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Abstract: Water crises due to climate change, high population growth and increasing demands
from industry and agriculture claim for increasing efficiency and universalizing water resources
management strategies and techniques. Water monitoring helps providing necessary evidences for
making sound decisions about managing water resources both now and in the future. In this work,
a low cost and “do it yourself” communication device is proposed to record water production and
energy consumption of electric pumpings from deep boreholes/wells, and to predict the impact
of the ongoing and previous pumpings in the evolution of the water level in the aquifer. The
proposal incorporates an edge-computing approach for the simulation of the aquifer response in
real-time. Computation of results of interest is performed at the sensor, minimizing communication
requirements and ensuring almost immediate results. An approximated solution to physically based
modeling of aquifer response is computed thanks to the a priori expression of the water level time
evolution in a reduced basis. The accuracy is enough to detect deviations from expected behaviour.
The energy consumption of the device is very much reduced with respect to that of a full modelling,
which can be computed off-line for calibrating reduced model parameters and perform detailed
analyses. The device is tested in a real scenario, in a mountain subbasin of the Ebro river in Spain,
obtaining a good trade-off between performance, price, and energy consumption.

Keywords: groundwater monitoring; low-cost device; do-it-yourself device; LoRa communication;
Raspberry Pi

1. Introduction

The United Nations has proposed 17 actions known as Sustainable Development Goals
(SDGs) for reducing poverty, protecting the planet and ensuring peace and prosperity for
the entire world by 2030. Number six of these goals is “Ensure availability and sustainable
management of water and sanitation for all”. Some of the actions for achieving this
include improving water quality by reducing pollution, increasing water use efficiency
and managing water resources. Therefore, better monitoring of water and sanitation
interventions is essential for achieving this SDG in a more cost-effective and efficient way.

The use of the Internet of Things (IoT) in the monitoring of water consumption and
quality is a very active field of research [1,2]. However, a key issue for universalizing
proposals, as SDGs fulfilment needs, is the relatively expensive cost of equipment, mainly
intended for large water-management companies. The challenge is to achieve efficient
water-monitoring systems at an affordable cost. For this reason, various initiatives are
currently aimed at the design and commercialization of low-cost equipment for monitoring
water consumption and quality, for instance, water-quality monitoring equipment for use
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in the context of Citizen Science [3] or water-meter designs to be deployed in hand pumps
of Africa [4,5].

In fact, water monitoring is not a single point problem as it typically requires several
sensor nodes that can communicate amongst themselves. In this regard, several communi-
cation technologies have been analyzed to determine if they are suitable for application in
these environments [6]. In the specific case of wells and water sources located outside urban
and suburban areas, long-distance communication infrastructures are required, with SigFox
and LoRa being fairly good options. The difference between them is mainly that LoRa is
based on a Do-It-Yourself (DIY) approach that does not require the infrastructure provided
by a telecommunications operator and therefore does not depend on its coverage.

In addition to data communication, there is a complementary aspect related to data
collection. In many cases, a large amount of information is collected for use in subsequent
processing calculations, analysis and decision making [1]. The bandwidths available for
the sensor node data can be too low to allow pass-through of all data, in both the LoRa and
SigFox technologies [6]. To alleviate this problem, the amount of monitoring data to be
transmitted is typically reduced in two ways: (1) by reducing the sample rate and (2) by
preprocessing the information in the nodes.

Reducing computational time, energy or resources because at a certain moment an
“exact” prediction of a model is not necessary, is not a novel idea. In fact, it is an emerging
computing paradigm known as approximate computing [7]. Examples of this are the use
of floating point formats with less precision [8], which have been shown to be effective
in achieving energy efficiency at the cost of obtaining a result that is accurate enough
for the purpose of the calculation, but no more. Influence of arithmetic precision, data
uncertainty and modelling uncertainty on prediction capabilities depend strongly on
specific characteristics of the problem in hands.

In this work, we propose a low-cost device with LoRa communication technology
that monitors the water flow and electrical consumption during pumping from deep
boreholes/wells, and that predicts the water level evolution using a simplified model of the
aquifer. The proposal follows not only an approximate computing but an edge-computing
approach. This later paradigm focuses on the preprocesses and computation of outputs
of interest directly at the nodes, minimizing the needs of bandwidth and of time delay to
inform of the predictions at the node. Recording data from water meters and energy sensors
is straightforward, but real-time computation and estimation of water level evolution is
not. Both, the approximate and edge computing perspectives are used in the proposal to
minimize use of energy and communication resources.

Estimating the water level of a water well is neither easy nor cheap. Normally these
types of systems have a price that can be too high if a number of wells need to be monitored.
The advantage of our approach is that it does not require an expensive infrastructure to
collect these data since the necessary measurement equipment is affordable, automatable
and would be present in the same device. The proposed system has been introduced,
validated and analyzed in a deep well pumping for irrigation in the middle part of the
Matarraña river basin, a tributary of the Ebro river, Spain. The area is characterized by
a arid-mediaterranea climate, with annual precipitation about 600 mm. The big aquifer
“Puertos de Beceite” (number ES091MSBT096 in the Ebro river basin characterization and
planing [9]), is below the upper part of the basin. In the middle part, still in a mountain
context, there are smaller aquifers in conglomerates and Oligocene sandstones, typically
confined at high depth, and of relatively reduced productivity. The uncertainties associated
to aquifer modelling are high, and the impact of pumping in the water table is sometimes
significant, which makes it an illustrative example for the proposal.

The main contributions of this work are the following:

• a low-cost device with a “do-it-yourself” metering and communication approach
for analysing water production and energy consumption of pumpings, specifically
designed for deep boreholes/wells;
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• the computation of an approximated model in the device for predicting water-level
change due to pumping;

• a complete description of all hardware and software aspects of the proposed device;
• a comprehensive analysis of the feasibility of the proposed device in terms of tempera-

ture, power consumption and performance;
• the practical application of the presented device in a real environment.

The paper is organized as follows: Section 2 presents the state of the art of water
monitoring systems and their data acquisition, transmission and processing approaches.
Section 3 identifies the existing problems in the current measurement systems as well
as the requirements of the proposed solution. Section 4 presents an overview of our
proposal. Section 5 and Section 6 provide the hardware and software details of the proposal,
respectively. The validation of the device in terms of temperature, energy consumption and
performance is shown in Section 7. Section 8 describes the deployment of the proposed
device in the real application. Finally, Section 9 summarizes the main conclusions.

2. Related Work

Water monitoring systems help to identify the state, changes and trends of water
resources, infrastructures and services. Data acquisition, transmission and processing
are three of the main stages that can be identified in these systems from a data-analysis
perspective.

2.1. Data Acquisition

Water monitoring systems usually acquire data with local devices located in the same
place of action. These devices generally incorporate several specific sensors to analyze
the chemical, physical or biological properties. For instance, they can measure the oxygen
level to determine the health of the ecosystem, pH level to measure the acid or base quality
of the water, electrical conductivity to assess the purity of the water, degree of salinity
to estimate the concentration of dissolved salts in water, turbidity to analyze the relative
clarity of a liquid, or temperature to detect thermal pollution, among other properties.
Beyond the use of local sensors, remote sensors can also be used for data acquisition. In this
way, Andres et al. [10] also provide a description of various techniques for monitoring
water and sanitation by collecting data with satellites or even unmanned aerial vehicles.
In general, images collected by cameras and other spectral instruments are used in a wide
range of wavelengths.

