
Dynamic Load Balancing of MPI+OpenMP applications

Julita Corbalán, Alejandro Duran, Jesús Labarta
CEPBA-IBM Research Institute

Departament d’Arquitectura de Computadors
Universitat Politècnica de Catalunya
Jordi Girona, 1-3, Barcelona, Spain.
{juli, aduran, jesus}@ac.upc.es

Abstract

The hybrid programming model MPI+OpenMP are use-
ful to solve the problems of load balancing of parallel ap-
plications independently of the architecture. Typical ap-
proaches to balance parallel applications using two lev-
els of parallelism or only MPI consist of including com-
plex codes that dynamically detect which data domains are
more computational intensive and either manually redis-
tribute the allocated processors or manually redistribute
data. This approach has two drawbacks: it is time con-
suming and it requires an expert in application analysis. In
this paper we present an automatic and dynamic approach
for load balancing MPI+OpenMP applications. The sys-
tem will calculate the percentage of load imbalance and will
decide a processor distribution for the MPI processes that
eliminates the computational load imbalance. Results show
that this method can balance effectively applications with-
out analyzing nor modifying them and that in the cases that
the application was well balanced does not incur in a great
overhead for the dynamic instrumentation and analysis re-
alized.

Keywords: MPI, OpenMP, load balancing, resource man-
agement, parallel models, autonomic computing

1 Introduction

A current trend in high performance architecture is clus-
ters of shared memory (SMP) nodes. MPP manufacturers
are replacing single processors in their existing systems by
powerful SMP nodes (small or medium SMPs are more and
more frequent due to their affordable cost). Moreover, large
SMPs are limited by the number of CPUS in a single sys-
tem. Clustering them seems the natural way to reach the
same scalability as distributed systems.

MPI and MPI+OpenMP are the two programming mod-
els that programmers can use to execute in clusters of SMP.

When application is well balanced pure MPI programs usu-
ally results in a good application performace. The prob-
lem appears when application has internal static or dynamic
load unbalance. If the load unbalance is static, there exists
approaches that consist of statically analyze the application
and perform the data distribution accordingly. If load un-
balance is dynamic, complex code lines to analyze and re-
distribute data must be inserted in the application to solve
this problem. In this case, programmers must spent a lot
of time analyzing the application code and their behavior at
run time. Moreover, it is not only a question of time, ana-
lyzing a parallel application is a complicated job.

In this work, we propose to exploit the OpenMP mal-
leability to solve the load unbalance of irregular MPI appli-
cations. The goal is do that automatic and dynamically by
the system (resource manager and runtime libraries) with-
out a priori application analysis.

One of the key points of our proposal is to be conscious
that there are several MPI processes, with OpenMP par-
allelism inside, that are collaborating to execute a single
MPI+OpenMP job. Since resources are allocated to jobs,
one processor initially allocated to a MPI process that com-
pounds the job can be reallocated to another MPI process
of the same job, as long as they are in the same SMP node,
helping it to finish the work.

We present a Dynamic Processor Balancing (DPB) ap-
proach for MPI+OpenMP applications. The main idea
is that the system dynamically measures the percentage
of computational load imbalance presented by the differ-
ent MPI processes and, according to that, it redistributes
OpenMP processes among them. We have developed a run-
time library that dynamically measures the percentage of
load imbalance per MPI process and informs to the resource
manager who controls the processor allocation in the SMP
node. The resource manager redistributes processors try-
ing to balance the computational power. Moreover, since
the resource manager has a global view of the system, it
could decide to move processors from a job to another if

1

© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. Doi 10.1109/ICPP.2004.1327921

this would increase the system throughput.
In this paper we present a preliminary study of the poten-

tial of this technique. Evaluations have been done assuming
that there is only one MPI+OpenMP application simulta-
neously running and limiting the resource manager to only
one SMP node.

In the next section we will introduce the related work. In
section 3 the proposed technique is presented and its com-
ponents explored. In section 4 some results are presented
showing the potential of the technique. Finally, section 5
concludes the paper and shows future directions of research.

