types of its n nodes are given by n i.i.d. random variables in the set {1, . . . , K}. We

denote as τm the probability that an arbitrary node is of type m.
2. For a node of type m, any subset of m coordinates out of K is equally likely to be the set

of discriminating coordinates (that is, those for which δj = 1). Thus the probability that
the discriminating coordinates of a node of type m are 0 ≤ i0 < i1 < · · · < im−1 < K is
1/
(

K
m

)
, for any subset {i0, . . . , im−1} ⊆ {0, . . . , K − 1}.

The previous definition of random quad-K-d trees is equivalent to the conventional
random models found in the literature for the particular cases of random quadtrees and
random relaxed K-d trees. Several other instances of random quad-K-d trees have been
proposed in previous works [4, 11], we refer the reader to these works for a detailed analysis
of the space needs and the expected cost of exact searches (IPL) in the different families,
relating them to parameters such as the average arity d =

∑
1≤m≤K 2mτm and the average

order m =
∑

1≤m≤K mτm.

2.2 Partial Match
A PM query is a pair ⟨q, u⟩, where q = (q0, . . . , qK−1) is a K-dimensional key and u =
(u0, . . . , uK−1) is the pattern of the query; each ui = S (the i-th attributed of the query is
specified) or ui = ∗ (the i-th attributed is unspecified). Alternatively, we can define a PM

2 There are several ways to characterize random insertions. The one we will consider here is that every
coordinate of the data point to be inserted is independently drawn from some continuous distribution
in [0, 1].
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query as K-tuple q = (q0, . . . , qK−1) where each qi is a value in the i-th domain Di or qi = ∗
to indicate that it is unspecified; we will use most often this second form to represent PM
queries.

The PM query ⟨q, u⟩ is random if q = (q0, . . . , qK−1) is independently drawn from the
same continuous distribution as the data points, otherwise we say that the PM is fixed.

The goal of the PM search is to report all data points x = (x0, . . . , xK−1) in the tree
such that xi = qi whenever qi ̸= ∗. The number of specified coordinates will be denoted
by s; the interesting cases are when 0 < s < K. Therefore, to perform a PM search with
query q, a quad-K-d tree with root of type m is recursively explored as follows. First, we
check whether the root with associated x matches q or not, to report it in the former case.
Since the node discriminates by m coordinates, let us consider that i of them correspond to
specified coordinates in the query (0 ≤ i ≤ min{s, m})). Then, we make recursive calls in
all the 2m−i subtrees Tw of the root such that wj = # or qj = ∗, or wj = 0 and qj ≤ xj , or
wj = 1 and qj > xj .

For example, imagine that K = 5 and the query is q = (0.1, 0.82, ∗, 0.76, ∗). Moreover,
suppose that the root node is of type m = 3 with coordinate split vector δ = (1, 0, 1, 1, 0) and
that it contains the key x = (0.54, 0.46, 0.39, 0.03, 0.62). The 8 subtrees of the root node are
labelled as (0, #, 0, 0, #), (0, #, 0, 1, #), . . . , (1, #, 1, 1, #). It turns out that only i = 2 of the
discriminating coordinates are specified in the query, the third one is not. Since 0.1 < 0.54
and 0.76 > 0.03 we will have to explore the two subtrees (0, #, 0, 1, #) and (0, #, 1, 1, #),
since, even though the third coordinate is a discriminating coordinate of the node, it is not
specified in the query: that is, we can’t discard the keys of any of these two subtrees.

3 Analysis

The cost of the PM search is measured –as usual in the literature– as the number of nodes
visited by the algorithm in the corresponding tree. According to this way of measuring the
cost, it is relevant towards our analysis to observe that, except for eventual matches, only
matter the relative order of the coordinates of the stored keys.

Indeed, let us call the rank vector of a query q the vector r(q) = (r0, . . . , rK−1) such
that ri = ∗, if qi = ∗, and ri is the number of records x in the collection F such that xi ≤ qi

(0 ≤ ri ≤ n), if qi ≠ ∗. Then for any two given queries q and q′ with equal rank vectors
r(q) = r(q′) the PM procedure described above will visit exactly the same set of nodes of the
tree. In our analysis, we will use rank vectors instead of the queries themselves (as done in [11]
and [12]) and consider the cost Pn,r of a PM query with given rank vector r in a random
quad-K-d tree of size n. We will use Pn,q for the cost of a PM query with a query q in a
random quad-K-d tree of size n, where each qi ∈ (0, 1) or qi = ∗. From our discussion above
Pn,q = Pn,r(q). Moreover, because of the symmetries in the model of random quad-K-d
trees we can safely assume that the queries are of the form q = (q0, . . . , qs−1, ∗, . . . , ∗) with
qi ∈ (0, 1) for all i, 0 ≤ i < s, we will abuse of the notation and simply write q = (q0, . . . , qs−1)
and r = (r0, . . . , rs−1), omitting the non-specified coordinates.