In our proposal, data acquisition is limited to electrical power consumption [11–14] by
submerged pumping, and water flow [15–17] throughout a water-meter.

2.2. Data Transmission

Data transmission can deal with several types of wireless (radio, satellite, cellular, WiFi,
Bluetooth, etc) and wired (DSL, coaxial cable, fiber, etc) communication technologies. It is a
key challenge in water monitoring systems, particularly in environments where there is no
power outlet and the system’s operability depends on the battery life. Although nowadays
batteries have a greater longevity, their charge is still limited to a certain amount.

Wireless Sensor Networks (WSNs) are a reliable and efficient approach for achieving
a scalable and secure network to deliver data by means of interconnected sensor nodes
that monitor physical or environmental conditions of a given place of action. Therefore,
they have been widely used in fields as diverse as environmental protection, intelligent
transportation of goods, human health, disaster prevention, military intelligence, and many
more. Water monitoring also uses this type of network. Zhang et al. [18] present a water-
monitoring system based on wireless sensor networks to be used in breeding aquatic plant
and animal species. The proposed wireless sensor network ensures that the monitored
data are received in real time and are reliable, and also makes the sensor devices operate
for a longer period of time. Adu-Mani et al. [19] provide an overview of several quality-
monitoring systems, mainly focusing on data transmission by means of wireless sensor
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networks. They highlight the low level of security that this type of network incorporates
and the difficulty in keeping them operational for long periods of time because there is no
continuous power source. Finally, Calderwood et al. [20] developed an automatic network
of low-cost, open-source wireless sensors for real-time monitoring of groundwater using
acoustic sensors. This fully functional and operational proposal is compared to equivalent
commercial systems that are several times less expensive in monetary terms, mainly due to
the processing and visualization environment built with free software.

In summary, WSNs are a group of sensor nodes connected without a cable to collect
some data, but there is no direct connection to the internet. In contrast, any IoT system
should always have present the internet and involves anything that can be connected to it.
In this way, IoT has recently gained attention as a potential approach for water monitoring
as it allows information to be exchanged among various devices and data collected in real
time to be analyzed to take appropriate corrective measures. Geetha and Gouthami [21]
provide state of the art techniques and tools used in existing intelligent water-quality
control-systems and also introduces a simple and smart approach based on IoT technology.
A real implementation of a groundwater level monitoring network was deployed in Nova
Scotia, Canada [22]. In this case, low-cost Internet-of-Things devices transmit the data
collected through custom made meters to visualize and compare the water levels in real
time of several domestic wells of private users. In other areas of action, it should be noted
that access to healthy and clean water is a key challenge in most communities around the
world. Traditional water-dispenser systems usually break down within a few years and
they are not often fixed since there is no maintenance revenue. eWaterPay [23] is a solution
that uses mobile technology, IOT and Near-Field Communication (NFC) technology to
solve this problem. Ingram and Menom [4] analyze the robustness of this system in terms
of accuracy of the flow meter and flow rate.

The Low Powered Wide Area Network (LPWAN) is a wireless system that enables
long distance data transmission and devices to be connected with a low energy consump-
tion approach. They appear as a valid transport protocol option for certain needs of the
IoT. Examples of LPWAN technologies are LoRa, Sigfox and Weightless. In particular,
the LoRaWAN [24–29] protocol has been widely proved to be an effective way of transmit-
ting and receiving quick data with battery-operated devices in scenarios with low power
requirements. For instance, Pietrosemoli et al. [30] outline the design of a simple and
affordable device to obtain weather data from commercial weather stations with a limited
wireless range and retransmit the data to cover long distances by means of the LoRaWAN
protocol. Cano-Ortega and Sanchez-Sutil [31] use LoRaWAN to build a prototype that
monitors induction motors of electrical machines. This proposal benefits from secure
communications, low energy-consumption and a long signal-range both outdoors and
indoors. On the other hand, Dayana et al. [32] integrate a LoRaWAN module into an electric
meter to send details of the users’ electricity consumption. They achieve a wide range of
information transmission, lower energy use and non-significant data loss. You et al. [33]
propose applying the enhanced LoRaWAN security protocol in the context of efficient
parking management in smart cities. They achieve a significant improvement and better
performance in terms of network latencies compared to previously applied approaches.
Finally, Nakamura et al. [34] propose a flexible architecture for situations with limited
resources located in remote rural areas. The main idea of this proposal is that it adopts
LoRa technology to allow long-range transmissions with low-power consumption from
sensor nodes to a central node, that transfers the data to the server via the internet.

Focusing on water monitoring, LoRaWAN is becoming a popular technology for data
transmission due to its substantial advantages in terms of performance, energy consump-
tion and cost. Ngom et al. [35] apply LoRa technology in a water-quality monitoring
system of a pool in a botanical garden, in which data were previously collected by manual
measurement. They show that this protocol together with a low-cost infrastructure for
capturing and processing data in real time can achieve an efficient and reliable water-
monitoring system. Miles et al. [36] carry out a LoRaWAN study to determine whether it is
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the most suitable communication network to be applied in smart agriculture. The authors
experimentally model an open farm concluding that LoRaWAN has a lot of potential for
IoT applications. Apart from these more experimental and personalized proposals, there
are already commercial water sensors and water-monitoring systems (for instance Telog-41
of TrimbleWater [37] and DO-IoT-Compact of Umweltleistungen [38]) on the market that
use low-power LoRa technology so that the sensor batteries last for several years with
fairly reasonable data transmission intervals. Finally, there is a very interesting project at
La Marina de Valencia (Spain) proposed by Battulga et al. [39]. In their project they use a
network of sensors deployed throughout the sea to measure parameters such as the weather
and the movement of marine vehicles. This sensor network uses open-source software and
LoRaWAN communication technology to transmit the collected data to a fog computing
platform that processes the data in real time. This project is similar to the one proposed in
this work, except that in our case the real-time data processing to make decisions is carried
out in the sensor node and not only from real data but also from estimated data.

2.3. Data Processing

Data processing for identifying the pumping influence in the aquifers has been widely
researched in the past, directly linked to the development of physically based theories
and mathematical models representing aquifer behaviour [40–44]. The first models dealt
with confined aquifers, in simplified geometries, and typically in contexts of constant flow
pumping and posterior recovery. At times they have been the only option for estimating
aquifer hydraulic properties. Nowadays, it is a topic that still arouses interest due to
the difficulty in estimating aquifer characteristics; and as a first step to solve the partial
differential equations representing realistically 2D and 3D heterogeneous aquifers and
systems of aquifers.

Non-constant water flow can be modelled by superposition principle, provided that
the math model is kept linear. Mishra et al. [45] introduce an analytical method for confined,
unconfined, and leaky aquifers that focuses on numerically transforming discrete pumping
rate data signals into the Laplace transform domain (as proposed by Roumboutsos and
Stewart [43]) but avoids numerical instabilities by means of a discrete-time convolution in-
tegral. A special case of non-constant water-flow is found when the pumping is performed
at constant-head pumping. Trabucchi et al. [46] extend Agarwal’s method [42], which is
based on recovery tests combined with mathematical models for water-level estimation.