2 Related work

The proposal presented by Huang and Tafti [1] is the
closest one to our work. They advocate for the idea of
balancing irregular applications by modifying the compu-
tational power rather than using the typical mesh redistribu-
tion. In their work, the application detects the overloading
of some of its processes and tries to solve the problem by
creating new threads at run time. They observe that one of
the difficulties of this method is that they do not control the
operating system decisions which could opposite their own
ones.

Henty [2] compares the performance achieved by the hy-
brid model with the one achieved by a pure MPI, when ex-
ecuting a discrete element modeling algorithm. In that case
they conclude that its hybrid model does not improve the
pure MPI. Shan et al. [3] compare the performance between
two different kinds of adaptive applications under the three
programming models: MPI, OpenMP and Hybrid. They
observe similar performance results for the three models
but they also note that the convenience of using a partic-
ular model should be based on the application characteris-
tics. Capello and Etiemble [4] arrive to the same conclu-
sion. Dent et al. [11] evaluate the hybrid model and they
conclude it is an interesting solution to applications such as
IFS, where exists load balancing problems and a lot of over-
head due the cost of the message passing when using a great
number of processors. Smith , after evaluating the conve-
nience of an hybrid model[5], believes such a model could
contribute with the best from MPI and OpenMP models and
it seems a good solution to those cases where MPI model
does not scale well. He also concludes that the appropriate
model should be selected depending of the particular char-
acteristics of the application. Finally, some authors such as
Schloegel et al [12] and Walshaw et al. [13][14] have been
working on the opposite approach. They have been working
of solving the load-balancing problem of irregular applica-
tions by proposing mesh repartitioning algorithms and eval-
uating the convenience of repartition the mesh or just adjust
them.

3 Dynamic Processor Balancing

Omp parallel do

Synchronization()

 Computational_loop()
End Do

Omp parallel do
 Computational_loop()
End Do

Synchronization()

Omp parallel do

Synchronization()

 Computational_loop()
End Do

...

mpi_init()

mpi_finalize()

Figure 1. Basic MPI+OpenMP structure

MPI+OpenMp jobs are composed by a set of MPI pro-
cesses that periodically synchronize. Each one of these
processes opens loop parallelism, with OpenMP, inside
them. Figure 1 shows the main structure of a two level
MPI+OpenMP application. Computational loops can con-
sume different time depending on the data each MPI process
calculates. If the application is irregular, the amount of data
to process can also vary during the application life for each
MPI process.

Rather than redistributing data, processor balancing con-
sists of redistributing computational power, that is the num-
ber of allocated processors, among collaborative MPI pro-
cesses. Processor balancing can be done by the application
itself or by the system. If the application performs this work
itself three main problems arise: (1) the system can take de-
cisions that unauthorize application decisions (this problem
is also mentioned by Tafti in [6]), (2) the programmer has to
introduce a complex implementation to dynamically eval-
uate the different computational percentages of each MPI
group and redistribute OpenMP processes, and (3) power
balancing could be runtime dependent and not a priori cal-
culated. In any case, this is a complicated process that must
be done by an expert and that requires to spent a lot of time.

Our proposal is that processor balancing can be done dy-
namically by the system transparently to the application and
without any previous analysis. This approach has the advan-
tage that it is totally transparent to the programmer, applica-
tions must not be modified depending neither on the archi-
tecture nor the data, and rescheduling decisions are taken
considering not just the job but also the system workload.
In this paper we will show that information extracted au-
tomatically at runtime is enough to reach a good balancing
without modifying the original application at all.

Processor balancing is performed in several steps: Ini-
tially, the resource manager applies an Equipartition [15]
policy. Once decided the initial distribution, each MPI pro-
cess, while running normally, will measure the time dedi-
cated to execute code and the time spent by communication
such as barriers or sending/receiving messages. This com-
putation will be automatically done by a run time library.
This information will be sent periodically to the resource

2

manager, who will adjust the job allocation, moving pro-
cessors from low loaded MPI processes to high loaded MPI
processes (from the point of view of computation). This
process will be repeated until a stable allocation is found.