3.1 Analysis of Random Partial Match

Let P̂n denote the expected cost of a random PM query in a random relaxed quad-K-d tree of
size n, this corresponds to a query ⟨q, u⟩ where q = (q0, . . . , qs−1) is a random K-dimensional
point drawn independently from the same distribution of the data points in the quad-K-d
tree.

AofA 2022



8:6 Partial Match Queries in Quad-K-d Trees

Here we are going to proceed –as is usual in the literature– obtaining the expected cost
P ′

n of an “idealised” PM search procedure in which, every time that we recursively invoke it
on a subtree, a new random query is generated (but inside the region of the space associated
to the particular subtree). The random variable for the cost of this idealised PM search is
obviously different from the one that gives the cost of a PM search with a random query;
but their respective expected costs coincide: P ′

n = P̂n. So, in an abuse of notation, in what
follows we will use P̂n instead of P ′

n.
In [11], Roura’s continuous master theorem [22] was used to show that the expected cost

P̂n of a random partial match in a random relaxed quad-K-d tree of size n is

P̂n = Θ(nα),

where α is the unique real solution in the interval (0, 1) of the equation
K∑

m=1
τm

∑
0≤i≤s

(
m
i

)(
K−m
s−i

)(
K
s

) 2m

(α + 1)m−i(α + 2)i
= 1. (1)

Here we carry out a more delicate and precise analysis, following the same steps as Chern
and Hwang [8] in their analysis of PM in random quadtrees to obtain also the coefficient of
the leading term of the cost. We can thus establish the following theorem.
▶ Theorem 3. For any variant of random relaxed quad-K-d trees of size n ≥ 2, the expected
cost P̂n of a random PM query with s (0 < s < K) specified coordinates, satisfies

P̂n = βs,Knα + o(nα),

where α is the unique solution in (0, 1) of∑
m

τm

∑
i≥0

(
K−m
s−i

)(
m
i

)(
K
s

) 2m

(α + 1)m−i(α + 2)i
= 1,

and

βs,K = 2s

(α1 − 1)(1 − α2) . . . (1 − αk)
1

Γ(α)K−sΓ(α + 1)s

∏
2≤j≤K

Γ(α − αj)
Γ(1 − αj) ,

where α1, α2, . . . αK with ℜ(α1) ≥ ℜ(α2) ≥ . . . ≥ ℜ(αK) are the roots of:

Φ(z) = (z + 1)szK−s −
K∑

m=1
2mτm

∑
i

(
m
i

)(
K−m
s−i

)(
K
s

) (z + 1)s−izK−m−(s−i),

and α = α1 − 1.
Proof. To prove the theorem, we start conditioning on the type m of the root of the random
quad-K-d tree. Let P̂

(m)
n denote the expected cost of a random PM query, conditional to the

root of the quad-K-d tree being of type m; similarly, let P̂
(i,m)
n denote the same expected

cost now conditional on the root being of type m and that exactly i, 0 ≤ i ≤ min(m, s) of
the discriminating coordinates of the root are specified in the PM query. Then, since the
probability that the root of a random quad-K-d tree is of type m is τm we have, for n > 0,

P̂n =
K∑

m=1
τmP̂ (m)

n ,

P̂ (m)
n =

∑
0≤i≤m

µi,mP̂ (i,m)
n ,

P̂ (i,m)
n = 1 +

∑
0≤k<n

π
(i,m)
n,k P̂k,
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where µi,m is the probability that exactly i of the m discriminating coordinates are specified
(these quantities also depend on s and K), and π

(i,m)
n,k is the average number of recursive

calls on root’s subtrees of size k when the tree is of size n, its root is of type m and exactly
i out of its m discriminating coordinates are specified. It is not difficult to prove that
µi,m = (m

i )(K−m
s−i )

(K
s ) and therefore

P̂n = 1 +
∑

0≤k<n

πn,kP̂k, n > 0 (2)

where πn,k =
∑K

m=1 τm

∑
0≤i≤m µi,mπ

(i,m)
n,k , and P̂0 = 0.