Recall that historical data of instantaneous water-flow rate and instantaneous pumping
electrical real power-consumption are needed in order to compute estimations for the
water level using simplified analytical solutions and qualify the fulfilment of underlying
hypothesis (constant flow rate, or constant head pressure). Thus, their availability is
mandatory for the data processing of the water table evolution.

3. Problem Statement and Requirements

The main aim of this work is to monitor the extraction of water from a well and to
predict the evolution of the position of the water table within. Thus, not only to have an
estimation of the instant position of the water table, but also to provide expected future
evolution of it. In order to predict these values, a simplified modelling of the energy
balance of the pumping scheme, plus an approximation to the water mass balance in the
aquifer are used. Prediction depends on magnitudes characterizing the pumping periods
and can be computed at the device. Water table evolution during non-pumping periods,
referred usually as recovery, depends on previous pumping periods. It is not the goal of this
approach to be used to monitor water level position without pumping, just measuring it.

There are several ways to directly measure the water level, each with its advantages
and disadvantages. It is possible to use tape measures, sonic sensors or piezometric
sensors [47]. The tape measure is manual, while the sensors are automatic. It means a
relatively cheap initial investment for tap measure, but its cost is high in the long term
as well as inefficient, since it requires labor and travel to perform the measurements.
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Instead, sensors are usually with devices which automatically computes and transmits
the water level values but at non-reduced costs. For instance, prices of sonic probes
or piezometric probes range between EUR 500 and EUR 1200 [48]. Piezometric probes
require the installation of sensors within the borehole, in contact with water, and they are
pre designed to work with certain ranges of pressures, which represents an additional
limitation in boreholes with large withdraws. Sonic probes are non invasive and can be
used to track deep water level locations, but the accuracy, even high (errors less than 1%),
can represent a problem for water levels in tens (or even a hundred) of meters.

For these two main reasons, costs and high-but-insufficient accuracy for real-time
control of pumping, we propose an alternative approach based on the approximate and
edge-computing paradigms. The proposal requires the measurement and recording of
pumped water and electrical power consumption. The position of the water table is directly
related to the water pressure within the aquifer, and this is influenced by the real power of
the pump, energy losses in the water pipes, the pumping history, but also by the geometric
and material characteristics of the aquifer and their water recharge mechanisms. Aquifer
data are usually the most uncertain. However, main characteristics of time-dependent
solutions can be checked in advance, and model parameters can be calibrated with punctual
real-data of water table evolution during a pumping–recovery sequence.

A water-meter with pulse emitter is the simplest way to approximate instantaneous
water flow within a pipe. Water-meters are designed to produce a reduced water energy
loss at nominal water flow rates; additionally, they are usually installed to have a minimum
control of the pumping use (and typically they are required in legalized pumping schemes
in most countries). Water meters with pulse emission type MJ-SDC can obtain the infor-
mation digitally in order to transmit it later. There are devices that measure the amount of
water that passes through them at a reasonable price unless the remote transmission of the
information is also required. For instance, prices of Zenner, Woltman and AO-Electronics
range between EUR 300 and EUR 1200 with remote transmission functionality, and be-
tween EUR 50 and EUR 300 without this remote transmission functionality AlphaOmega
Electronics [49], NingBo Water Meters [50]. In addition, a clock will be necessary that,
through a small electronic circuit (microcontroller/PLC), can calculate the water flow rate.

Energy power consumption can be measured with voltmeters and ammeters. Simi-
larly to the water-meters, their cost is quite reasonable unless the functionality of remotely
transmitting the collected information is necessary. For instance, prices of voltmeters and
ammeters range between EUR 60 and EUR 1200 with the remote transmission functionality,
and between EUR 30 and EUR 60 without this remote transmission functionality [51].
For single-phase current measurements, a voltmeter and an ammeter are sufficient, how-
ever, for three-phase current measurements, three voltmeters and four ammeters are
recommended to not depend on the hypothesis of balanced system functioning.

Finally, to provide data communication between the extraction points and the central-
ized server system, we need solutions that do not depend on commercial cellular networks,
since distribution companies would not build large communications installations because
the territory is rural, remote and there is little possibility of recovering their investment.
The most common and low-cost solutions such as Bluetooth and Wi-Fi, are not considered
either because they have a very short communication range. Therefore, our solution must
cover our communication needs, which are: (a) distances of several kilometers, (b) rural
locations with little or no commercial communication infrastructures, and (c) little need for
bandwidth (a few bytes per second).

In summary, although there is a large number of commercial solutions, they tend to
have a high cost in monetary terms. To the best of our knowledge, there is no device on the
market that can measure or estimate the behavior of a well and that can be replicated at a
reasonable cost. We proposed a device with a minimum cost of EUR 200 per unit (within
EU in 2019) for three-phase pumping.
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4. Proposal: Overview

Figure 1 shows the data flow scheme that we propose for our monitoring system in
which four main stages can be distinguished: (1) Data Acquisition, (2) Model Calibration,
(3) Data Processing and (4) Results Transmission. The Data Acquisition stage is responsible
for obtaining data from the different sensors (energy consumption and flow meter). The
Model Calibration stage includes the calibration of the model parameters, only once,
combining data with the data from the acquisition stage with direct water table evolution
measurement. The model can be calibrated as many times as necessary, but a priori
only once would be sufficient for normal system operation. The Data Processing stage
is responsible for estimating the water level and the behavior of the well based on the
model calibrated and the new data obtained from the acquisition stage. Finally, the Results
Transmission stage sends the data through an appropriate communication system to the
server or end user. Notice that the model is calibrated once and the behavior of the well is
calculated constantly and in real time.

Figure 1. Data flow Monitoring System.

Voltmeters and ammeters are used to measure power energy consumption. In a
three-phase system, electricity intensity by phase and neutral, and the voltages between
phase and neutral are of interest. Sensors are connected to a microcontroller that through
an Analog-to-Digital converter can obtain instant values of all magnitudes, and compute
the RMS value of intensities, voltages and real and apparent powers by line. This can
be efficiently computed using a rapid FFT (Fast Fourier Transform) transform of signal
data. Note that RMS magnitudes needs a minimum sampling time to be computed which
depends on electricity frecuency.

For measuring the water flow, the on–off signal of the pulse emitter is recorded. The in-
stantaneous water flow rate can be approximated considering the constant water volume
characteristic of each water-meter and the time increment between signals. The average
water flow from pumping start depends on total time and total number of signals emitted.

A water level meter (300 m) has been used for manually measuring the water level.
Data collected is used for model calibration and validation off-line. Model parameters are
updated in the device for the computations during Data Processing stage.

The microcontroller receives the real-time data from the sensors, computes the esti-
mated water level position, and makes the necessary transmissions through the installed
communications system.