Moreover, since the system has a global overview, it can
detect situations such as applications that cannot be bal-
anced, reallocating some of its processors to other running
jobs where they could produce more benefit. Obviously, the
final implementation should include some filters to avoid
undesirable job behavior as ping-pong effects.

In next subsections the main elements introduced in the
system are presented: the run time profiling library, the
modifications done in the OpenMP run time to give support
to this mechanism, and the Dynamic Processor Balancing
policy (DPB) implemented inside the resource manager.

3.1 Profiling libray

Most scientific applications have the characteristic that
they are iterative, that is, they apply the same algorithm sev-
eral times to the same data. Data is repeatedly processed
until the number of iterations reaches a fixed value, or until
the value of some parameters reaches a certain value (for
instance, when the error converges to a certain value). The
profiling library exploits this characteristic to accumulate
meaningful times for computation and communication us-
age.

...

...
mpi_send()

mpi_send (...)
{
 begin_measure()
 pmpi_send(...)
 stop_measure()
 process_measure()
}

pmpi_send(...)
{
 /* mpi send code */
}

Application code Profiling library MPI library

Figure 2. MPI profiling mechanism

MPI defines a standard mechanism to instrument MPI
applications that consist of providing a new interface that it
is called before the real MPI interface[16]. Figure 2 shows
how the standard MPI profiling mechanism works. The ap-
plication is instrumented using this profiling mechanism.
When a MPI call is invoked from the application the library
measures the time spent in the call and add its to a total
count of time spent in MPI calls.

The iterative structure of the application is detected using
a Dynamic Periodicity Detector library (DPD) [8]. DPD is
called from the instrumented MPI call and it is feeded with
a value that is a composition of the MPI primitive type (
send, receive, . . .), the destination process and the buffer
address. With this value DPD will try to detect the pattern
of the periodic behavior of the application. Once, a period
is detected the profiling library keeps track of the time spent
in executing the whole period.

MPI Processes

Cpu Distribution

MPI time

Computation time

Redistribution

Figure 3. DPB example

These two values, mpi execution time and period execu-
tion time, are averaged from the values of a few periods and
passed to the resource manager for feeding the allocation
policy.

3.2 Dynamic Processor Balancing policy

The goal of the Dynamic Processor Balancing (DPB)
policy is generating a processor distribution where all the
MPI process spend the same amount of time in computa-
tion, reducing the computation imbalance as much as pos-
sible based on the data gathered by the profiling library.

Figure 3 shows an example of how DPB works. In the
figure there is one process with more computation time than
the others. This produces that global execution time in-
creases as the other two processes (the ones in the left)
are spending their time waiting at the synchronization point
(send/receive, barrier, . . .). In this case, DPB will take the
decision of stealing a processor to each of the left processes
and give them to the loaded one. This decision makes the
two victim processes go slower but the global time is re-
duced due to a better utilization of the resources.

The policy is not working constantly but is only invoked
when the resource manager has collected enough informa-
tion for the policy to work (computation and MPI time from
all processes of a job). Each time the policy is invoked it
tries to improve one of the processes of the job, the one with
highest computation time, by increasing its processor allo-
cation. Those processors are stolen from a victim process.
The chosen victim is the process with minimum computa-
tion time of those that have more than one processor (a
process needs always at least one). Once the victim is se-
lected, an ideal execution time for next allocation, ti+1 is
computed for that process using the formula:

ti+1(highest) = ti(highest) − (tmpi(victim) −
tmpi(highest))/2

This heuristic assumes that the MPI time of the process
that has more computation time is the minimum MPI time
that any of the process can have. Then, with this future
time, the number of cpus that should be moved between
the processes to obtain that time based on the last execution
time, is calculated as follows:

cpus = cpusi(highest)∗ti(highest)
ti+1(highest) − cpusi(highest)

3

Some restriction apply to the above:

• No process can have allocated less than one processor.
So this means that sometimes the calculated cpus will
not be possible. This case is treated giving the maxi-
mum possible.