Our next step is to apply the (symmetric) Binomial Transform (see for instance [5, 24]
or [20, 5.2.2, p. 136]) to the sequence {P̂n}n≥0, that is,

P̂ ∗
n :=

n∑
k=1

(
n

k

)
(−1)kP̂k, (3)

with P̂0 = 0. We can easily prove then the following proposition.

▶ Proposition 4. For n ≥ 2, the sequence P̂ ∗
n satisfies the first order recurrence

P̂ ∗
n − P̂ ∗

n−1 = −µ(n)P̂ ∗
n−1,

where P̂ ∗
1 = −1 and µ(n) := µ(n, K, s, τ) =

∑K
m=1 τm2m

∑
0≤i≤m

(m
i )(K−m

s−i )
(K

s ) n−m+i(n + 1)−i.

Proof. As n ≥ 2, we can replace P̂ ∗
n and P̂ ∗

n−1 by their values as defined in (3); then a few
mathematical manipulations yield

P̂ ∗
n − P̂ ∗

n−1 =
n∑

k=1

(
n − 1
k − 1

)
(−1)k

∑
0≤j<k

πk,jP̂j

= −
n−1∑
j=0

P̂j

n−1∑
k=j

(
n − 1

k

)
(−1)kπk+1,j .

Now, the inner sum of previous equation can be expanded as follows
n−1∑
k=j

(
n − 1

k

)
(−1)kπk+1,j =

K∑
m−1

τm2m
∑

0≤i≤m

(
m
i

)(
K−m
s−i

)(
K
s

) n−1∑
k=j

(
n − 1

k

)
(−1)kπ

(i,m)
k+1,j

=
K∑

m=1
τm2m

∑
0≤i≤m

(
m
i

)(
K−m
s−i

)(
K
s

) (
n − 1

j

)
(−1)jn−m+i(n + 1)−i,

because
n−1∑
k=j

(
n − 1

k

)
(−1)kπ

(i,m)
k+1,j =

(
n − 1

j

)
(−1)j(n + 1)−in−m+i. (4)

To prove this we follow the analogous derivation in [8]; we give it in detail in Appendix A.
Finally, using the definition of µ(n) given in the statement of the proposition, it follows

that for n ≥ 2,

P̂ ∗
n − P̂ ∗

n−1 = −
n−1∑
j=0

P̂j

(
n − 1

j

)
(−1)jµ(n) = −µ(n)P̂ ∗

n−1. ◀

AofA 2022



8:8 Partial Match Queries in Quad-K-d Trees

▶ Proposition 5. For n ≥ 1, P̂n satisfies

P̂n =
n∑

j=1

(
n

j

)
(−1)j+1 2s

j!K−s(j + 1)!s (2 − α1)j−1(2 − α2)j−1 · · · (2 − αK)j−1
,

where xr = x · (x + 1) · (x + r − 1) denotes the r-th raising factorial of x [19].

Proof. From Proposition 4, it follows that, for n ≥ 2,

P̂ ∗
n = (1 − µ(n))P̂ ∗

n−1,

and iterating,

P̂ ∗
n = (−1)n

n∏
j=2

(1 − µ(j))P̂1 = −
n∏

j=2

Φ(j)
jK−s(j + 1)s

,

where Φ(z) is given in the statement of the theorem and since Φ(n)(n+1)−sn−(K−s) = 1−µ(n).
Let α1, . . . , αK be the K roots of Φ(z), then we can write

Φ(z) = (z − α1) · · · (z − αK)

and

P̂ ∗
n = −

n∏
j=2

(j − α1) · · · (j − αK)
jK−s(j + 1)s

= −

 n∏
j=2

j − α1

jK−s(j + 1)s

 · · ·

 n∏
j=2

j − αK

jK−s(j + 1)s


= − 2s

n!K−s(n + 1)!s (2 − α1)n−1(2 − α2)n−1 · · · (2 − αK)n−1
,

Since the binomial transform is an involution, we have

P̂n =
n∑

j=1

(
n

j

)
(−1)jP̂ ∗

j ,

and the statement of the proposition follows. ◀

In order to complete the proof of the theorem we obtain the asymptotic behaviour of P̂n

from Proposition 5 using Nørlund-Rice’s integrals (see for instance [16, 17]), from where we
get the asymptotic estimate given in the theorem. In particular, P̂n ∼ β · nα, with the values
of α and β given in the statement of the theorem. ◀