There is a wide range of microcontrollers on the market, but in our case we rely
on those that are widely recognized and accepted and that have a large range of user-
tested hardware and software extensions. In this sense, the de facto standard based
on Arduino and Raspberry Pi are the most suitable. Nowadays there is a great inter-
est in the use of Arduino and Raspberry Pi systems, either individually or combined,
for low-cost monitoring environments. In this way, we can identify several examples that
combine Arduino and Raspberry Pi, such as to control the temperature of a photovoltaic
generator [52] or to manage the charging process of an electric vehicle [53], and exam-
ples that deal with Raspberry Pi individually, such as for photovoltaic water pumping
systems [54] or for monitoring the energy performance of buildings [55].
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Arduino is a Plug and Play microcontroller. As soon as it is plugged in, it starts
executing the single program that has been loaded. This is programmed in C/C++ and is
developed and compiled in the Arduino IDE environment from a PC, and then transferred
to the microcontroller through a USB connection. As it is a single program, it must integrate
all the functionalities that our application needs, and therefore it is not very flexible to
modifications and extensions of functionalities. However, it is suitable for performing
a single repetitive task efficiently and effectively, such as measuring RMS real power
consumption. In this sense, any board that has AD converters and the possibility of
communication via serial line would be sufficient.

On the other hand, Raspberry Pi, being a whole computer, with a Linux operating
system installed and access to all the development software and Linux libraries, offers great
flexibility to be programmed in any need and can be easily modified and expanded. It
has 40 well-known input/output pins, with a series of integrated adapters (USB, Ethernet,
etc.) and a storage system based on MicroSD cards, where the operating system and the
applications that we need are located. Among them, any compatible board would give
equivalent results (Raspberry Pi, Asus Tinker, Lepotato, Rock64, Banana Pi, Orange Pi,
Odroids, PocketBeagle) and within the Raspberry Pi family there are some alternatives
available that have sufficient computing power, from the Pi Zero to the Pi4.

As outlined above, we require a communication approach that can cover distances
of several kilometers in an environment with little communication infrastructure and
low bandwidth needs. These requirements made us consider than the LPWAN (Low
Power Wide Area Network) style protocols are suitable. Of these technologies LoRa and
LoRaWAN are considered the most appropriate, given that these communication protocols
are in full expansion and fit perfectly into the characteristics of the needed communication.
In fact, LoRa is a wide spectrum modulation technology with a high network range and low
power consumption at the cost of low bandwidth compared to other wireless technologies.
However, this is not a problem since our device only generates a small volume of data.

In summary, we will use an Arduino micro controller for real power consumption,
and a Raspberry Pi to record real power, water flow, interpolate both temporal series,
compute water level and proceed to communicate at desired time-intervals. The included
sensors are ammeters, voltmeters and a pulse of the water meter. Finally, the communica-
tions system used is the LoRa technology.

5. Proposal: Hardware Aspects

This section describes the selected low-cost solution proposed in this work. It describes
the different components necessary to take measurements, perform calculations and trans-
mit the results for the correct modeling of the behavior of the water well. Figure 2 shows
the block diagram and the real image of the hardware prototype. Particularly, Figure 2a
depicts the main components of the single-phase board prototype and the internal and
external connections, and Figure 2b shows an image of the single-phase prototype with its
main boards, sensors and interconnections.
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Figure 2. Board and sensor assembly. (a) Hardware block diagram. (b) Sensors and Boards.

5.1. Selected Board: Arduino + Raspberry Pi

For the acquisition of electricity data we chose an open source solution from the
company LeChacal. This company offers various kits, which by means of an Arduino
controller and a series of voltage and ampere sensors are capable of measuring the electricity
consumption that passes through a cable. Specifically we chose the RPIZ_CT3V1 kit [56],
which is the kit that can be integrated easily with a Raspberry Pi Zero [57], and the
RPIZ_CT4V3 kit with Raspberry Pi 3A+ or 3B+ [58] for the three-phase current system.
This already microprogrammed kits acquires the data from its sensors and performs the
consumption calculation, giving values of RealPower in watts, Irms in milliamps and Vrms
in volts. This information is sent through a serial line and can be collected through the serial
port /dev/ttyAMA0 of a Raspberry Pi, as described in the company’s tutorial. This kit has
installed, and uses, the YHDC-SCT013 current sensors [59] and a AC/AC adaptor-voltage
sensor IdealPower 77DE-06-09 [60].

Raspberry Pi boards offer enough computing power for our needs, are priced very
affordably, and integrate seamlessly with the Arduino microcontroller from LeChacal.
These systems have been installed with the Raspbian Lite version based on Debian 10.0,
which offers all the programs and services of an entire Linux system. We also have all
the power of a Linux system to perform extra calculations and communications with the
outside world.

The pulse emitter of the water-meter has been connected to three GPIO of the rasp-
berry Pi: one pin to ground, another pin to 3v3 voltage and the third to data on GPIO17.
The internal Arduino pull-up resistor is used to protect the circuit and two LEDs with their
resistors have been added to visualize the on–off signal of the water meter. Remarkably,
some water–meters emit pulses of predefined length once a volume of water has been
detected. Others, the most basic models, emit an on–off signal directly from the reed switch
on the counting wheel. At constant water flow, time of pulse is less than 0.5 of time of a
wheel round. Unequal pulses are better registered as on–off and off–on changes. The water
volume per round depends on the meter and the counting wheel with the sensor installed.

A separate battery clock was installed to provide accurate time at all times, corre-
sponding to the RTC PI v3 kit from ABelectronicsUK [61]. This board makes it possible
to keep the real time while the system is off and/or disconnected from a power outlet.
Finally, tests were carried out with USB devices for the communications part, specifically,
a Fast-Ethernet USB-RJ45 device and a LoRa LilyGO-TTGO-LORA32 device [62].

5.2. I/O and Communication

Following an ascending order, we discuss the different ways in which the system
components communicate. On the one hand, the SCT-013 current sensors and the AC/AC
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adaptor-voltage sensors are connected via a three-pole jack (although only two are used) in
an analog way to the Arduino RPIZ_CT3V1 board. This in turn is connected to the serial
port of the 40-pin GPIO bus of the Raspberry Pi Zero W/Pi 3 board. Between the two
boards, the RTC PI v3 real time clock is also connected to the 40-pin GPIO bus. Finally,
the connection of the water meter is made with a two-pole jack that is connected directly to
one of the digital input pins of the GPIO of the Raspberry Pi.

The whole system is powered by a 5V USB power supply. External communication
is carried out through the Wi-Fi built into the Raspberry Pi and can also be carried out
through the USB connector, where a USB-RJ45 Ethernet device can be plugged in. The com-
munication tests with LoRa were carried out with LilyGO-TTGO-LORA32 devices, which
allow easy installation and use in the Raspberry Pi board.

5.3. Board Assembly

It is not difficult to assemble the components and it is possible to Do-it-Yourself. You
just have to follow the manufacturer’s assembly instructions for building the different
components (they can be accessed from the references). As can be seen in Figure 2b,
the ammeters surround the current cable that they want to measure, in this case and for
single-phase current they cover both the phase cable (brown) and the neutral cable (blue).
We can also see the cables from the water meter (black and red), which are the ones that
connect to a GPIO port of the Raspberry Pi.

6. Proposal: Software Aspects

In this section we present the system’s operating. First, we discuss the general mode
of operation, then the different algorithms that are executed, next the water well-modeling
software and finally the communication mechanism used. Figure 3 details the dataflow
and code that are executed on the devices. Particularly, the block marked in a dashed
orange circle corresponds to the code that is executed on the Arduino board while the
blocks marked in dashed black circles correspond to the codes that are executed on the
Raspberry Pi.