• If the time ti+1 is estimated that will be worst that ac-
tual time the current allocation is maintained.

Even with this checks, sometimes a decision will lead to
an increase in execution time. To recover from those situ-
ations the last allocation is always saved. When the policy
detects that the last execution time was worst than the pre-
vious, it recovers the saved allocation. After there is any
change in the allocation, the mpi and period time counters
of theprofiling library are reset to zero to obtain new data
from the job.

3.3 OpenMP runtime library modifications

When the policy decides a new allocation the resource
manager informs the processes of their new processor avail-
ability, by leaving the new information in a shared memory
zone of the process. After that, the OpenMP run time li-
brary should adjust it parallelism level (number of running
threads) to comply with the system policy.

From the application point of view this can be done in
two ways:

Synchronously Two rendezvous points are defined at the
entrance and exit of parallel regions. When an appli-
cation arrives at a synchronization point, it checks for
changes in its allocation and adjusts its resources prop-
erly. So, this means that while the application is inside
the parallel region could potentially run with more (or
less) resources than those actually allocated to it.

Asynchronously In this version, the resource manager
does not wait for the application to make the changes
but it preempts immediately the processor stopping the
running thread on it. As this can happen inside a paral-
lel region, the run time needs the capability to recover
the work that was doing or it has assigned that thread
in order to exit the region. This is not an easy task
as available resources can change several time inside
a parallel region leading to deadlocks if not carefully
planed. Further information of this approach can be
found at Martorell et al. [10].

Our implementation, in the IBM’s XL library, uses the
first approach. As the parallel regions our work focuses are
small enough, the time a process does not comply the allo-
cation is so small that there are no significative difference
between the results obtained with both approaches. So, the
results obtained will be applicable to both scenarios as long
as this restriction is maintained.

4 Evaluation

4.1 Architecture

The evaluation has been performed in a single node of
an IBM RS-6000 SP with 8nodes of 16 Nighthawk Power3
@375Mhz (192 Gflops/s) with 64 Gb RAM of total mem-
ory. A total of 336Gflops and 1.8TB of Hard Disk are avail-
able. The operating system was AIX 5.1. MPI library was
configured to use shared memory for message passing in-
side the node.

4.2 Synthetic case

Firstly, a synthetic application was used to discover the
potential of the technique presented. The synthetic applica-
tion includes a simple external loop with two internal loops.
Two MPI processes execute the external loop and internal
loops are parallelized with eigth OpenMP threads. At the
beginning and the end of each external iteration there is a
message interchange to synchronize MPI processes. So, it
is a simple case that follows the structure shown in Figure 1.
This synthetic job allows giving a specific workload to each
of the MPI processes, allowing to use different imbalance
scenarios.

(a) Speedups (b) Processor distribution

Figure 4. Results for synthetic imbalances

Four different scenarios have been tested: 13,33%,
26,67%, 33,33% and 70% of imbalance. The speedups ob-
tained (the version without the balancing mechanism was
taken as reference) are summarized in the Figure 4(a). This
results show that the technique is able to cope perfectly with
different imbalance situations so it can becoming interesting
policy in order to balance, in a transparent way, hybrid ap-
plications. It obtains, at least, the same gain that the imbal-
ance that has been introduced. In figure 4(b) the processor
distribution that DPB used is shown. There it can be seen
that, in fact, the percentage of processor unbalance of the al-
location closely reassembles the imbalance of the scenario.

4

4.3 Applications

To verify our approach in a more complex situation we
executed some MPI+OpenMP applications in a single SMP
node. Each job made use of all the processors of a node
distributed among the different MPI processes.