Notice that setting τK = 1 and τm = 0 for m < K in Equation (1) we obtain the indicial
equation Φ(z) = zK−s(z + 1)s − 2K = 0 of quadtrees [8]. Likewise, with τ1 = 1 and τm = 0
for m > 1 we obtain

Φ(z) = zK−s−1(z + 1)s−1
(

z(z + 1) − 2
[

K − s

K
(z + 1) + s

K
z

])
,

whose roots are z = 0, z = 1 and the roots of z(z + 1) − 2 K−s
K (z + 1) + s

K z = 0, the indicial
equation giving the exponent α for relaxed K-d trees (see [10, 21]).
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3.2 Analysis of Fixed Partial Match
In this subsection we consider the expected cost of a PM search with rank vector r, or
equivalently with a query q, if every coordinate of each data point is independent and
uniformly distributed in (0, 1), see [11] for a discussion about the two “models” and how
results for one translate into results for the other. We shall start stating the main theorem
of this section, also one of the major contributions of this extended abstract, and devote the
rest of the subsection to schematise its proof.

▶ Theorem 6. Let r = (r0, r1, . . . , rK−1) be a rank vector, where ri ∈ [0..n]∪{∗}, 0 ≤ i < K,
and such that exactly s of the ranks are specified, that is, we have ri ̸= ∗, for s ranks,
0 < s < K. Let zi = limn→∞ ri/n if ri ̸= ∗ and suppose zi ∈ (0, 1) for all i such that ri ≠ ∗,
0 ≤ i < K.

Then, for any variant of random quad-K-d trees the expected cost Pn,r of a fixed PM
query with rank vector r in a random quad-K-d tree of size n, is

Pn,r = νs,K

∏
ri ̸=∗

zi(1 − zi)

α/2

nα + l.o.t.,

where

νs,K = βs,K
Γs(α + 2)

Γ2s(α/2 + 1) ,

and α and βs,K are the same as in Theorem 3, provided that

lim
n→∞

Pn,r

nα
= f(z0, . . . , zs−1)

exists.

Proof. Let Pn,r be the cost (number of visited nodes) of a partial match search in a random
quad-K-d tree of size n where the query has fixed rank vector r. Our goal is to find the main
order asymptotics of Pn,r = E {Pn,r}; more specifically, our goal is to find an explicit function
f(z0, . . . , zs−1) and to show that for r = (r0, . . . , rs−1, ∗, . . . , ∗), if limn→∞ ri/n = zi, with
zi ∈ (0, 1) for all i, 0 ≤ i < s and

lim
n→∞

Pn,r

nα
= f(z0, . . . , zs−1),

exists, with α the exponent of n in the expected cost of a random partial match search (see
previous subsection), then the function f is as stated in the theorem.

The first step in our analysis is to setup a recurrence for Pn,r. As in our analysis of
random PMs, we condition first on the type m of the root node, so we can write

Pn,r =
K∑

m=1
τmP (m)

n,r ,

where P
(m)
n,r = E {Pn,r | root of type m}. Now, we need to condition on which coordinates

are specified by the query and used to discriminate at the root node. Then, we have

P (m)
n,r =

m∑
i=0

(
K−s
m−i

)(
K
m

)
1 +

∑
w∈(0+1+#)K

|w|0,1=i

Qn,r,w


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8:10 Partial Match Queries in Quad-K-d Trees

where Qn,r,w is the contribution to the total fixed PM cost of the recursive call on subtree
Tw when the root of the quad-K-d tree of size n is of type m = |w| and it discriminates with
respect to i of the coordinates that are specified in r (namely, the root discriminates with
respect to those coordinates for which the bitstring w indexing Tw is 0 or 1; thus |w|0,1 = i

and the remaining bits are ’#’). The factor
(

K−s
m−i

)
in the formula above takes care of the

m − i unspecified coordinates, as it does not matter which m − i coordinates of the root are
discriminating coordinates if the query has them unspecified. Moreover, the first summation
actually runs from i = 0 to i = min(s, m) since

(
K−s
m−i

)
= 0 whenever i > m.