Data Acquisition

Model Calibration

Data Processing

Results 
Transmission
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Code

AmmetersVoltage

● Sensor input

● Instantaneous 
energy 
consumption 
computation  
(e)

● Serial line 
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Water
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Pulse

● Sensor input

● Real time
Interrupt
Handler

e(t)

Q(t)

Hs Instantaneous Water LevelInitial Water Level

● Parameters of full and reduced 
physically based models

T S

● Instantaneous energy & water flow

Pumping stage

>0
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● Last water level (Hp)
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● Water level estimation (HR)

=0
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● Current water level

E(t)
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HR(t)
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Hp(t)
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● Last water level (Hs,Hexp,HR)
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● Water flow extracted (Qa)
● Energy consumed (E)
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● Pumped   
water flow 
computation  
(Q)

Figure 3. Flowchart block diagram.
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6.1. Operating Mode

The procedure to take measurements begins as soon as the two devices are plugged
in: the Arduino and the Raspberry Pi. From that moment on, the Arduino microcontroller,
which already has the program to run, begins taking measurements from the sensors,
calculating the current values in real time and sending the values through the serial line to
the Raspberry at a preconfigured cadence (values between 1 and 5 s).

The Lite version of Raspbian, that is based on Debian 10.0, has been installed in the
Raspberry Pi system and through an installed service it starts a script that executes the water
well-modeling program. As values are obtained, the well-modeling algorithm is applied to
calculate the water level in real time. Once the water extraction is completed, the summary
values of the extraction that has been carried out are sent with the LoRa protocol at a
predetermined rate by the program settings. Typically, the devices do not turn off between
different water withdrawals but when the exploitation is stopped (seasonally, weekly,
power interruption, etc). In order to minimize the risk of file system data corruption and
loss of data, the writings to file are always accompanied by the flush command, and thus it
is guaranteed that the writing is performed on the physical device.

6.2. Stage Algorithms

As it is shown in Figure 1, our approach is divided into several stages to estimate
the behavior of the well: (1) Data Acquisition, (2) Model Calibration, (3) Data Processing
and (4) Results Transmission. Each of these stages has its own code to perform the tasks
assigned to them. In the following subsections we describe each of these codes in detail.

6.2.1. Data Acquisition

The data acquisition stage is responsible for obtaining data from the energy consump-
tion sensor and flow meter sensor. These data will be used in the following stages.

The energy consumption acquisition code runs on both controllers in the system
(Arduino board and Raspberry Pi board). The RMS values are calculated in the Arduino
board by reading the data provided by the voltage and amp sensors. The code that the
Arduino board executes is the one provided by the LeChacal company as part of the energy
consumption measurement kit. The results are sent through the serial line to the Raspberry
Pi board. The Raspberry Pi board executes a code that is constantly reading through its
serial line and realizes some preprocess to generate real power data and save them with a
time stamp. It is important to note that data are received by passive waiting, and in this
case, as long as no new data arrive, no CPU is consumed by the Raspberry Pi processor.
The frequency of sending and receiving the values can be configured. A minimum of
0.2 s for sensor reading and RMS computation is needed (10 cycles with electricity at
50 Hz), thus values over 1 s are proposed.

The flow meter acquisition code is in charge of receiving pulses generated by the
water meter that is at the outlet of the well pump. This pulse is connected to a GPIO pin in
the Raspberry Pi. The GPIO signal handles an interrupt routine, executed each time the
signal changes. Because of this passive waiting, CPU utilization is very low. Each time
a change is detected, code saves the time of the change and computes instantaneous and
mean pumped water-flow since beginning.

6.2.2. Model Calibration

The model calibration stage is responsible for calibrating the model parameters which
characterize water level evolution. These parameters are related to different terms appear-
ing when considering water mass balance in the aquifer and energy balance in the pumping
system. We choose a reference model based on expected aquifer characteristics: The Theis
model [40], which corresponds to the analytical solution of the boundary value problem
of the water pressure in the aquifer for a simplified case (confined aquifer of infinite ex-
tension, homogeneous, horizontal and with a constant thickness, with a small diameter
pumping borehole totally penetrating the aquifer strata, and with a constant pumping
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flow starting instantaneously at time zero). In these conditions, the aquifer response is
characterized by two material coefficients: Transmissivity, T, and storativity, S. The water
pressure draw down is given at a distance r of the borehole center and at time t starting at
t = 0, by s(r, t) = QaW(u)/(4πT), with u = r2S/(4Tt), W(u) =

∫ ∞
u e−u/u du, and Qa the

constant flow rate. In single well contexts r = rB, the radius of the borehole is considered
representative of the real water table position, thus the water level evolution is given by
H(t) = Hs + s(rB, t), with Hs the initial water level position referred usually as static level
(level without previous pumping influences). Model unknowns T and r2

BS are unlikely
to change once determined, but the static water level can be expected to suffer changes
occasionally. Even the reality of the aquifer does not fulfil previous hypothesis for the Theis
model, the two parameters T and S are the basis for more complex aquifer modelling.

We calibrate aquifer parameters with the model considering non constant flow pump-
ing and both pumping and recovery periods. Superposition cannot be applied to each
variation of the real–time signal, few seconds. We assume near to constant head pump-
ing conditions and adjust an exponential interpolation of Q(t) for each pumping period,
fitted with a penalized minimum least square problem to force the capture of the total
water volume. Optimization is solved with a genetic algorithm. Finally, the inverse
Laplacian of the analytical solution on the Laplace space is computed. We apply super-
position principle for recovery and to include influence of past pumping in subsequent
pumping–recovery periods.

As the reference model cannot be solved repeatedly on a real-time basis, we propose
using the Jacob’s approximation to Theis solution, considering the average water flow
previously pumped, qa(t) =

∫ t
0 q(τ) dτ, as the reference constant water flow. The classical

Jacob’s approximation is found considering only first two terms of the approximation of
W(u) by a series, obtaining s(r, t) = Qa ln(2.25Tt/(r2S))/(4πT), valid for u < 0.03. In the
case of recovery after a pumping period of tP time span, the superposition principle leads to
sR(r, t) = Qa ln(t/(t− tP))/(4πT). After rearranging, water level during recovery is found
as HR(t) = Hs + CqaltRqa(tP) log10(t/(t − tP)), with CqaltR related with T. For pumping
periods we use a storability-alike parameter, Ŝ, which differs from the one characteristic
of the aquifer and calibrated previously with the full model. The use of two storability
parameters was previously found useful by [63], and discussed by [64]. In our approach,
the storability-alike parameter for pumping captures the influence of time lapse between
start pumping and the water meter signal and possible changes on water head. Thus, water
level during pumping is approximated by HPh(t) = Hs + Cqa qa(t) + Cqalt qa(t) log10(t),
with Cqa and Cqalt related to T and Ŝ. Additional terms can be included in HPh(t) and HR(t)
to consider the impact of previous pumping periods in actual simulation. Summarising,
model calibration of hydraulics requires the calibration of four parameters, involving both
the reference and the simplified hydraulic models, and with data involving pumping and
recovery periods (q(t) and measured Hexp(t)).