The applications, selected from the NAS Multizone
benchmark suite [9], were: BT, LU and SP with input data
classes A and B. These benchmarks solve discretized ver-
sions of the unsteady, compressible Navier-Stokes equa-
tions in three spatial dimensions. BT zone partition is done
asymmetrically so an equipartition of the zones (the default
approach in all benchmarks) will result in an unbalanced
execution. SP and LU on the other hand do the zone parti-
tion in a symmetric way so their execution are expected to
be balanced.

All the NAS-MZ benchmarks come with two load bal-
ancing algorithms, which can be selected at compile time.
This algorithms represent slightly more than a 5% of the
total code. Their objective is to overcome the possible im-
balances from the default equipartion of the zones. First
one, maps zones to MPI process trying that all them have a
similar amount of computational work. It also, tries to mini-
mize communication between MPI processes by taking into
account zone boundaries. Second one, assigns a number a
processors to each MPI process based on the computational
load of the zones assigned to it from the initial equipartition.
Both methods are calculated before the start of the compu-
tation based on knowledge of the data shape and computa-
tional weight of the application so we will refer to the first
one as Application Data Balancing and to the second as Ap-
plication Processor Balancing. Our objective is to obtain a
similar performance to Application Processor Balancing but
done in a dynamic and application independent way without
modifiying the source code at all.

We have executed the NAS-MZ benchmarks with these
two approaches, with DPB, and with a simple equipartition
version, which has been used as reference value for the cal-
culation of the speedup in the following sections.

4.3.1 Irregular zones (BT-MZ)

The situation that the data domain is irregular either in its
geometry or in its computational load is very frequent on
scientific codes mainly because of the nature of the enti-
ties being modelled (weather forecasting, ocean flow mod-
elling, . . .). So the BT-MZ benchmark will evaluation will
help to see if DPB can help to improve those codes.

Figure 5(a) shows the speedup for the different load bal-
ancing strategies with data class A. As it can be seen DPB is
closely tied with the Application Processor Balancing algo-
rithm. For a two MPI processes execution, DPB gets some
more performance (1,26 vs 1,18 of speedup), with four MPI

(a) Class A (b) Class B

(c) Class A (20 last
timesteps)

(d) Class A unbalance (e) Class A processor
distribution

Figure 5. Results for BT-MZ

5

processes DPB is just a 4% behind. For the eight processes
execution this difference is really high (14%). This is due
to the warmup time of DPB (time to detect the application
structure, obtain the first measures, find a stable allocation,
. . .). So, for longer executions DPB will be as good op-
tion as the Application Processor Balacing algorithm. This
hypothesis is confirmed if we take a look at the speedups
obtained for the last 20 time steps of the benchmark (figure
5(c)). There, not only the difference for the eight processes
case decreases until a 2%, that is due to the dynamic pro-
filing, but also the difference in the two processes case is
bigger. For further confirmation, if we look the speedups
of the data class B, which have a longer execution time, we
can see that the differences between the two method remain
similar.

When comparing with Application Data Balancing, this
method obtains better performance in most cases. This is
because data distribution allows finer movements than pro-
cessor distribution. Even so, for the class A with 8 MPI
processes both processor balancing techniques obtain bet-
ter speedup (see figure 5(c)) so it is not a clear option in
all the situations and worst of all it can not be performed
transparently as DPB.

In figure 5(d) shows the processor distribution that DPB
chooses for the different MPI processes configuration for
data class A. It can be seen that the distributions found by
the algorithm are quite complex.

4.3.2 Regular domains (LU-MZ, SP-MZ)

Evaluating a benchmark that is already balanced will show
the overheads introduced by the profiling and constant mon-
itoring of DPB.

Figure 6 shows the different speedups obtained for the
LU-MZ and for the SP-MZ benchmarks for both, data class
A and B. Surprisingly enough, DPB seems to improve the
execution for both data classes of the LU-MZ benchmark
with two MPIs (1,13 of speedup) when the benchmark was
supposed not be unbalanced. Actually, the improvement is
not due to a better processor distribution but because the
implementation of the original benchmark spent to much
time yielding and that affected their execution time. The
same thing happens for the two MPIs case of the SP-MZ
class B (see figure 6(d)) but here the reference execution
was not affected by the yielding effect and the other seem
to scale down.