The next step is to express Qn,r,w in terms of Pn′,r′ , where n′ is the size of Tw and it
will depend on n, w and the rank vector j of the root of the quad-K-d tree. Likewise, the
rank vector r′ of the recursive call to PM inside Tw will depend on n, w, r and j. We might
thus write

1
(n + 1)K

∑
j

∑
n′

∑
r′

π(n, n′, r, r′)Pn′,r′ ,

where π(n, n′, r, r′) is the probability that the rank vector of the PM search in Tw is r′ and
the size of Tw is n′.

The full recurrence is quite involved, but the analysis follows closely that of quadtrees [12]
with regards to the discriminating coordinates (wk ∈ {0, 1}) and that of relaxed K-d trees [14]
when the coordinates are not discriminating (wk = #). This is because the PM behaves as if
the query were unspecified for that particular coordinate (as if rk = ∗, despite rk is actually
a value in [0, n]). When we pass to the limit both sides of the recurrence, and under the
assumption that

f(z0, . . . , zs−1) = lim
n→∞

Pn,r

nα

exists, with zi = limn→∞ ri/n and 0 < zi < 1, the probabilities π(n, n′, r, r′) become highly
concentrated around the expected values of r′ and thus it becomes considerably simplified.
Summations transform into integrals and the recurrence leads to an integral equation for
f(z0, . . . , zs−1).

As we have mentioned before, when the root node of the quad-K-d tree is of type m

the behaviour is like that of a quadtree of dimension m; but the choice of discriminating
coordinates (equivalently, the coordinate split vector δ) of the node will determine which
coordinates will be taken into consideration, and instead of s specified coordinates we shall
only have i specified coordinates, with 0 ≤ i ≤ min(s, m). Moreover, the identity of the
chosen discriminating coordinates matters, as now we are dealing with a fixed partial match –
in contrast to random PM where only the distinction between specified or non-specified
coordinates is relevant and so they can be handled equally. This is an important aspect that
introduces a new degree of difficulty in the analysis of fixed PM in quad-K-d trees. The other
difficulty lies in deducing how the rank vector r changes when the PM recursively continues
in a subtree Tw, that is, what is the probability that the rank vector is r′ in the recursive
call in Tw given that the rank vector was r. In a quadtree all coordinates are discriminating
and affect r in the same way, only depending on the bitvector w and the key x at the root.
Nevertheless, because of the symmetry of the problem, it is safe to assume that the specified
coordinates of the query are the first s coordinates, making the analysis a bit easier.

The situation that we face here is more similar to the case of K-d trees, but in that
case there is only a single discriminating coordinate and all the others can be thought of
as unspecified at that level, therefore we can condition on the event that i, 0 ≤ i < K, is
the only specified coordinate. In quad-K-d trees we have to deal with m discriminating
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coordinates, and hence we must condition on the event that coordinate split vector is δ, for
all
(

K
m

)
possible δ. As the coordinate split vector is implicitly encoded in the labels w of the

subtrees, we can avoid an explicit sum over all posible δ, and just sum over all possible w.
The behaviour of the PM with respect to the K − s unspecified coordinates (the last

ones in the query, by assumption) is always the same, whether the root node discriminates
or not with respect to any of those coordinates. Thus we can pull out a common factor
contributed by the m − i discriminating coordinates which are not specified in the PM query
and condition on w ∈ {0, 1, #}s with exactly i symbols that are 0 or 1, so we also sum
over all possible values of i, 0 ≤ i ≤ min(s, m). This is simpler than conditioning over all
possible w ∈ {0, 1, #}K of which m symbols are 0 or 1, and then condition on i of the first s

coordinates being 0 or 1.
Let us begin first with the (identical) contribution of all 2m−i subtrees with a particular

choice k = (k0, . . . , km−i) of non-specified discriminating coordinates:∫ 1

0
· · ·
∫ 1

0
f(z0, . . . , zs−1) · (uα

k0
+ (1 − uk0)α) · · · (uα

km−i
+ (1 − ukm−i

)α) duk0 · · · dukm−i

=
(

2
α + 1

)m−i

f(z0, . . . , zs−1).