On the other hand, the power effectively transferred from pumping to water is trans-
formed into energy losses by friction of water flow with pipes and valves system, potential
energy, i.e., increment of water height with respect to initial position, and kinetic energy,
which is assumed negligible. Water energy losses can be considered proportional to square
water flow rate in standard operational conditions (with limited water flow velocity inside
the pipe). Energy transferred with pumping is given by the pump curve, which is provided
by the manufacturer, and relates the increment of water pressure with the water flow,
usually, with a quadratic function and referred to nominal power. Water level can be
approximated considering energy balance by HPe(t) = Ce e(t) + Ceq2 e(t)q(t)2 + Cq2 q(t)2,
with e(t) the real power time evolution and q(t) the instantaneous water flow. A minimum
of three parameters are needed to relate water level position during pumping with water
flow and real power consumption, with two characterizing the pump. These parameters are
calibrated using least squares with e(t), q(t) and measured Hexp(t) data during pumping.
Note that during pumping periods, both mass and energy balance should be fulfilled,
which implies HP(t) = HPh(t) = HPe(t).
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6.2.3. Data Processing

The data processing stage estimates the water level and the behavior of the well
based on the model calibrated in the Calibration stage and the new data obtained from the
acquisition stage every time an extraction is made.

With no pumping active (e(t) = 0, q(t) = 0) water level estimate is the static water
level Hs. In case that there has been a previous pumping recorded HR(t) is computed from
tP and qa(tP) values (the pumping time span and the total water volume pumped). When
pumping starts, signal of e(t) increases from near zero to nominal pumping power in a
period of some, even tens of, seconds. During this time water starts flowing up through the
pipe until it reaches the water meter and water provision point. It can delay up to a couple
of minutes. Then water meter signal indicates the water flow q(t) > 0.

With pumping active (e(t) > 0 and q(t) > 0) the proposed prediction for ĤP(t) is
equal to (H1(t) + H2(t))/2. The value of EP(t) = (H1(t) − H2(t))/2 is considered an
indicator of the error of the estimation ĤP(t). Recall that real time computation is based
on an approximated model, which could not be accurate in the short term after starting.
Both computations, ĤP(t) and EP(t), are linear combinations of powers and cross products
of e(t), q(t), qa(t) and log(t). Pumping finishes once real power consumption drops to
zero, which implies no pumping and stopping water flow. The water meter last signal is
previous to last real power signal clearly above zero.

6.2.4. Results Transmission

The results transmission stage sends the data through an appropriate communication
system to the server or end user. In this way, LoRa communication is used to wirelessly
connect all the well pumping stations of an aquifer with the server. LoRa is able to
communicate small amounts of data over long distances with low power consumption;
however, unfortunately, latencies can be very high. This means that LoRa is not suitable
for sending real-time data or control commands from the server in the event of an error.
The supervision of the operation, as well as the detection and action in the event of an
error, is programmed in the microcontroller of the pumping station, following the Edge
Computing approach. Therefore, LoRa communication can be used to inform the server of
problems or errors in the pumping station; however, it is not feasible to wait for orders or
commands from the server.

The data generated by the sensors are also processed locally in the Raspberry Pi
microcontroller. As shown in Section 7.3, CPU usage for this processing is low and can
be carried out easily in the microcontroller. Therefore, once they have been processed,
the data to be transmitted to the server will be summaries of a water extraction and
values of the behavior of the well and the underlying aquifer. The communication period
is long, from minutes to hours, and therefore LoRa offers enough bandwidth for our
needs. Each LoRa data communication will send just a few values: pumping starting time,
duration of pipeline transport, pumping end time, total extracted water and average power
consumption. Therefore, the LoRa communication protocol meets our needs for a minimum
communication infrastructure, low bandwidth needs and long-distance communication in
rural environments (a few kilometers).

Figure 4 shows the throughput experimentally obtained with TTGO LORA32 test
devices. Two devices, one as an emitter and one as a receiver, have been used in a laboratory
environment separated by a few centimeters from each other. The throughput obtained in
a given SF (spread factor) with different message sizes has been measured. Particularly,
SFs from 7 to 12 with message sizes ranging from 1 byte to 200 bytes have been tested.
Results show that low SFs (SF7 and SF8) have a higher throughput (4900 bps and 2800 bps)
compared with throughput (400 bps and 214 bps) obtained with high SFs (SF11 and SF12).

Given these specifications, we will use low profile LoRa settings that make sufficiently
effective communication possible. With this idea, for measurements of a small number of
water wells, high SFs (spread factors) of 11 or 12 will be used, since they have sufficient
bandwidth and allow transmissions at a greater distance (10 to 20 km). The biggest disad-



Electronics 2022, 11, 3788 14 of 26

vantage of these SF is that they occupy the transmission channel for a longer time. On the
other hand, for a basin with a greater number of wells, the communication parameters
of each of the wells could be configured differently. Configuring the closest wells with
lower SFs of 7 or 8, which occupy less channel time, have greater bandwidth, but have a
transmission distance limited to a few km (2 km approximately). As the wells get further
away from the server, they would use higher SFs that allow greater transmission distances,
and SF 12 would be used in those that are further away.

Figure 4. Throughput between two TTGO LORA32 devices.

In summary, LoRa communication fits perfectly in this approach as we deal with low
rates of data communication, long range distances, low power requirements, and there is
no need to communicate real-time data or commands.

7. Proposal: Verification

This section presents the validation of the device in terms of power consumption,
temperature and performance. A prototype that is powered by single-phase alternating
current was used in the laboratory. The simulation of the pulses of the water meter was
obtained from a pulse generator. The main target of the test is to determine the limits of the
device at room temperature and at high temperatures in the shade. In both cases, the CPU
usage is varied from idle to 100%, going through the normal usage it would have while
taking measurements from the well.

7.1. Energy Consumption

Power consumption is very important in battery operated systems. However, in our
case the highest energy consumption is produced by the water-pump motor. It varies a
lot depending on water flow and well depth. Values from one thousand to several tens
of thousands are typical. The sensors and microcontroller used have very low energy
consumption (from 1 W to 4 W), which can be several hundreds of watts less than the
consumption of the water-pump motor (from 1000 W to 10,000 W), which means that the
consumption of the box represents less than 0.4% of the total energy consumed.

7.2. Temperature

The safe working temperature for a Raspberry Pi, for all its components, is from
0 ºC to 70 ºC (Celsius degrees) and the working range of the SoC/CPU is from −40 ºC
to 85 ºC [65]. Two types of temperatures are measured: first the SoC temperature (by
reading the internal temperature sensor) and second the temperature inside the box (with
a DS18B20 temperature sensor connected through 1-wire to another Raspberry Pi that is
outside the box).
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A series of experiments were carried out with different external temperatures and
different CPU loads on the Raspberry PI to check the temperature limits in execution of the
selected boards. Table 1 shows all the experiments carried out in the laboratory.

Table 1. Temperature ranges (Celsius degrees ºC) of the BOX and SoC with two different external
ambient temperatures.