If we concentrate on the other cases, we can see that none
of the methods gets an improvement. And most important
we can see that DPB doesn’t have an important impact on
their executions (a maximum of a 3% overhead) which it
means it has a fairly good instrumentation method that it is
almoust negligible.

(a) LU-MZ, Class A (b) LU-MZ, Class B

(c) SP-MZ, Class A (d) SP-MZ, Class B

Figure 6. Speedups for LU-MZ and SP-MZ

4.4 Effect of node size

We have evaluated the effect in the improvement
achieved by DPB when varying the node size. Results pre-
sented in the previous sub-sections have been calculated
with a single node with 16 cpus. Since we don’t have a
distributed version of the resource manager, we have per-
formed some experiments to give an idea about the reduc-
tion in the speedup introduced when node size are small.

These experiments consist of the concurrent execution
of two and four instances of the resource manager, each one
managing a subset of the node: eight processors when sim-

Figure 7. BT-MZ Class A for different nodes
sizes

6

Figure 8. BT Class A. MPI vs MPI+OpenMP

ulating two nodes and four processors when simulating four
nodes.

Figure 4.4 shows the speedup achieved by BT.A when
executing in 1 node with 16 cpus, 2 nodes with eight cpus
each one, and 4 nodes with 4 cpus. In all the experiments
there are 16 cpus. The speedup is calculated comparing
with the execution time of BT.A without load balancing.

With small nodes, DPB has less chances to move proces-
sors between MPI processes and this results in a reduction
in the speedup. For instance, in the case of 8 mpi processes,
the speedup goes from 1.9 when running in a node with 16
cpus to 1.3 when executing in 4 nodes (2 mpi processes per
node).

4.5 Comparing MPI vs MPI+OpenMP

In figure 4.5 is shown a comparative of the execution
times for different processor availability of combinations of
MPI and Openmp: ranging from pure OpenMP (only one
MPI process) to pure MPI (only one OpenMP in each) go-
ing throught hybrid combinations. There it can be seen than
using more MPIs only increases the execution time while
using just one gets the lowest time. When our dynamic pol-
icy is used even lowest execution times are achieved with
hybrid configurations.

These results show point that when an application is un-
balanced is better to use and hybrid approach that allows to
overcome the unbalance either with a hardcoded algorithm,
as those shown in 4.3.1, or ,even better, automatically like
the proposal of this paper. When the application is well bal-
anced, on the other hand, it may be worth it to use a pure
MPI approach [4].

5 Conclusions and Future work

This papers investigates the feasibility of having a Dy-
namic Processors Balancing algorithm that helps to reduce

the imbalance presented on MPI+OpenMP applications.
Our proposal works at the system level changing the re-
source allocation of the jobs for improving their utilization
and reducing total execution time. We have shown, as with
a simple low overhead profiling mechanism, enough infor-
mation can be collected to perform this task properly. In
fact, results show close performance (sometimes even bet-
ter) with some other application specific handcrafted tech-
niques. Those other techniques require a good knowledge
of the data geometry of the application and spending a con-
siderable effort in analyzing and tuning of the applications.
Also, the fact that our proposal does not need any modifica-
tion in the application combined with the low impact that
has on already balanced applications, because of its low
overhead, makes it a good candidate for a default system
component.

Future work will follow three directions. First of all,
the developed technique will be used to evaluate a broader
range of benchmarks and applications, and also evaluate
them in bigger configurations. The second line of work it
is to expand the current platform for using it for workloads.
This means researching policies to maximize some system
metric (like throughput) as well as application specific met-
rics. This new platform will be distributed, dealing with
jobs that span through more than one SMP node. And the
last line will be trying to get better resource usage by al-
lowing processor sharing between processes. To be able
to achieve that coordination between the three levels (sys-
tem,MPI and OpenMP) will required.