We have therefore the following integral equation

f(z0, . . . , zs−1) =
K∑

m=1
τm

∑
i≥0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i

×
∑

w∈(0+1+#)s

|w|0,1=i

{
∫

Iw0 (z0)
· · ·
∫

Iws−1 (zs−1)
f

(
ρw0(z0, u0), . . . , ρws−1(zs−1, us−1)

)

·
(

θw0(u0) · · · θws−1(us−1)
)α

dus−1 · · · du0

}
, (5)

where ρ1(zi, ui) = zi

ui
, ρ0(zi, ui) = 1−zi

1−ui
, ρ#(zi, ui) = zi, θ1(u) = u, θ0(u) = 1 − u, θ#(u) = 1,

I1(z) = [z, 1], I0(z) = [0, z] and I#(z) = [0, 1].
Recall that only i ≤ m coordinates will be specified and discriminating at the root of the

quad-K-d tree; the remaining coordinates are either unspecified or non-discriminating and
the PM does the same from the point of view of those coordinates; we have thus to sum over
all possible choices involving the s specified coordinates: the root does not discriminate for
that coordinate (wj = #), the root discriminates for that coordinate and the rank specified
in the PM is less (or equal to) than the rank of the key of the root node (wj = 0) or the root
discriminates for that coordinate and the rank specified in the PM is greater than the rank
of the key of the root node (wj = 1).

In order to find a solution for the integral equation above, we will use that f(z0, . . . , zs−1)
– if it exists – satisfies the following conditions:
1. f(z0, . . . , zs−1) is symmetric on all variables, that is, for any i and j,

f(z0, . . . , zi, . . . , zj , . . . , zs−1) = f(z0, . . . , zj , . . . , zi, . . . , zs−1);

and,
2. averaging Pn,r over all possible r should give us P̂n, hence∫ 1

0

∫ 1

0
· · ·
∫ 1

0
f(z0, . . . , zs−1) dz0 · · · dzs−1 = βs,K ,

where βs,K is the constant factor of the main order term of P̂n (see Theorem 3).
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8:12 Partial Match Queries in Quad-K-d Trees

We will begin assuming that the integral equation (5) admits a solution on separate
variables, that is, f(z0, z1, . . . , zs−1) = ϕ0(z0) · ϕ1(z1) · · · ϕs−1(zs−1). And because of the
symmetries that f satisifes, namely Condition #1 above, we must have ϕ = ϕ0 = · · · = ϕs−1.

Then

ϕ(z0) . . . ϕ(zs−1) =
K∑

m=1
τm

m∑
i=0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i

×
∑

w∈(0+1+#)s

|w|0,1=i

{
∫

Iw0 (z0)
· · ·
∫

Iws−1 (zs−1)
ϕ(ρw0(z0, u0)) . . . ϕ(ρws−1(zs−1, us−1))×

(
θw0(u0) · · · θws−1(us−1)

)α

dus−1 · · · du0

}

=
K∑

m=1
τm

m∑
i=0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i ∑
w∈(0+1+#)s

|w|0,1=i

{

s−1∏
k=0

∫
Iwk

[zk]
ϕ(ρwk

(zk, y))(θwk
(zk, y))αdy

}
.

Since we are assuming that f(z0, . . . , zs−1) = ϕ(z0) · · · ϕ(zs−1) the summation on w on
the right hand side can be written

∑
w∈(0+1+#)s

|w|0,1=i

{∫
Iw0 (z0)

· · ·
∫

Iws−1 (zs−1)
f

(
ρw0(z0, u0), . . . , ρws−1(zs−1, us−1)

)

·
(

θw0(u0) · · · θws−1(us−1)
)α

dus−1 · · · du0

}

=
∑

w∈(0+1+#)s

|w|0,1=i

{
s∏

k=0

∫
Iwk

(zk)
ϕ(ρwk

(zk, uk)) (θwk
(uk))α

duk

}

=
∑

k=(k0,...,ki−1)⊂{0,...,s−1}

{
i−1∏
ℓ=0

(∫ zkℓ

0
ϕ(zkℓ

/u)uαdu

+
∫ 1

zkℓ

ϕ((1 − zkℓ
)/(1 − u)) (1 − u)αdu

)
·

∏
0≤j<s:j ̸∈k

∫ 1

0
ϕ(zj)du

}
.