Ambient
Temperature CPU Utilization ºC CPU ºC Inside Box

Laboratory at 20 ºC
Idle 31–35 26–27

Well-modelling code 34–37 27–28
Stress package 41–44 28–29

Laboratory at 40 ºC
Idle 47–50 41–44

Well-modelling code 50–54 43–46
Stress package 58–61 44–47

Box and SoC temperature measurements were made at an ambient temperature of
20 ºC and 40 ºC. These measurements, in turn, were carried out under three operating
conditions of the Raspberry PI CPU. The first in an Idle state, with no program running,
the second with a program running the well-modeling code while it is taking measurements
of power consumption using voltmeters and ammeters, and measurements of an electronic
pulse that indicates turns of a flowmeter (it was simulated with a pulse generator every
2 s), and the third executing a code (stress) that uses the CPU at 100%.

Figure 5 shows the evolution of the temperature of the two sensors that were used
in the two ambient temperature experiments (20 ºC and 40 ºC), while the use of the CPU
is modified, from idle, through execution of the modeling code, until using the CPU at
100%. It is worth mentioning that the use of the CPU is altered by the experiment itself,
since the measurements of temperature and the use of the CPU of the SoC are made with
the Raspberry PI itself; therefore, initially the CPU already starts from a CPU usage of
5%. This is not a problem for our experiment, since we are looking for the upper limits
of the running temperature of the system. Just say that these initial values will have a
slightly lower temperature. However, the temperature of the box has been taken from
another external Raspberry PI and in this case it does not alter the CPU usage of the internal
Raspberry PI.

As shown in Table 1, in any of the six situations, the limit temperature of the Raspberry
and Arduino boards is not reached. We highlight the case of executing the modeling code
at an ambient temperature of 40 ºC where the CPU temperatures are between 50 ºC and
54 ºC and the box is between 43 ºC and 46 ºC.
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Figure 5. Box and CPU temperature in different ambient conditions and %CPU usage.
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7.3. Performance

In this section, we evaluate the cost in CPU consumption of different alternatives
for model calibration and data processing codes. Reference and simplified models are
calibrated with codes developed in the R language (R is a free software environment for
statistical computing and graphics [66]). Libraries GA v 3.2.2 [67,68] and Pracma v. 2.3.8 [69]
are used. Data acquisition and processing stages at the Raspberry Pi are performed in codes
written in Fortran 90. Data acquisition stage at the Arduino is written in C. For comparative
purposes, Cython and Python versions of the Fortran code for data processing has been
developed. Cython [70] is an optimizing static compiler for Python, so we can obtain
additional performance by executing compiled code instead of interpreted Python code.

Table 2 contains the execution time of the five codes considered: R-dp (for data process
stage), R-cal-GA (for calibration stage), and F90-dp (in Fortran 90), Cython-dp and Python-
dp corresponding data-process codes. These codes were executed in four systems with
diverse computing powers: a Xeon+Quadro workstation (server), a Laptop computer with
Celeron CPU, and two models of Raspberry PI (PI 4 and Pi Zero W). Only the Raspberry
PIs are suitable for our purposes, but the more powerful laptop and server systems give us
an estimation of the minimum execution times for these codes.

Table 2. Real time [seconds], and %CPU execution time for a period of one hour, of the codes for the
calibration stage (R-cal-GA) and the data acquisition and process stages (R-dp, F90-dp, Cython-dp
and Python-dp) in four computing systems.

Code R-dp R-cal-GA F90-dp Cython-dp Python-dp

System Real %CPU Real %CPU Real %CPU Real %CPU Real %CPU

Server 0.44 0.012 7.93 0.22 0.08 0.002 0.14 0.004 0.14 0.004
Laptop 1.09 0.030 14.23 0.39 0.16 0.005 0.33 0.009 0.34 0.009
RBPi4 1.59 0.044 29.38 0.82 0.23 0.006 0.40 0.011 0.45 0.012

RBPi0w 13.88 0.385 298.9 8.30 1.92 0.053 4.01 0.111 4.54 0.126

It can be observed in Table 2 that the R-cal-GA is the code that takes the longest to
execute, followed by the R-dp, and the Python, Cython and finally Fortran 90 versions.
Cython is about 10% faster than Python, and Fortran twice faster than Cython. Regarding
the four computing systems tested, the fastest is the server, followed by the laptop, then
Raspberry Pi 4, and Raspberry Pi Zero W (the slowest one). Although it is the slowest
system, the Raspberry Pi Zero W is fast enough for data acquisition and process stages.
Raspberry Pi 4 is an option for R-calibration-GA code, but twice time slower than the laptop.

Table 2 also shows %CPU usage data for the five codes and four computing systems,
as the average value for a period of 1 h of execution. As mentioned above, despite being the
slowest system, Fortran and Cython codes executed in Raspberry Pi Zero W last between
2 and 4 s (in 1 h), that is, less than 0.1% of CPU usage. It is not necessary to have a more
powerful system.

Finally, in Figure 6, we analyzed the effect of the number of input data samples in the
execution time of the five versions of the code in the four considered computing systems.
Figure 6a–d correspond to the execution times (in seconds), while Figure 6e–h show the
relative time of the Python code version (Tpy) compared to the other code versions (Tot)
and computed as Tot/Tpy. In general, the execution time increases with the volume of data
to process, except the R-cal-GA code, with an almost constant execution time (because the
data processing represent a small percentage of the total execution time, compared with
optimization computations). From the slowest code to the fastest one, we have R-cal-GA,
R, Cython, Python and Fortran 90 “dp” versions, as seen in Table 2. Regarding the four
computing systems, the server is one order of magnitude faster than the Laptop, the Laptop
computer is slightly faster than Raspberry Pi 4, and our Raspberry Pi Zero W is about one
order of magnitude slower than Raspberry Pi 4, but powerful enough to execute the data
capture and process stages, with the lowest energy consumption.
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Figure 6. Execution and relative times of the five code version in the four computing systems.
(a) Server execution time; (b) Laptop execution time; (c) Raspberry Pi 4 execution time; (d) Raspberry
Pi Zero W execution time; (e) Server relative time; (f) Laptop relative time; (g) Raspberry Pi 4
relative time; (h) Raspberry Pi Zero W relative time.

8. Field Case Application

To test and validate the proposal, a prototype was installed in an operational pumping
for irrigation in the Matarraña valley. The tested prototype is for a three-phase current
supply. The case study is characterized by a reference static water level Hs = 83.65 m and a
radius of the perforation of rp = 0.11 m. The aquifer is confined and the pump is located at
130 m. Pump curve is given by Ce = 4.498 × 10−2 m/w, Ceq2 = 8.008 × 10−3 m s2/(w dm6)
at nominal real power of en = 4961 w.

Two sets of data including manual measurement of water level evolution are available:
First, 11 January 2019, and second, 11 April 2019. The first involves one pumping–recovery
period and it was used to calibrate the model. The second set includes three consecutive
pumping–recovery periods, although third is covered partially. Information from April
is used to validate the model. They were not performed in same conditions, a situation
that is detected by the error indicator during validation. In the following, main results for
calibration and validation are commented. The first pumping period is used here for the
recalibration of the model, and two strategies are compared: automatically, in the sensor,
and off-line.
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The water flow and real power consumption during calibration case are shown in
Figure 7. The pumping duration was approximately 2 h and 15 min, and it was performed
with almost constant head conditions. Note the delay in the starting time of water flow (at
surface) with respect to real power starting curve, about 50 s. Water flow starts at 1.6 L per
second and finishes at 1.4, a reduction of 15%.
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Figure 7. Calibration. Time evolution of water flow and electric power, measured data. Pumping
starting (left) and ending (right).