6 Acknowledgements

This work has been supported by the Spanish Ministry of
Education under grant CYCIT TIC2001-0995-C02-01, the
ESPRIT Project POP (IST -2001-33071) and by the IBM
CAS Program. The research described in this work has been
developed using the resources of the European Center for
Parallelism of Barcelona (CEPBA).

References

[1] W. Huang and D. Tafti. ”A parallel Computing Frame-
work for Dynamic Power Balancing in Adaptive Mesh
Refinement Applications”. Proceedings of Parallel
Computational Fluid Dynamics 99.

[2] D.S. Henty. ”Performance of Hybrid Message-Passing
and Shared-Memory Parallelism for Discrete Element
Modeling”. Proc. of the Supercomputing (SC). 2000.

[3] H. Shan, J.P. Shingh, L. Oliker and R. Biswas. ”A
comparison of Three Programming Models for Adap-
tive Applications on the Origin2000”. Proc. Of Super-
computing (SC) 2000.

7

[4] F. Cappello and D. Etiemble. ”MPI versus
MPI+OpenMP on the IBM SP for the NAS Bench-
marks”. Proc. of the Supercomputing (SC). 2000

[5] L.A. Smith. ”Mixed Mode MPI/OpenMP Program-
ming” . Edimburg Parallel Computing Centre, Edin-
burgh, EH9 3JZ

[6] D.K.Tafti. ”Computational Power Balanc-
ing, Help for the overloaded processor”.
http://www.me.vt.edu/people/faculty/tafti.html

[7] D.K. Tafti, G. Wang. ”Application of Em-
bedded Parallelism to Large Scale Com-
putations of Complex Industrial Flows”.
http://www.me.vt.edu/people/faculty/tafti.html

[8] F. Freitag, J. Corbalan, J. Labarta. ”A Dynamic Period-
icity Detector: Application to Speedup Computation”.
IPDPS 2001.

[9] R.F. Van der Wijngaart, H.Jin, ”NAS Parallel Bench-
marks, Multi-Zone Versions”. NAS Technical Report
NAS-03-010. July 2003.

[10] X. Martorell, J. Corbalan, D. Nikolopoulos, N.
Navarro, E. Polychronopoulos, T. Papatheodorou and
J. Labarta. ”A Tool to Schedule Parallel Applications
on Multiprocessors: the NANOS CPU Manager”.
Proc. of the 6th Workshop on Job Scheduling Strate-
gies for Parallel Processing (JSSPP’2000), in conjunc-
tion with the 14th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’2000), May
2000.

[11] D. Dent, G. Mozdzynski, D. Salmond and B.
Carruthers. ”Implementation and Performance of
OpenMP in ECMWF’s IFS Code”. Fifth European
SGI/Cray MPP Workshop, September 1999.

[12] K. Schloegel, G. Karypis and V. Kumar. ”Parallel mul-
tilevel algorithms for multi-constraint graph partition-
ing”. Technical Report #99-031. 1999. University of
Minnesota, Minneapolis.

[13] C. Walshaw, A. Basermann, J. Fingberg, G. Lonsdale,
B. Maerten.”Dynamic multi-partitioning for parallel fi-
nite element applications”. In Proc. of Parallel Com-
puting: Fundamentals & Applications, Proceedings of
the International Conference ParCo’99. August 1999.
Imperial College Press. pages 259-266, 2000.

[14] C. Walshaw and M. Cross. ”Dynamic Mesh Partition-
ing and Load-Balancing for Parallel Computational
Mechanics Codes”. In Computational Mechanics Us-
ing High Performance Computing, pages 79-94. Saxe-
Coburg Publications, Stirling, 2002.

[15] C. McCann, R. Vaswani, and J. Zahorjan. ”A dynamic
processor allocation policy for multiprogrammed,
shared memory multiprocessors”. ACM Transactions
on Computer Systems, 11(2):146–178, May 1993.

[16] Message Passing Interface Forum. ”The MPI
message-passing interface standard”. http://www.mpi-
forum.org, May 1995.

8