Making the change of variables in the integrals (y := zi/ui or y := (1 − zi)/(1 − ui), as
needed), we arrive at

ϕ(z0) · ϕ(z1) · · · ϕ(zs−1) =
K∑

m=1
τm

m∑
i=0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i ∑
k=(k0,...,ki−1)⊂{0,...,s−1}

{
i−1∏
ℓ=0

(
zα

kℓ

∫ zkℓ

0
ϕ(u) du

uα+2 + (1 − zkℓ
)α

∫ 1

zkℓ

ϕ(u) du

(1 − u)α+2

)
·

∏
0≤j<s:j ̸∈k

ϕ(zj)
}

. (6)
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Let ϕ(z) = ν(z(1 − z))φ−1, with φ = α/2 + 1, for an arbitrary constant ν. If we define

L[ϕ(z)] = zα

∫ 1

z

ϕ(y) dy

yα+2 , and

R[ϕ(z)] = (1 − z)α

∫ z

0
ϕ(y) dy

(1 − y)α+2 ,

then it is easy to show (see [14] for more details) that

ϕ(z) = φ · (L[ϕ(z)] + R[ϕ(z)])

Let k = {k0, k1, . . . , ki−1} ⊂ {0, . . . , s−1} and k̂ = {k̂0, k̂1, . . . , k̂s−1−i} = {0, . . . , s−1}\k,
then, for any k we have

ϕ(zk̂0
) · · · ϕ(zk̂s−1−i

) ·
i−1∏
ℓ=0

(L[ϕ(zkℓ
)] + R[ϕ(zkℓ

)])

= ϕ(zk̂0
) · · · ϕ(zk̂s−1−i

) ·
(

1
φ

)i

· ϕ(zk0) · · · ϕ(zki−1)

= ϕ(z0) · · · ϕ(zs−1) ·
(

1
φ

)i

.

Therefore the summation in (6) reads

∑
k:k⊂{0,...,s−1}

ϕ(zk̂0
) · · · ϕ(zk̂s−1−i

) ·
i−1∏
ℓ=0

(L[ϕ(zkℓ
)] + R[ϕ(zkℓ

)])

=
(

s

i

)(
1
φ

)i

ϕ(z0) · · · ϕ(zs−1).

Thus we can express the right hand side of (5) as

K∑
m=1

τm

m∑
i=0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i
{

∑
k:k⊂{0,...,s−1}
k̂={0,...,s−1}\k

ϕ(zk̂0
) · · · ϕ(zk̂s−1−i

)
i−1∏
ℓ=0

(L[ϕ(zkℓ
)] + R[ϕ(zkℓ

)])
}

=
K∑

m=1
τm

m∑
i=0

(
K−s
m−i

)(
K
m

) ( 2
α + 1

)m−i(
s

i

)(
1
φ

)i

ϕ(z0) · · · ϕ(zs−1)

= ϕ(z0) · · · ϕ(zs−1) ·

{
K∑

m=1
τm

m∑
i=0

(
K−s
m−i

)(
s
i

)(
K
m

) 2m

(α + 1)m−i(α + 2)i

}
= ϕ(z0) · · · ϕ(zs−1) = f(z0, . . . , zs−1),

where we have used the fact that the summation enclosed in curly braces of the second-to-last
line is, by definition, equal to 1 (see (1)).

To conclude we need to find the value of µ. Using Condition #2, the integral of f in the
hypercube [0, 1]s must be equal to βs,K . That is, we must have(∫ 1

0
ν (z(1 − z))α/2 dz

)s

= βs,K ,
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and thus the value of νs,K given in Theorem 6 must be

βs,K

(
1∫ 1

0 (z(1 − z))α/2 dz

)s

= βs,K
Γs(α + 2)

Γ2s(α/2 + 1) . ◀

4 Conclusions and Further Work

We have derived in this paper the expected performance of partial match queries in random
relaxed quad-K-d trees, for random as well as for fixed queries. Our results show that the
behaviour of random relaxed quad-K-d trees is identical to that of quadtrees and relaxed
K-d trees (which are two important particular cases): we always have P̂n ∼ βnα for random
partial match and Pn,q ∼ ν · f(q) · nα for fixed partial matches, with the exponent α and
the constant factors β and ν depending only of the dimension K, the number of specified
coordinates s in the partial match and the specific family of quad-K-d trees – which is
“encoded” in the probabilities {τm}1≤m≤K .

Our unifying analysis confirms, for this very general family of multidimensional trees –the
random relaxed quad-K-d trees–, the conjecture made in [14] on the expected performance
of fixed partial matches.