Two sets of parameters provide good results with the full model: one for better
adjusting the pumping and the other for recovery. Other pairs in between provide also
acceptable results. Even the values are quite different. Differences are in the usual range
and they are in agreement with T values reported in the area (from 0.28 to 158 m2/day [9]).
Values of parameters and corresponding constants are indicated in Table 3. Figure 8
summarizes main results of calibration for both sets of aquifer parameters. First, left
to right, the water flow adjusted by an exponential function from experimental data is
shown. Total water volume is represented with an error less than 0.05%. Second, the water
level evolution simulated with the reference model and first set of parameters is depicted.
Results are graphically in very good agreement. Third and fourth are the results with the
second set of parameters, during just the pumping period or including recovery, with both
reference and simplified models. The results of both models are almost indistinguishable.
The error during the recovery of second set of parameters is slightly higher than first set,
and it can be identified in Figure 8; but adjustment for pumping is slightly better.

Table 3. Calibrated parameters, T and S, for the reference model; and constants for the simplified
model, Cqa and Cqalt. The value CV

qa corresponds to a recalibrated value during validation.

T [m2/day] S[-] Cqalt [m]
Cqa

[ms/dm3]

CV
qa

[ms/dm3]

Set 1 3.60 1.1 × 10−3 4.3927 −0.5437 −0.6935
Set 2 2.75 7.0 × 10−3 5.7504 −5.5503 −5.5305
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Figure 8. Calibration. (a) Left: Water flow evolution, measured (black) and adjusted (blue). Right:
Water level evolution, measured (black) and simulated with the reference model and the 1st set of
parameters (blue). (b) Water level measured (black) and simulated with the reference model (blue)
and the simplified one (red), with the 2nd set of parameters. Left: Pumping period. Right: Pumping
and recovery.

The parameter related to water energy losses due to pipe transport is calibrated
using the real power data, obtaining Cq2 = −13.136 ms2/(dm6). With all parameters
adjusted, results of the simulations with both sets of parameters are presented in Figure 9.
The estimated water levels Hest are indicated in red color, overimpressed to the orange
curves corresponding to HPe. Measured data are plotted in black. Both results are in good
agreement with data. The error diminishes with time, being less than 1% of H except
during the first 10 to 15 min. Overestimation of first set of parameters is larger the second
one during this starting time.
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Figure 9. Calibration. (a) Left: Water level evolution, measured (black) and simulated (orange and
red) with the 1st set of parameters. Right, error estimation evolution. (b) Same results as (a) with the
2nd set of parameters.

Figure 10 shows the results obtained when applying calibrated set of parameters to the
data of first pumping of the validation case. Remarkably the results given by the aquifer
model are in very good agreement with experimental data; but energy does not provide
correct estimators (orange curve) and therefore model estimate (red curve) is incorrect. This
fact is detected by the error indicator which does not converge to zero with time. This is in
agreement with the documented change in water provision. Figure 10 shows the evolution
of the error in terms of water flow rate. Most of the time the error is around 6.5 m. A simple
estimate of the water energy losses parameter is given by the mean value of the error,
discarding staring time. This gives CV,S1

q2 = −19.683 ms2/dm6 for 1st set of parameters and

CV,S2
q2 = −19.867 for the second. Note that these values can be updated during the data

process stage with a simple computation (arithmetic mean). The value can be also updated
with least squares considering the water level measured data, off-line, in the calibration
stage. This later result is similar to previous ones CV

q2 = −19.919 ms2/dm6, and common
to both cases as it is computed directly from measured water level data.
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Figure 10. Validation. 2nd set of parameters. (a) Left: Water flow evolution, measured (black) and
adjusted (blue). Right: Water level evolution, measured (black) and simulated (blue, orange and red).
(b) Error estimation evolution, left, and relationship with water flow square, right.

The parameter Caq which characterizes simplified hydraulic modelling has been re-
calibrated with first pumping period of validation. Results are indicated as CV

aq in Table 3.
Variations with respect to calibration are low, specially considering the overall range of
variation of this parameter. Results are indistinguishable with the second set of parameters.
There is a slightly larger difference (not reproduced here) with the first one.

Figure 11 shows the estimated results for the overall validation period. Errors during
staring pumping and recovery are significant, punctually of 5% of H with the second set
of parameters. However, most of the time are close to zero. The signal during the third
pumping period was lost, thus the model predicts the recovery water table evolution from
this time forward. Without real-time information of real power and water flow rate the
model fails to predict water table evolution. Three details of the overall validation test are
presented in Figure 12. The results are in very good agreement, except during transitions
between recovery–pumping, for a short period of time.
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Figure 11. Validation. (a) Left, water level evolution, measured (black) and simulated (red) with the
1st set of parameters (updated). Right, error estimation evolution. (b) Same results as (a) with the
2nd set of parameters (updated).
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Figure 12. Validation. 2nd set of parameters. Water level evolution. Zoom.

9. Conclusions and Future Work

Water is currently a scarce and precious good and, therefore, mechanisms for managing
it that are affordable, particularly for those communities with limited resources, should
be provided. In this work we introduce a low-cost water monitoring device a LoRa
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communication approach. The device performs measures of real power consumption,
instant and accumulated water flow, an estimates the present and future location of the
water table in a fairly precise way. The proposal only needs off-line computation for
calibration of system parameters in terms of measured water level evolution during a
pumping–recovery cycle, which makes it possible to reduce communication costs.

This device has been tested and evaluated in a laboratory environment in terms of
energy consumption, temperature and performance. The energy consumption of the device
is negligible compared to that of the monitored water pump. The device always operates in
safe temperature ranges even in the worst conditions. The execution of data process stage
with Fortran or even Python is fast enough in the cheapest hardware system (Raspberry Pi
Zero W) with a CPU usage as low as 0.1%. Moreover, the proposed device was also tested
in a real environment and its deployment shows that it is being very effective in evaluating
the location of the water table.

Our proposal introduces some limitations due to the different decisions that have
been taken in its design. First, a number of simplifications of the well/aquifer behavior
implicit in the Theis and Jacob model have been assumed and calibrated, but the actual
well/aquifer behavior might differ slightly over time, thus some kind of periodic calibration
processes would be necessary. Secondly, our device incorporates two microcontroller
boards, but another approach could have been the use of a single microcontroller board
providing a cheaper and more compact solution. On the other hand, the number of
input/output ports dedicated to data sensors is determined by the current selection of
Raspberry Pi and Arduino boards and, although it is suitable for our approach, it would
not be very scalable assuming monitoring or control of complex irrigation systems. Finally,
as our proposal is a do-it-yourself device, it can be difficult to use it in massive environments
and also in technologically isolated areas, due to the need for end-user training for correct
maintenance, or specialized technical services in the implementation areas.

As future work, it is intended to efficiently deploy several prototypes of the device
presented to build a distributed system along pumping systems sharing the same aquifer,
so the different nodes can share the measurements and take into account crossing influences
in the water level evolution of ecah one. Model extensions to deal with more complex
aquifer modelling are expected to accurately reproduce other cases.
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