We also see these results as a fundamental first step to establish trade-offs between the
amount of space needed to store the data structure and the expected performance of exact
searches and of partial matches – the last, in turn, is fundamental to derive the performance
of other associative queries, such as orthogonal range queries and nearest neighbour queries
(see for instance [9, 13]).

Indeed, although it is not possible to find closed forms for α, β and ν (as they involve the
roots of a polynomial of degree K), we can still investigate numerically how these parameters
behave on a particular family of relaxed quad-K-d trees, characterised by the probabilities
τ . In fact, with the general definition of relaxed quad-K-d trees we have introduce “control
knobs” like the probability p in binomial split, pseudo-binomial split and geometric split
quad-K-d trees (see [4, 11]), which allow us to smoothly transition from random relaxed
K-d trees when p = 0 (best memory usage, largest IPL and partial match costs) to random
quadtrees when p = 1 (worst memory usage, smallest IPL and partial match costs). Another
example would be to consider m-regular quad-K-d trees (where all nodes are of type m) and
study how different performance parameters evolve with m as we go from m = 1 to m = K.

In practical settings, such a study is relevant as it helps to select the family of quad-K-d
trees (that is, fix the probabilities τm) which better fit the requirements of a given application.

Another possible line of research is to extend these results to families of quad-K-d
trees which are not relaxed, like the standard K-d trees [1] or squarish K-d trees [9] or
their generalisations to m-ary trees: these are examples of important families of quad-K-d
trees where the types of the nodes are not independently chosen and/or the discriminating
coordinates within a given node are not randomly assigned.
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A Proof of Equation (4)

Our goal here is to prove (4):

n−1∑
k=j

(
n − 1

k

)
(−1)kπ

(i,m)
k+1,j =

(
n − 1

j

)
(−1)j(n + 1)−in−m+i,

an intermediate result in the proof of Propositon 4. Recall that π
(i,m)
k+1,j denotes the average

number of top-level recursive calls on subtrees of size j when the quad-K-d tree is of size
k + 1, its root is of type m and exactly i discriminating coordinates out of m are specified.
But this number is exactly the same as the average number of top-level recursive calls on
subtrees of size j on a m-dimensional quadtree of size k + 1 for a random partial match in
which i of the m dimensions are specified; and this probability is given by [8, Eq. (2.1)]

π
(i,m)
k+1,j =

(
k

j

)∫
[0,1]m

dx x0 · · · xi−1(x0 · · · xm−1)j(1 − x0 · · · xm−1)k−j ,

where dx := dx0 · · · dxm−1.
We can then write the LHS of (4), for a fixed j,
n−1∑
k=j

(
n − 1

k

)
(−1)kπ

(i,m)
k+1,j

=
n−1∑
k=j

(
n − 1

k

)
(−1)k

(
k

j

)∫
[0,1]m

dx x0 · · · xi−1(x0 · · · xm−1)j(1 − x0 · · · xm−1)k−j

=
(

n − 1
j

) n−1∑
k=j

(
n − 1 − j

k − j

)
(−1)k ×

{
∫

[0,1]m
dx x0 · · · xi−1(x0 · · · xm−1)j(1 − x0 · · · xm−1)k−j

}

=
(

n − 1
j

)
(−1)j

{
n−1−j∑

ℓ=0

(
n − 1 − j

ℓ

)
(−1)ℓ

×
∫

[0,1]m
dx x0 · · · xi−1(x0 · · · xm−1)j(1 − x0 · · · xm−1)ℓ

}

=
(

n − 1
j

)
(−1)j

∫
[0,1]m

dx x0 · · · xi−1(x0 · · · xm−1)j

{
n−1−j∑

ℓ=0

(
n − 1 − j

ℓ

)
×

(−1)ℓ(1 − x0 · · · xm−1)ℓ

}

=
(

n − 1
j

)
(−1)j

∫
[0,1]m

dx x0 · · · xi−1(x0 · · · xm−1)j(x0 · · · xm−1)n−1−j

=
(

n − 1
j

)
(−1)j

∫
[0,1]m

dx x0 · · · xi−1(x0 · · · xm−1)n−1

=
(

n − 1
j

)
(−1)j

(∫ 1

0
xndx

)i

·
(∫ 1

0
xn−1dx

)m−i

=
(

n − 1
j

)
(−1)j(n + 1)−in−m+i.
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